留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMR分层纵向应变对肥厚型心肌病心内膜下LGE预测价值初探

高薇 陈伟 王钰 杞天付 吴灵教 李志明 赵卫

耿丛丛. 急性白血病患者骨髓内皮祖细胞的变化与微血管密度的关系[J]. 昆明医科大学学报, 2013, 34(04).
引用本文: 高薇, 陈伟, 王钰, 杞天付, 吴灵教, 李志明, 赵卫. CMR分层纵向应变对肥厚型心肌病心内膜下LGE预测价值初探[J]. 昆明医科大学学报, 2024, 45(8): 58-66. doi: 10.12259/j.issn.2095-610X.S20240809
Wei GAO, Wei CHEN, Yu WANG, Tianfu QI, lingjiao WU, Zhiming LI, Wei ZHAO. Predictive Value of CMR Layer-Specific Longitudinal Strain for Endocardial LGE in Hypertrophic Cardiomyopathy[J]. Journal of Kunming Medical University, 2024, 45(8): 58-66. doi: 10.12259/j.issn.2095-610X.S20240809
Citation: Wei GAO, Wei CHEN, Yu WANG, Tianfu QI, lingjiao WU, Zhiming LI, Wei ZHAO. Predictive Value of CMR Layer-Specific Longitudinal Strain for Endocardial LGE in Hypertrophic Cardiomyopathy[J]. Journal of Kunming Medical University, 2024, 45(8): 58-66. doi: 10.12259/j.issn.2095-610X.S20240809

CMR分层纵向应变对肥厚型心肌病心内膜下LGE预测价值初探

doi: 10.12259/j.issn.2095-610X.S20240809
基金项目: 国家自然科学基金资助项目(82060312);云南省科技厅计划基金资助项目(202301AY07000-054;202101AT070249);云南省放射与治疗临床医学研究中心子项目(202102AA100067;20102AA100067)
详细信息
    作者简介:

    高薇(1996~),女,云南蒙自人,在读硕士研究生,住院医师,主要从事心脏磁共振影像研究工作

    通讯作者:

    赵卫,E-mail:kyyyzhaowei@foxmai.com

  • 中图分类号: R445.2

Predictive Value of CMR Layer-Specific Longitudinal Strain for Endocardial LGE in Hypertrophic Cardiomyopathy

  • 摘要:   目的  采用心脏磁共振(CMR)分层应变技术评估伴或者不伴心内膜下LGE的HCM患者左心室心肌功能变化,并探究HCM患者发生心内膜下LGE的预测因素。  方法  回顾性纳入2017年1月至2020年9月在昆明医科大学第一附属医院接受CMR检查的HCM患者61例,年龄、性别相匹配的健康对照组49例。依据有无心内膜下LGE,将HCM患者分为无心内膜下LGE组(G1组,n = 40)和心内膜下LGE组(G2组,n = 21)。采用CMR分层应变技术获取左心室心肌整体纵向应变(GLS)和心内膜下纵向应变(endoLS)。比较上述3组心脏结构、功能以及应变参数差异。采用单因素及多因素Logistic回归分析HCM患者心内膜下LGE发生的独立危险因素,并通过受试者操作特征(ROC)曲线评估其预测效能。  结果  G2组GLS、endoLS较G1组和对照组显著减低(GLS:-10.57%±2.56%(G2)Vs. -12.53%±2.49%(G1)Vs. -17.35%±1.77%(对照组),endoLS:-10.35%±2.47%(G2)Vs. -13.60%±2.52%(G1)Vs. -18.58%±1.86% (对照组),均P < 0.001)。多因素Logistic回归分析显示endoLS是HCM患者心内膜下LGE发生的独立危险因素(OR = 1.696,P = 0.001),预测心内膜下LGE发生的曲线下面积(AUC)为0.852,截断值为-11.87%,灵敏度为81.0%,特异度为85.0%。  结论  CMR分层应变指标endoLS能够早期识别HCM患者心内膜下功能障碍,可能是HCM患者心内膜下LGE发生的理想预测指标。
  • 肝内胆管癌是一种来源于肝内胆管上皮细胞的恶性肿瘤,具有高度恶性、高病死率、低诊断率特点,严重威胁患者生命健康[1-2]。我国胆管癌发病率为0.01%~0.46%,且调查显示其占恶性肿瘤总数的2%,好发于中老年人。由于胆管癌早期容易侵袭周围组织器官以及出现远处转移是预后差、手术切除率低的根本原因,目前诊断和治疗水平尚无取得突破性进展,且具体病机制尚未完全明确,而从肿瘤生物学角度寻求更好的预防以及治疗方法是研究热点[3-4]。近年来研究发现,细胞间粘附分子-1(ICAM-1)、基质金属蛋白酶-9(MMP-9)及NF-κB与恶性肿瘤发生、发展密切相关[5-6]。髓源性抑制细胞(myeloid-derived suppressor cells,MDSCs)是近年来发现的具有免疫调节功能的一类免疫细胞亚群,在自身免疫、炎症及肿瘤中发挥重要作用。本文研究旨在探讨ICAM-1、MMP-9及NF-κB在胆管癌中的表达及与外周血中CD14+CD11b+HAL-DR-MDSC的关系。

