A Mendelian Randomization Study on Alzheimer’ s Disease and Sarcopenia
-
摘要:
目的 探究阿尔茨海默病与肌少症之间的因果关系。 方法 基于公开的全基因组关联分析(genome-wide association analysis ,GWAS)数据库中阿尔茨海默病与肌少症的3种相关表型:四肢瘦体质量、步行速度、低握力,通过逆方差加权法、中位数加权法、MR-Egger回归等进行两样本孟德尔随机化分析,并进行了异质性检验和多效性分析等敏感性分析。 结果 两样本孟德尔随机化研究显示,阿尔茨海默病可能会增加四肢瘦体质量的减少的风险(β = 0.010,95%CI:0.001~0.018, P = 0.021);同时,阿尔茨海默病可能会减慢步行速度(β = 0.009,95%CI:0.003~0.016,P = 0.005)。 结论 阿尔茨海默病可能导致肌少症发生风险增加。 Abstract:Objective To explore the causal relationship between Alzheimer’ s disease and sarcopenia. Methods This study is based on three related phenotypes of Alzheimer's disease and sarcopenia in the public genome-wide association analysis (GWAS) database, namely, appendicular lean mass, walking speed, and low grip strength. Two-sample Mendelian randomization analysis was conducted using inverse variance weighting method, median weighting method, MR-Egger regression, etc., and sensitivity analysis was performed, including heterogeneity testing and multiple effect analysis. Results The MR analyses demonstrated that Alzheimer’ s disease may increase the risk of reduced appendicular lean mass (β = 0.010 , 95% confidence interval (CI) = 0.001~0.018, P = 0.021), while Alzheimer’ s disease was a significantly correlated with low walking speed (β = 0.009, 95% confidence interval (CI) = 0.003~0.016, P = 0.005). Conclusion Alzheimer’ s disease may increases the risk of sarcopenia. -
Key words:
- Mendelian randomization /
- Alzheimer’ s disease /
- Sarcopenia
-
表 1 阿尔茨海默病与肌少症的3种相关表型 GWAS 数据信息表
Table 1. GWAS data information on Alzheimer’s disease and sarcopenia related traits
表型 ID号 出版年份 SNPs 样本量 (n) 研究人群 四肢瘦体质量 ebi-a-GCST90000025 2020 18071518 450243 欧洲人群 步行速度 ukb-b- 4711 2018 9851867 459915 欧洲人群 低握力 ebi-a-GCST90007526 2021 9336415 256523 欧洲人群 阿尔茨海默病 ieu-b-2 2019 10528610 63926 欧洲人群 -
[1] Cruz-Jentoft A J,Sayer A A. Sarcopenia[J]. Lancet (London,England),2019,393(10191):2636-2646. doi: 10.1016/S0140-6736(19)31138-9 [2] Larsson L,Degens H,Li M,et al. Sarcopenia: Aging-related loss of muscle mass and function[J]. Physiological Reviews,2019,99(1):427-511. doi: 10.1152/physrev.00061.2017 [3] Petermann-Rocha F,Balntzi V,Gray S R,et al. Global prevalence of sarcopenia and severe sarcopenia: A systematic review and meta-analysis[J]. Journal of Cachexia,Sarcopenia and Muscle,2022,13(1):86-99. [4] Cruz-Jentoft A J,Baeyens J P,Bauer J M,et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People[J]. Age and Ageing,2010,39(4):412-423. doi: 10.1093/ageing/afq034 [5] Wu X,Li X,Xu M,et al. Sarcopenia prevalence and associated factors among older Chinese population: Findings from the China Health and Retirement Longitudinal Study[J]. PloS One,2021,16(3):e0247617. doi: 10.1371/journal.pone.0247617 [6] DeTure M A,Dickson D W. The neuropathological diagnosis of Alzheimer's disease[J]. Molecular Neurodegeneration,2019,14(1):32. doi: 10.1186/s13024-019-0333-5 [7] Crous-Bou M,Minguill ó n C,Gramunt N,et al. Alzheimer's disease prevention: From risk factors to early intervention[J]. Alzheimer's Research & Therapy,2017,9(1):71. [8] Scheltens P,De Strooper B,Kivipelto M,et al. Alzheimer's disease[J]. Lancet (London,England),2021,397(10284):1577-1590. doi: 10.1016/S0140-6736(20)32205-4 [9] Selkoe D J,Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years[J]. EMBO Molecular Medicine,2016,8(6):595-608. doi: 10.15252/emmm.201606210 [10] Del Campo N,Payoux P,Djilali A,et al. Relationship of regional brain β-amyloid to gait speed[J]. Neurology,2016,86(1):36-43. doi: 10.1212/WNL.0000000000002235 [11] Brisendine M H,Drake J C. Early-stage Alzheimer's disease: Are skeletal muscle and exercise the key? [J]. Journal of Applied Physiology (Bethesda,Md : 1985),2023,134(3): 515-520. [12] Chang K V,Hsu T H,Wu W T,et al. Association between sarcopenia and cognitive impairment: A systematic review and meta-analysis [J]. Journal of the American Medical Directors Association,2016,17(12): 1164. e1167-1164. e15. [13] Sugimoto T,Ono R,Murata S,et al. Prevalence and associated factors of sarcopenia in elderly subjects with amnestic mild cognitive impairment or Alzheimer disease[J]. Current Alzheimer Research,2016,13(6):718-726. doi: 10.2174/1567205013666160211124828 [14] Davies N M,Holmes M V,Davey Smith G. Reading Mendelian randomisation studies: A guide,glossary,and checklist for clinicians[J]. BMJ (Clinical Research ed),2018,362:k601. [15] Jones G,Trajanoska K,Santanasto A J,et al. