Predictive Value of CMR Layer-Specific Longitudinal Strain for Endocardial LGE in Hypertrophic Cardiomyopathy
-
摘要:
目的 采用心脏磁共振(CMR)分层应变技术评估伴或者不伴心内膜下LGE的HCM患者左心室心肌功能变化,并探究HCM患者发生心内膜下LGE的预测因素。 方法 回顾性纳入2017年1月至2020年9月在昆明医科大学第一附属医院接受CMR检查的HCM患者61例,年龄、性别相匹配的健康对照组49例。依据有无心内膜下LGE,将HCM患者分为无心内膜下LGE组(G1组,n = 40)和心内膜下LGE组(G2组,n = 21)。采用CMR分层应变技术获取左心室心肌整体纵向应变(GLS)和心内膜下纵向应变(endoLS)。比较上述3组心脏结构、功能以及应变参数差异。采用单因素及多因素Logistic回归分析HCM患者心内膜下LGE发生的独立危险因素,并通过受试者操作特征(ROC)曲线评估其预测效能。 结果 G2组GLS、endoLS较G1组和对照组显著减低(GLS:-10.57%±2.56%(G2)Vs. -12.53%±2.49%(G1)Vs. -17.35%±1.77%(对照组),endoLS:-10.35%±2.47%(G2)Vs. -13.60%±2.52%(G1)Vs. -18.58%±1.86% (对照组),均P < 0.001)。多因素Logistic回归分析显示endoLS是HCM患者心内膜下LGE发生的独立危险因素(OR = 1.696,P = 0.001),预测心内膜下LGE发生的曲线下面积(AUC)为0.852,截断值为-11.87%,灵敏度为81.0%,特异度为85.0%。 结论 CMR分层应变指标endoLS能够早期识别HCM患者心内膜下功能障碍,可能是HCM患者心内膜下LGE发生的理想预测指标。 Abstract:Objective This study aims to evaluate the left ventricular myocardial function in HCM patients with or without subendocardial LGE by cardiac magnetic resonance (CMR) layer-specific strain technology and to explore the factors for predicting subendocardial LGE in HCM patients. Methods A retrospective study was conducted on 61 patients with HCM who underwent CMR imaging at the First Affiliated Hospital of Kunming Medical University from January 2017 to September 2020, with 49 healthy controls matched for age and gender. The HCM patients were divided into a group without subendocardial LGE (G1 group, n = 40) and a group with subendocardial LGE (G2 group, n = 21). CMR-based feature tracking was used to obtain global longitudinal strain (GLS) and endocardial longitudinal strain (endoLS) of the left ventricular myocardium. Differences in cardiac structure, function, and strain parameters among the three groups were compared. Univariate and multivariate logistic regression analyses were used to identify independent risk factors for subendocardial LGE in HCM patients, and the predictive performance was assessed using receiver operating characteristic (ROC) curve. Results GLS and endoLS were significantly lower in G2 than those in G1 and control group (GLS: -10.57%±2.56%(G2)Vs. -12.53%±2.49%(G1)Vs. -17.35%±1.77%(controls), endoLS: -10.35%±2.47%(G2)Vs. -13.60%±2.52%(G1)Vs. -18.58%±1.86% (controls), all P < 0.001). Multivariate Logistic regression analysis showed that endoLS was an independent risk factor for subendocardial LGE in HCM patients (OR = 1.696, P = 0.001). The area under the curve (AUC) for predicting subendocardial LGE was 0.852, the cutoff value was -11.87%, the sensitivity was 81.0% and the specificity was 85.0%. Conclusion CMR-layered strain index endoLS can identify early dysfunction of the endocardium in HCM patients, and may be an ideal predictor for the occurrence of endocardial LGE in HCM patients. -
图 1 3组受试者左心室LGE和应变后处理图
A~C:对照组、HCM无心内膜下LGE组(G1组)、HCM心内膜下LGE组(G2组)的延迟强化图像(黄箭为心内膜下LGE);D~F:对照组、G1组、G2组左心室心肌纵向应变后处理图,于左心室舒张末期勾画心内膜、心外膜轮廓;G:对照组左心室心内膜下纵向应变(endoLS,红色曲线)曲线图;H:G1组左心室endoLS曲线图;I:G2组左心室endoLS曲线图;J:对照组左心室整体纵向应变(GLS,黄色曲线)曲线图;K:G1组左心室GLS曲线图;L:G2组左心室GLS曲线图。
