留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMR分层纵向应变对肥厚型心肌病心内膜下LGE预测价值初探

高薇 陈伟 王钰 杞天付 吴灵教 李志明 赵卫

高薇, 陈伟, 王钰, 杞天付, 吴灵教, 李志明, 赵卫. CMR分层纵向应变对肥厚型心肌病心内膜下LGE预测价值初探[J]. 昆明医科大学学报, 2024, 45(8): 58-66. doi: 10.12259/j.issn.2095-610X.S20240809
引用本文: 高薇, 陈伟, 王钰, 杞天付, 吴灵教, 李志明, 赵卫. CMR分层纵向应变对肥厚型心肌病心内膜下LGE预测价值初探[J]. 昆明医科大学学报, 2024, 45(8): 58-66. doi: 10.12259/j.issn.2095-610X.S20240809
Wei GAO, Wei CHEN, Yu WANG, Tianfu QI, lingjiao WU, Zhiming LI, Wei ZHAO. Predictive Value of CMR Layer-Specific Longitudinal Strain for Endocardial LGE in Hypertrophic Cardiomyopathy[J]. Journal of Kunming Medical University, 2024, 45(8): 58-66. doi: 10.12259/j.issn.2095-610X.S20240809
Citation: Wei GAO, Wei CHEN, Yu WANG, Tianfu QI, lingjiao WU, Zhiming LI, Wei ZHAO. Predictive Value of CMR Layer-Specific Longitudinal Strain for Endocardial LGE in Hypertrophic Cardiomyopathy[J]. Journal of Kunming Medical University, 2024, 45(8): 58-66. doi: 10.12259/j.issn.2095-610X.S20240809

CMR分层纵向应变对肥厚型心肌病心内膜下LGE预测价值初探

doi: 10.12259/j.issn.2095-610X.S20240809
基金项目: 国家自然科学基金资助项目(82060312);云南省科技厅计划基金资助项目(202301AY07000-054;202101AT070249);云南省放射与治疗临床医学研究中心子项目(202102AA100067;20102AA100067)
详细信息
    作者简介:

    高薇(1996~),女,云南蒙自人,在读硕士研究生,住院医师,主要从事心脏磁共振影像研究工作

    通讯作者:

    赵卫,E-mail:kyyyzhaowei@foxmai.com

  • 中图分类号: R445.2

Predictive Value of CMR Layer-Specific Longitudinal Strain for Endocardial LGE in Hypertrophic Cardiomyopathy

  • 摘要:   目的  采用心脏磁共振(CMR)分层应变技术评估伴或者不伴心内膜下LGE的HCM患者左心室心肌功能变化,并探究HCM患者发生心内膜下LGE的预测因素。  方法  回顾性纳入2017年1月至2020年9月在昆明医科大学第一附属医院接受CMR检查的HCM患者61例,年龄、性别相匹配的健康对照组49例。依据有无心内膜下LGE,将HCM患者分为无心内膜下LGE组(G1组,n = 40)和心内膜下LGE组(G2组,n = 21)。采用CMR分层应变技术获取左心室心肌整体纵向应变(GLS)和心内膜下纵向应变(endoLS)。比较上述3组心脏结构、功能以及应变参数差异。采用单因素及多因素Logistic回归分析HCM患者心内膜下LGE发生的独立危险因素,并通过受试者操作特征(ROC)曲线评估其预测效能。  结果  G2组GLS、endoLS较G1组和对照组显著减低(GLS:-10.57%±2.56%(G2)Vs. -12.53%±2.49%(G1)Vs. -17.35%±1.77%(对照组),endoLS:-10.35%±2.47%(G2)Vs. -13.60%±2.52%(G1)Vs. -18.58%±1.86% (对照组),均P < 0.001)。多因素Logistic回归分析显示endoLS是HCM患者心内膜下LGE发生的独立危险因素(OR = 1.696,P = 0.001),预测心内膜下LGE发生的曲线下面积(AUC)为0.852,截断值为-11.87%,灵敏度为81.0%,特异度为85.0%。  结论  CMR分层应变指标endoLS能够早期识别HCM患者心内膜下功能障碍,可能是HCM患者心内膜下LGE发生的理想预测指标。
  • 图  1  3组受试者左心室LGE和应变后处理图