    选取昆明医科大学附属甘美医院于2017年12月至2019年12月收治的胆管癌患者60例研究对象,均行根治性手术治疗,且均经病理学证实,患者均未采取抗肿瘤治疗,及3个月未使用免疫抑制剂。60例患者中,男性38例,女性22例;年龄36~78岁,平均(58.39±10.21)岁;临床分期:I~II期19例,III~IV期41例;病理分级:低分化34例,中高分化26例;淋巴结转移21例。经昆明医科大学附属甘美医院伦理委员会审查同意开展研究。

    诊断标准:依据《胆管癌诊断与治疗--外科专家共识》[7]关于肝内胆管癌诊断标准,临床表现出现腹部不适、腹痛、上腹肿块、乏力、恶心、发热等,经超声检查证实肝内局限性肿块。纳入标准:(1)符合肝内胆管癌诊断标准,均行根治性手术治疗,且经病理学证实为肝内胆管癌;(2)均未采取抗肿瘤治疗;(3)3个月未使用免疫抑制剂。排除标准:(1)其他类型胆管癌及合并其他恶性肿瘤者;(2)临床资料和随访资料不完整。

    主要试剂:鼠抗人ICAM-1抗体,兔抗MMP-9单克隆抗体,兔抗NF-κB单克隆抗体,均购自武汉博士德生物试剂公司。主要仪器:美国BD公司流式细胞仪。

    (1)免疫组织化学技术检测ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白:取患者癌组织和癌旁正常组织标本,经10%福尔马林液固定,石蜡包埋,4 μm厚连续切片,按照免疫组化SP法进行实验操作,检测ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白,以PBS代替一抗作为阴性对照,试剂公司提供的阳性着色图片为阳性对照。于光学显微镜下观察染色结果,着色的结果判定采用半定量法,首先以细胞着色强弱度评分[1]:以无着色者为计分0分,以浅黄色者为计分1分,以棕黄色者计分为2分,以棕褐色者计分为3分。且记录镜下阳性细胞数所占的百分比:无阳性细胞者为计分0分,阳性细胞≤10%者为计分1分,阳性细胞数为计分11%~50%者为计分2分,在51%~75%者为计分4分。再按照上述两者所得评分相乘结果划分等级:其中以积分≤3分即为“-”,以积分3~5分为“+”,以积分5~8分为“++”,以积分9~12分则为“+++”[1]

    (2)流式细胞术检测外周血中CD14+CD11b+HAL-DR-MDSC比例:所有研究对象均于入院第2 d清晨空腹采集患者3 mL外周静脉血,以肝素抗凝,取抗凝全血100 μL,以红细胞裂解液充分裂解后,根据试剂盒说明书量取不同荧光标记抗体直接标记,对外周血 CD14、CD11b和HLA-DR抗原表达检测,且标记同型对照,放置于4 ℃下避光孵育30 min,采用流式缓冲液洗涤2次后上机检测。圈取CD14+CD11b+的细胞群,再选择HLA-DR-细胞群即为MDSC。

    (1)观察胆管癌组织与癌旁组织ICAM-1蛋白、MMP-9蛋白和NF-κB蛋白表达;(2)观察不同病理特征ICAM-1蛋白、MMP-9蛋白和NF-κB蛋白表达;(3)观察不同病理特征外周血中CD14+CD11b+HAL-DR-MDSC比例;(4)分析ICAM-1蛋白、MMP-9蛋白和NF-κB蛋白表达与外周血中CD14+CD11b+HAL-DR-MDSC比例相关性。

    采用统计学软件SPSS 22.0进行数据处理分析,计数资料比较采用χ2检验,以率表示,计量资料比较采用t检验,以均数±标准差表示。采用Pearson相关性分析 ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白表达与CD14+CD11b+HAL-DR-MDSC比例相关性。以P < 0.05为差异具有统计学意义。