Figure 1. Post-processing images of left ventricular LGE and strain in three groups
表 1 3组间基本资料比较[($\bar x \pm s$)/ n(%)]
Table 1. Basic information of the three groups[($\bar x \pm s$)/ n(%)]
参数 对照组(n=49) G1组(n=40) G2组(n=21) χ2/t/F P 年龄(岁) 46.00±11.14 47.78±9.61 44.42±11.82 0.714 0.492 男性 29(59.2) 28(70.0) 14(66.7) 1.177 0.555 BSA(m2) 1.67±0.19 1.76±0.16 1.73±0.20 2.484 0.088 心率(次/分) 68.96±12.50 65.88±11.34 68.00±9.81 0.788 0.458 收缩压(mmHg) 115.61±11.38 115.15±10.85 116.95±9.74 0.191 0.826 舒张压(mmHg) 75.92±7.38 74.60±9.20 74.14±7.20 0.477 0.622 左室流出道梗阻 0 12(30.0) 9(42.9) 1.008 0.315 CMR 基本参数 LVMWT(mm) 8.28±1.46 18.82±3.61a 21.57±5.49ab 162.525 <0.001* LVM(g) 61.15±15.30 121.90±33.50a 133.30±34.03a 79.043 <0.001* LVEDV(mL) 124.84±21.46 130.40±20.95 127.23±22.78 0.733 0.483 LVESV(mL) 46.01±12.32 44.32±9.32 43.05±9.49 0.621 0.539 LVSV(mL) 78.84±13.75 86.08±15.52 84.18±20.24 2.466 0.090 LVMi(g/m2) 36.50±7.89 69.43±18.12a 77.20±19.27a 81.269 <0.001* LVEDVi(mL/m2) 75.02±12.54 74.49±11.40 74.19±13.26 0.041 0.960 LVESVi(mL/m2) 27.55±6.87 25.24±4.74 25.14±5.80 2.092 0.128 LVSVi(mL/m2) 47.47±8.73 49.25±8.95 49.04±11.69 0.448 0.640 LVEF(%) 63.38±5.99 66.01±4.71 65.62±6.90 2.597 0.079 %LGE(%) 0 9.05±5.71 11.86±5.24 1.873 0.066 G1组为HCM无心内膜下LGE组;G2组为HCM心内膜下LGE组;%LGE为LGE质量占左心室心肌质量百分比;与对照组比较,aP < 0.05;与G1组比较,bP < 0.05;*P < 0.05。 表 2 3组间分层纵向应变参数比较[($\bar x \pm s$)%]
Table 2. The layer-specific longitudinal strain of the three groups [($\bar x \pm s$)%]
应变参数 对照组(n=49) G1组(n=40) G2组(n=21) F P GLS −17.35±1.77 −12.53±2.49a −10.57±2.56ab 89.291 <0.001* endoLS −18.58±1.86 −13.60±2.52a −10.35±2.47ab 115.494 <0.001* G1组为HCM无心内膜下LGE组;G2组为HCM心内膜下LGE组;GLS为整体纵向应变;endoLS为心内膜下纵向应变;与对照组比较,aP < 0.001;与G1组比较,bP < 0.01;*P < 0.05。 表 3 HCM发生心内膜下LGE的单因素及多因素Logistic回归分析
Table 3. Univariate and multivariate Logistic regression analysis of subendocardial LGE in HCM
参数 单因素Logistic回归 多因素Logistic回归 OR (95%CI) P OR (95%CI) P OR(95%CI) P 年龄 1.031(0.980~1.086) 0.237 − − − 男性 1.167(0.376~3.617) 0.789 − − − 收缩压 0.983(0.933~1.035) 0.519 − − − 左室流出道梗阻 0.571(0.191~1.712) 0.318 − − − LVMi 0.978(0.950~1.006) 0.128 − − − LVMWT 0.869(0.765~0.987) 0.030* 0.924(0.788~1.085) 0.335 0.958(0.802~1.144) 0.635 %LGE 0.915(0.830~1.007) 0.070 0.994(0.875~1.130) 0.931 1.026(0.890~1.183) 0.721 GLS 1.364(1.073~1.735) 0.011* 1.280(0.975~1.679) 0.075 − − endoLS 1.708(1.258~2.320) 0.001* − − 1.696(1.224~2.349) 0.001* %LGE为LGE质量占左心室心肌质量百分比;GLS为整体纵向应变;endoLS为心内膜下纵向应变;*P < 0.05。 -
[1] Ommen S R,Mital S,Burke M A,et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. The Journal of Thoracic and Cardiovascular Surgery,2021,162(1):e23-e106. doi: 10.1016/j.jtcvs.2021.04.001 [2] Yang S,Zhao K,Yang K,et al. Subendocardial involvement as an underrecognized LGE subtype related to adverse outcomes in hypertrophic cardiomyopathy[J]. JACC,Cardiovascular Imaging,2023,16(9):1163-1177. doi: 10.1016/j.jcmg.2023.03.011 [3] Huang J,Yan Z N,Fan L,et al. Left ventricular systolic function