    A~C:对照组、HCM无心内膜下LGE组(G1组)、HCM心内膜下LGE组(G2组)的延迟强化图像(黄箭为心内膜下LGE);D~F:对照组、G1组、G2组左心室心肌纵向应变后处理图,于左心室舒张末期勾画心内膜、心外膜轮廓;G:对照组左心室心内膜下纵向应变(endoLS,红色曲线)曲线图;H:G1组左心室endoLS曲线图;I:G2组左心室endoLS曲线图;J:对照组左心室整体纵向应变(GLS,黄色曲线)曲线图;K:G1组左心室GLS曲线图;L:G2组左心室GLS曲线图。

    Figure  1.  Post-processing images of left ventricular LGE and strain in three groups

    图  2  观察者间和观察者内一致性分析(Bland-Altman图)

    Figure  2.  Inter- and intra-observer agreement analysis(Bland-Altman plot)

    图  3  endoLS预测HCM患者发生心内膜下LGE的ROC曲线

    Figure  3.  ROC curve of endoLS in predicting subendocardial LGE in HCM patients

    表  1  3组间基本资料比较[($\bar x \pm s$)/ n(%)]

    Table  1.   Basic information of the three groups[($\bar x \pm s$)/ n(%)]

    参数 对照组(n=49) G1组(n=40) G2组(n=21) χ2/t/F P
     年龄(岁) 46.00±11.14 47.78±9.61 44.42±11.82 0.714 0.492
     男性 29(59.2) 28(70.0) 14(66.7) 1.177 0.555
     BSA(m2 1.67±0.19 1.76±0.16 1.73±0.20 2.484 0.088
     心率(次/分) 68.96±12.50 65.88±11.34 68.00±9.81 0.788 0.458
     收缩压(mmHg) 115.61±11.38 115.15±10.85 116.95±9.74 0.191 0.826
     舒张压(mmHg) 75.92±7.38 74.60±9.20 74.14±7.20 0.477 0.622
     左室流出道梗阻 0 12(30.0) 9(42.9) 1.008 0.315
    CMR 基本参数
     LVMWT(mm) 8.28±1.46 18.82±3.61a 21.57±5.49ab 162.525 <0.001*
     LVM(g) 61.15±15.30 121.90±33.50a 133.30±34.03a 79.043 <0.001*
     LVEDV(mL) 124.84±21.46 130.40±20.95 127.23±22.78 0.733 0.483
     LVESV(mL) 46.01±12.32 44.32±9.32 43.05±9.49 0.621 0.539
     LVSV(mL) 78.84±13.75 86.08±15.52 84.18±20.24 2.466 0.090
     LVMi(g/m2 36.50±7.89 69.43±18.12a 77.20±19.27a 81.269 <0.001*
     LVEDVi(mL/m2 75.02±12.54 74.49±11.40 74.19±13.26 0.041 0.960
     LVESVi(mL/m2 27.55±6.87 25.24±4.74 25.14±5.80 2.092 0.128
     LVSVi(mL/m2 47.47±8.73 49.25±8.95 49.04±11.69 0.448 0.640
     LVEF(%) 63.38±5.99 66.01±4.71 65.62±6.90 2.597 0.079
     %LGE(%) 0 9.05±5.71 11.86±5.24 1.873 0.066
      G1组为HCM无心内膜下LGE组;G2组为HCM心内膜下LGE组;%LGE为LGE质量占左心室心肌质量百分比;与对照组比较,aP < 0.05;与G1组比较,bP < 0.05;*P < 0.05。
    下载: 导出CSV

    表  2  3组间分层纵向应变参数比较[($\bar x \pm s$)%]

    Table  2.   The layer-specific longitudinal strain of the three groups [($\bar x \pm s$)%]

    应变参数 对照组(n=49) G1组(n=40) G2组(n=21) F P
    GLS −17.35±1.77 −12.53±2.49a −10.57±2.56ab 89.291 <0.001*
    endoLS −18.58±1.86 −13.60±2.52a −10.35±2.47ab 115.494 <0.001*
      G1组为HCM无心内膜下LGE组;G2组为HCM心内膜下LGE组;GLS为整体纵向应变;endoLS为心内膜下纵向应变;与对照组比较,aP < 0.001;与G1组比较,bP < 0.01;*P < 0.05。
    下载: 导出CSV