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women[J]. Nature Communications,2021,12(1):654. doi: 10.1038/s41467-021-20918-w [16] Zillikens M C,Demissie S,Hsu Y H,et al. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass[J]. Nature Communications,2017,8(1):80. doi: 10.1038/s41467-017-00031-7 [17] Cawthon P M. Assessment of lean mass and physical performance in sarcopenia [J]. Journal of Clinical Densitometry : The Official Journal of the International Society for Clinical Densitometry,2015,18(4): 467-471. [18] Chen L K,Woo J,Assantachai P,et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment [J]. Journal of the American Medical Directors Association,2020,21(3): 300-307. e302. [19] Visser M,Fuerst T,Lang T,et al. Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Health,Aging,and Body Composition Study-Dual-Energy X-ray Absorptiometry and Body Composition Working Group [J]. Journal of Applied Physiology (Bethesda,Md : 1985),1999,87(4): 1513-1520. [20] Pei Y F,Liu Y Z,Yang X L,et al. The genetic architecture of appendicular lean mass characterized by association analysis in the UK Biobank study[J]. Communications Biology,2020,3(1):608. doi: 10.1038/s42003-020-01334-0 [21] Zhao Q,Chen Y,Wang J,et al. Powerful three-sample genome-wide design and robust statistical inference in summary-data Mendelian randomization[J]. International Journal of Epidemiology,2019,48(5):1478-1492. doi: 10.1093/ije/dyz142 [22] Bowden J,Davey Smith G,Haycock PC,et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator[J]. Genetic Epidemiology,2016,40(4):304-314. doi: 10.1002/gepi.21965 [23] Bowden J,Davey Smith G,Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression[J]. International Journal of Epidemiology,2015,44(2):512-525. doi: 10.1093/ije/dyv080 [24] Pierce B L,Ahsan H,Vanderweele T J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants[J]. International Journal of Epidemiology,2011,40(3):740-752. doi: 10.1093/ije/dyq151 [25] Ogawa Y,Kaneko Y,Sato T,et al. Sarcopenia and muscle functions at various stages of Alzheimer disease[J]. Frontiers in Neurology,2018,9:710. doi: 10.3389/fneur.2018.00710 [26] Takagi D,Hirano H,Watanabe Y,et al. Relationship between skeletal muscle mass and swallowing function in patients with Alzheimer's disease[J]. Geriatrics & Gerontology International,2017,17(3):402-409. [27] Kim J,Choi K H,Cho S G,et al. Association of muscle and visceral adipose tissues with the probability of Alzheimer's disease in healthy subjects[J]. Scientific Reports,2019,9(1):949. doi: 10.1038/s41598-018-37244-9 [28] He P,Zhou C,Ye Z,et al. Walking pace,handgrip strength,age,APOE genotypes,and new-onset dementia: The UK Biobank prospective cohort study[J]. Alzheimer's Research & Therapy,2023,15(1):9. [29] Manini T M,Hong S L,Clark B C. Aging and muscle: A neuron's perspective[J]. Current Opinion in Clinical Nutrition and Metabolic Care,2013,16(1):21-26. doi: 10.1097/MCO.0b013e32835b5880 [30] Pan JX,Lee D,Sun D,et al. Muscular Swedish mutant APP-to-Brain axis in the development of Alzheimer's disease[J]. Cell Death & Disease,2022,13(11):952. [31] Xu H,Bhaskaran S,Piekarz K M,et al. Age related changes in muscle mass and force generation in the triple transgenic (3xTgAD) mouse model of Alzheimer's disease[J]. Frontiers in Aging Neuroscience,2022,14:876816. doi: 10.3389/fnagi.2022.876816 [32] Seo J S,Leem Y H,Lee K W,et al. Severe motor neuron degeneration in the spinal cord of the Tg2576 mouse model of Alzheimer disease [J]. Journal of Alzheimer's Disease : JAD,2010,21(1): 263-276.