changes in hypertrophic cardiomyopathy patients detected by the strain of different myocardium layers and longitudinal rotation[J]. BMC Cardiovascular Disorders,2017,17(1):214. doi: 10.1186/s12872-017-0651-x [4] Chen Z,Li C,Li Y,et al. Layer-specific strain echocardiography may reflect regional myocardial impairment in patients with hypertrophic cardiomyopathy[J]. Cardiovasc Ultrasound,2021,19(1):15. doi: 10.1186/s12947-021-00244-3 [5] Ananthapadmanabhan S,Vo G,Nguyen T,et al. Direct comparison of multilayer left ventricular global longitudinal strain using CMR feature tracking and speckle tracking echocardiography[J]. BMC Cardiovascular Disorders,2021,21(1):107. doi: 10.1186/s12872-021-01916-8 [6] Hou X,Xiong X,Li X,et al. Predictive value of cardiac magnetic resonance mechanical parameters for myocardial fibrosis in hypertrophic cardiomyopathy with preserved left ventricular ejection fraction[J]. Front Cardiovasc Med,2022,9:1062258. doi: 10.3389/fcvm.2022.1062258 [7] Kramer C M,Barkhausen J,Bucciarelli-Ducci C,et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update[J]. Journal of Cardiovascular Magnetic Resonance : Official Journal of the Society for Cardiovascular Magnetic Resonance,2020,22(1): 17. [8] Mitchell C,Rahko P S,Blauwet L A,et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: Recommendations from the american society of echocardiography[J]. J Am Soc Echocardiogr,2019,32(1):1-64. doi: 10.1016/j.echo.2018.06.004 [9] Gao Q,Yi W,Gao C,et al. Cardiac magnetic resonance feature tracking myocardial strain analysis in suspected acute myocarditis: Diagnostic value and association with severity of myocardial injury[J]. BMC Cardiovascular Disorders,2023,23(1):162. doi: 10.1186/s12872-023-03201-2 [10] Li Z,Han D,Qi T,et al. Hemoglobin A1c in type 2 diabetes mellitus patients with preserved ejection fraction is an independent predictor of left ventricular myocardial deformation and tissue abnormalities[J]. BMC Cardiovascular Disorders,2023,23(1):49. doi: 10.1186/s12872-023-03082-5 [11] 李志明,韩丹,杞天付,等. 心脏磁共振T1 mapping技术评估肥厚型心肌病心肌纤维化[J]. 中国医学影像学杂志,2022,30(4):341-347. [12] Habib M,Adler A,Fardfini K,et al. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: A cardiac magnetic resonance study[J]. JACC. Cardiovascular Imaging,2021,14(5):947-958. doi: 10.1016/j.jcmg.2020.09.037 [13] Voigt J U,Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease[J]. JACC. Cardiovascular Imaging,2019,12(9):1849-1863. doi: 10.1016/j.jcmg.2019.01.044 [14] Elliott P M,Anastasakis A,Borger M A,et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: The task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC)[J]. European Heart Journal,2014,35(39):2733-2779. doi: 10.1093/eurheartj/ehu284 [15] Ishizu T,Seo Y,Kameda Y,et al. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease[J]. Hypertension,2014,63(3):500-506. doi: 10.1161/HYPERTENSIONAHA.113.02149 [16] Hu J,Zheng Q,Ren W. Evaluation of left ventricular myocardial stratified strain in patients with Kawasaki disease using two-dimensional speckle tracking imaging[J]. Front Cardiovasc Med,2022,9:899945. doi: 10.3389/fcvm.2022.899945 [17] Sarvari S I,Haugaa K H,Zahid W,et al. Layer-specific quantification of myocardial deformation by strain echocardiography may reveal significant CAD in patients with non-ST-segment elevation acute coronary syndrome[J]. JACC. Cardiovascular Imaging,2013,6(5):535-544. doi: 10.1016/j.jcmg.2013.01.009 [18] Ananthapadmanabhan S,Deng E,Femia G,et al. Intra- and inter-observer reproducibility of multilayer cardiac magnetic resonance feature tracking derived longitudinal and circumferential strain[J]. Cardiovasc Diagn Ther,2020,10(2):173-182. doi: 10.21037/cdt.2020.01.10 [19] Tanacli R,Hashemi D,Lapinskas T,et al. Range variability in CMR feature tracking multilayer strain across different stages of heart failure[J]. Sci Rep,2019,9(1):16478. doi: 10.1038/s41598-019-52683-8 [20] Yang L,Zhang L,Cao S,et al. Advanced myocardial characterization in hypertrophic cardiomyopathy: Feasibility of CMR-based feature tracking strain analysis in a case-control study[J]. Eur Radiol,2020,30(11):6118-6128. doi: 10.1007/s00330-020-06922-6 [21] Hu B,Zhou Q,Yao X,et al. Layer-Specific strain for long-term outcome prediction after first-onset myocardial infarction[J]. Ultrasound in Medicine & Biology,2020,46(6):1435-1441. [22] Fung M J,Leung D Y,Thomas L. Differential myocardial fibre involvement by strain analysis in patients with aortic stenosis[J]. Heart Lung Circ,2018,27(11):1357-1367. doi: 10.1016/j.hlc.2017.08.017 [23] Qingfeng Z,Yi W,Wenhua L,et al. Evaluation of left ventricular function by treadmill exercise stress echocardiography combined with layer-specific strain technique in essential hypertension patients[J]. J Clin Hypertens (Greenwich),2022,24(3):312-319. doi: 10.1111/jch.14407 [24] Weil B R,Suzuki G,Canty J M,et al. Transmural variation in microvascular remodeling following percutaneous revascularization of a chronic coronary stenosis in swine[J]. Am J Physiol Heart Circ Physiol,2020,318(3):H696-H705. doi: 10.1152/ajpheart.00502.2019 [25] Aguiar Rosa S,Rocha Lopes L,Fiarresga A,et al. Coronary microvascular dysfunction in hypertrophic cardiomyopathy: Pathophysiology,assessment,and clinical impact[J]. Microcirculation,2021,28(1):e12656. doi: 10.1111/micc.12656 [26] Coleman J A,Ashkir Z,Raman B,et al. Mechanisms and prognostic impact of myocardial ischaemia in hypertrophic cardiomyopathy[J]. The International Journal of Cardiovascular Imaging,2023,39(10):1979-1996. [27] Funabashi N,Takaoka H,Ozawa K,et al. Endocardial fibrotic lesions have a greater effect on peak longitudinal strain than epicardial fibrotic lesions in hypertrophic cardiomyopathy patients[J]. Int Heart J,2018,59(2):347-353. doi: 10.1536/ihj.17-021 [28] Saraste A,Barbato E,Capodanno D,et al. Imaging in ESC clinical guidelines: Chronic coronary syndromes[J]. European Heart Journal Cardiovascular Imaging,2019,20(11):1187-1197. doi: 10.1093/ehjci/jez219