    表  3  HCM发生心内膜下LGE的单因素及多因素Logistic回归分析

    Table  3.   Univariate and multivariate Logistic regression analysis of subendocardial LGE in HCM

    参数 单因素Logistic回归 多因素Logistic回归
    OR (95%CI P OR (95%CI P OR(95%CI P
    年龄 1.031(0.980~1.086) 0.237
    男性 1.167(0.376~3.617) 0.789
    收缩压 0.983(0.933~1.035) 0.519
    左室流出道梗阻 0.571(0.191~1.712) 0.318
    LVMi 0.978(0.950~1.006) 0.128
    LVMWT 0.869(0.765~0.987) 0.030* 0.924(0.788~1.085) 0.335 0.958(0.802~1.144) 0.635
    %LGE 0.915(0.830~1.007) 0.070 0.994(0.875~1.130) 0.931 1.026(0.890~1.183) 0.721
    GLS 1.364(1.073~1.735) 0.011* 1.280(0.975~1.679) 0.075
    endoLS 1.708(1.258~2.320) 0.001* 1.696(1.224~2.349) 0.001*
      %LGE为LGE质量占左心室心肌质量百分比;GLS为整体纵向应变;endoLS为心内膜下纵向应变;*P < 0.05。
    下载: 导出CSV
  • [1] Ommen S R,Mital S,Burke M A,et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. The Journal of Thoracic and Cardiovascular Surgery,2021,162(1):e23-e106. doi: 10.1016/j.jtcvs.2021.04.001
    [2] Yang S,Zhao K,Yang K,et al. Subendocardial involvement as an underrecognized LGE subtype related to adverse outcomes in hypertrophic cardiomyopathy[J]. JACC,Cardiovascular Imaging,2023,16(9):1163-1177. doi: 10.1016/j.jcmg.2023.03.011
    [3] Huang J,Yan Z N,Fan L,et al. Left ventricular systolic function changes in hypertrophic cardiomyopathy patients detected by the strain of different myocardium layers and longitudinal rotation[J]. BMC Cardiovascular Disorders,2017,17(1):214. doi: 10.1186/s12872-017-0651-x
    [4] Chen Z,Li C,Li Y,et al. Layer-specific strain echocardiography may reflect regional myocardial impairment in patients with hypertrophic cardiomyopathy[J]. Cardiovasc Ultrasound,2021,19(1):15. doi: 10.1186/s12947-021-00244-3
    [5] Ananthapadmanabhan S,Vo G,Nguyen T,et al. Direct comparison of multilayer left ventricular global longitudinal strain using CMR feature tracking and speckle tracking echocardiography[J]. BMC Cardiovascular Disorders,2021,21(1):107. doi: 10.1186/s12872-021-01916-8
    [6] Hou X,Xiong X,Li X,et al. Predictive value of cardiac magnetic resonance mechanical parameters for myocardial fibrosis in hypertrophic cardiomyopathy with preserved left ventricular ejection fraction[J]. Front Cardiovasc Med,2022,9:1062258. doi: 10.3389/fcvm.2022.1062258
    [7] Kramer C M,Barkhausen J,Bucciarelli-Ducci C,et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update[J]. Journal of Cardiovascular Magnetic Resonance : Official Journal of the Society for Cardiovascular Magnetic Resonance,2020,22(1): 17.
    [8] Mitchell C,Rahko P S,Blauwet L A,et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: Recommendations from the american society of echocardiography[J]. J Am Soc Echocardiogr,2019,32(1):1-64. doi: 10.1016/j.echo.2018.06.004
    [9] Gao Q,Yi W,Gao C,et al. Cardiac magnetic resonance feature tracking myocardial strain analysis in suspected acute myocarditis: Diagnostic value and association with severity of myocardial injury[J]. BMC Cardiovascular Disorders,2023,23(1):162. doi: 10.1186/s12872-023-03201-2
    [10] Li Z,Han D,Qi T,et al. Hemoglobin A1c in type 2 diabetes mellitus patients with preserved ejection fraction is an independent predictor of left ventricular myocardial deformation and tissue abnormalities[J]. BMC Cardiovascular Disorders,2023,23(1):49. doi: 10.1186/s12872-023-03082-5
    [11] 李志明,韩丹,杞天付,等. 心脏磁共振T1 mapping技术评估肥厚型心肌病心肌纤维化[J]. 中国医学影像学杂志,2022,30(4):341-347.
    [12] Habib M,Adler A,Fardfini K,et al. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: A cardiac magnetic resonance study[J]. JACC. Cardiovascular Imaging,2021,14(5):947-958. doi: 10.1016/j.jcmg.2020.09.037
    [13] Voigt J U,Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease[J]. JACC. Cardiovascular Imaging,2019,12(9):1849-1863. doi: 10.1016/j.jcmg.2019.01.044
    [14] Elliott P M,Anastasakis A,Borger M A,et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: The task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC)[J]. European Heart Journal,2014,35(39):2733-2779. doi: 10.1093/eurheartj/ehu284
    [15] Ishizu T,Seo Y,Kameda Y,et al. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease[J]. Hypertension,2014,63(3):500-506. doi: 10.1161/HYPERTENSIONAHA.113.02149
    [16] Hu J,Zheng Q,Ren W. Evaluation of left ventricular myocardial stratified strain in patients with Kawasaki disease using two-dimensional speckle tracking imaging[J]. Front Cardiovasc Med,2022,9:899945. doi: 10.3389/fcvm.2022.899945
    [17] Sarvari S I,Haugaa K H,Zahid W,et al. Layer-specific quantification of myocardial deformation by strain echocardiography may reveal significant CAD in patients with non-ST-segment elevation acute coronary syndrome[J]. JACC. Cardiovascular Imaging,2013,6(5):535-544. doi: 10.1016/j.jcmg.2013.01.009
    [18] Ananthapadmanabhan S,Deng E,Femia G,et al. Intra- and inter-observer reproducibility of multilayer cardiac magnetic resonance feature tracking derived longitudinal and circumferential strain[J]. Cardiovasc Diagn Ther,2020,10(2):173-182. doi: 10.21037/cdt.2020.01.10
    [19] Tanacli R,Hashemi D,Lapinskas T,et al. Range variability in CMR feature tracking multilayer strain across different stages of heart failure[J]. Sci Rep,2019,9(1):16478. doi: 10.1038/s41598-019-52683-8
    [20] Yang L,Zhang L,Cao S,et al. Advanced myocardial characterization in hypertrophic cardiomyopathy: Feasibility of CMR-based feature tracking strain analysis in a case-control study[J]. Eur Radiol,2020,30(11):6118-6128. doi: 10.1007/s00330-020-06922-6
    [21] Hu B,Zhou Q,Yao X,et al. Layer-Specific strain for long-term outcome prediction after first-onset myocardial infarction[J]. Ultrasound in Medicine & Biology,2020,46(6):1435-1441.
    [22] Fung M J,Leung D Y,Thomas L. Differential myocardial fibre involvement by strain analysis in patients with aortic stenosis[J]. Heart Lung Circ,2018,27(11):1357-1367. doi: 10.1016/j.hlc.2017.08.017
    [23] Qingfeng Z,Yi W,Wenhua L,et al. Evaluation of left ventricular function by treadmill exercise stress echocardiography combined with layer-specific strain technique in essential hypertension patients[J]. J Clin Hypertens (Greenwich),2022,24(3):312-319. doi: 10.1111/jch.14407
    [24] Weil B R,Suzuki G,Canty J M,et al. Transmural variation in microvascular remodeling following percutaneous revascularization of a chronic coronary stenosis in swine[J]. Am J Physiol Heart Circ Physiol,2020,318(3):H696-H705. doi: 10.1152/ajpheart.00502.2019
    [25] Aguiar Rosa S,Rocha Lopes L,Fiarresga A,et al. Coronary microvascular dysfunction in hypertrophic cardiomyopathy: Pathophysiology,assessment,and clinical impact[J]. Microcirculation,2021,28(1):e12656. doi: 10.1111/micc.12656
    [26] Coleman J A,Ashkir Z,Raman B,et al. Mechanisms and prognostic impact of myocardial ischaemia in hypertrophic cardiomyopathy[J]. The International Journal of Cardiovascular Imaging,2023,39(10):1979-1996.
    [27] Funabashi N,Takaoka H,Ozawa K,et al. Endocardial fibrotic lesions have a greater effect on peak longitudinal strain than epicardial fibrotic lesions in hypertrophic cardiomyopathy patients[J]. Int Heart J,2018,59(2):347-353. doi: 10.1536/ihj.17-021
    [28] Saraste A,Barbato E,Capodanno D,et al. Imaging in ESC clinical guidelines: Chronic coronary syndromes[J]. European Heart Journal Cardiovascular Imaging,2019,20(11):1187-1197. doi: 10.1093/ehjci/jez219
  • [1] 周静, 李麟玲, 汪海红, 杨玉琼.  糖尿病肾病开展Triangle分层分级管理+LEARNS模式的效果及心理状态的观察, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240429
    [2] 李文卓, 杨莉, 夏婧.  心脉隆注射液对脓毒症心肌病的临床疗效观察, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221221
    [3] 马海锋, 江魁明.  3.0T磁共振术前诊断儿童胰胆管合流异常的价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221014
    [4] 杨文雨, 周丽坤, 唐艳, 张卫平.  急性脑血管病诊断中磁共振扩散加权成像与动脉自旋标记的应用价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220413
    [5] 张莉, 岳梨蓉, 王睿, 陈涌, 岳万远, 丁昱.  磁共振成像在无髁突骨折的颞颌关节即刻损伤中的诊断价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211228
    [6] 章体玲, 张伟华, 罗庆祎, 夏洪颖, 鲁一兵.  沙库巴曲缬沙坦治疗扩张型心肌病心力衰竭的疗效, 昆明医科大学学报.
    [7] 刘畅, 沈宗霖, 程宇琪, 许秀峰.  精神分裂症、双相情感障碍、抑郁症静息态功能磁共振研究的异同, 昆明医科大学学报.
    [8] 牟娇, 李洁, 张新金.  EPO通过抑制心肌细胞凋亡保护糖尿病心肌病大鼠的心功能, 昆明医科大学学报.
    [9] 毕国力, 龚霞蓉, 张洁, 芮茂萍, 任丽香, 陈渝晖, 陈婧.  磁共振3D-BRAVO增强成像在脑静脉窦血栓中的诊断价值, 昆明医科大学学报.
    [10] 乔铅, 郝应禄, 李燕萍, 刘海英, 李婷婷, 钱宝堂, 刘芳言.  云南玉溪市一家族性肥厚型心肌病家系致病基因筛查, 昆明医科大学学报.
    [11] 蔡莉, 段楚玮, 朱云珍, 赵卫, 何波, 张振光.  磁共振小肠造影多序列联合成像在小肠疾病诊断中的应用, 昆明医科大学学报.
    [12] 施湖涛, 宋光义, 龙治刚.  昆明本地人群心脏房室径线及心室收缩功能正常值的磁共振正常参考值, 昆明医科大学学报.
    [13] 李政.  磁共振结合CA199、CEA、CA50、ALP对诊断肝内胆管结石合并早期胆管癌的可行性, 昆明医科大学学报.
    [14] 刘德洪, 邵举薇, 向述天, 刘晨, 王鹏, 李颖文.  磁共振BRAVO序列与TRICKS序列在诊断脑静脉血栓的应用, 昆明医科大学学报.
    [15] 黄振华, 石鑫, 王辉涛, 张劲松, 王光, 郝金刚, 刘建和.  磁共振弥散加权成像在膀胱癌T分期的应用价值, 昆明医科大学学报.
    [16] 杨少华.  血清多种肿瘤标记物联合磁共振成像在胰腺癌中的诊断价值, 昆明医科大学学报.
    [17] 赵英.  帕金森氏病精神障碍的磁共振弥散张量研究, 昆明医科大学学报.
    [18] 谢筱晞.  3.0T磁共振成像评价踝关节运动损伤的应用价值, 昆明医科大学学报.
    [19] 王甄.  磁共振成像对膝关节半月板损伤的诊断价值分析, 昆明医科大学学报.
    [20] 郝金钢.  磁共振灌注加权成像对原发性肝癌诊断的初步研究, 昆明医科大学学报.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  635
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-09
  • 网络出版日期:  2024-07-09
  • 刊出日期:  2024-08-05

目录

    /

    返回文章
    返回