    胆管癌组织ICAM-1蛋白、MMP-9蛋白和NF-κB蛋白表达阳性率均高于癌旁正常组,差异均有统计学意义(P < 0.05),见 表1图1图3

    表  1  胆管癌组织与癌旁正常组织ICAM-1蛋白、MMP-9蛋白和NF-κB蛋白表达比较[n(%)]
    Table  1.  Comparison of ICAM-1 protein, MMP-9 protein and NF- κ B protein expression between cholangiocarcinoma and adjacent normal tissues [n(%)]
    组别 n ICAM-1蛋白阳性率 MMP-9蛋白阳性率 NF-κB蛋白阳性率
    胆管癌组织 60 41(68.33) 38(63.33) 47(78.33)
    癌旁正常组织 60 11(18.33) 6(10.00) 8(13.33)
    χ2 - 30.543 36.746 51.054
    P - < 0.001* < 0.001* < 0.001*
      *P< 0.05。
    下载: 导出CSV 
    | 显示表格
    图  1  ICAM-1蛋白表达(HE,×200)
    Figure  1.  ICAM-1 protein expression(HE,×200)
    图  2  MMP-9蛋白表达(HE,×200)
    Figure  2.  MMP-9 protein expression(HE,×200)
    图  3  NF-κB蛋白表达(HE,×200)
    Figure  3.  NF-κB protein expression(HE,×200)

    不同性别、年龄、病理分级和淋巴结转移ICAM-1蛋白表达比较无明显差异(P > 0.05);III~IV期ICAM-1蛋白表达阳性率高于I~II期( P < 0.05)。不同性别、年龄、病理分级和临床分期MMP-9蛋白表达比较无明显差异( P > 0.05);淋巴结转移MMP-9蛋白表达阳性率高于无淋巴结转移( P < 0.05)。不同性别、年龄、病理分级和淋巴结转移NF-κB蛋白表达比较无明显差异( P > 0.05);III~IV期NF-κB蛋白表达阳性率高于I~II期( P < 0.05)。不同性别、年龄、病理分级和淋巴结转移CD14 +CD11b+HAL-DR-MDSC比例比较无明显差异(P > 0.05);III~IV期CD14 +CD11b+HAL-DR-MDSC比例高于I~II期(P < 0.05),见 表2

    表  2  不同病理特征ICAM-1蛋白、MMP-9蛋白、NF-κB蛋白以及CD14+CD11b+HAL-DR-MDSC表达比较[n(%)]
    Table  2.  Comparison of ICAM-1 protein MMP-9 protein NF-κB protein and NF-κB protein expression in different pathological features [n(%)]
    病理特征(例) ICAM-1
    蛋白阳性
    χ2/P MMP-9
    蛋白阳性
    χ2/P NF-κB
    蛋白阳性
    χ2/P CD14+CD11b+HAL-DR
    MDSC比例(%)
    t/P
    性别
    男性(38) 28(73.68) 1.371/0.242 24(63.16) 0.001/0.970 32(84.21) 1.271/0.260 3.19 ± 0.92 0.243/0.809
    女性(22) 13(59.09) 14(63.64) 15(68.18) 3.10 ± 0.95
    年龄
    > 60岁(26) 19(73.08) 0.447/0.490 19(73.08) 1.876/0.171 21(80.77) 0.160/0.689 3.23 ± 0.98 0.739/0.463
    ≤60岁(34) 22(64.71) 19(55.88) 26(76.47) 3.05 ± 0.90
    临床分期
    I~II期(19) 6(31.58) 17.358/< 0.001* 9(47.37) 3.052/0.081 9(47.37) 13.152/< 0.001* 2.32 ± 0.83 6.069/< 0.001*
    III~IV期(41) 35(83.37) 29(70.73) 38(92.68) 3.97 ± 1.04
    病理分级
    低分化(34) 26(76.47) 2.401/0.121 23(67.65) 0.629/0.428 24(70.59) 2.773/0.096 3.20 ± 0.89 0.488/0.627
    中高分化(26) 15(57.69) 15(57.69) 23(88.46) 3.08 ± 1.01
    淋巴结转移
    有(21) 15(71.43) 0.143/0.705 15(71.43) 7.959/0.005* 15(71.43) 0.390/0.533 3.28 ± 1.02 1.590/0.117
    无(39) 26(66.67) 13(33.33) 32(82.05) 2.89 ± 0.84
       *P < 0.05。
    下载: 导出CSV 
    | 显示表格

    ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白表达与CD14+CD11b+HAL-DR-MDSC比例呈线性正相关,见表3

    表  3  ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白表达与CD14+CD11b+HAL-DR-MDSC比例相关性
    Table  3.  Expression of ICAM-1 protein, MMP-9 protein and NF- κB protein and its correlation with the proportion of CD14 + CD11b + HAL-DR-MDSC
    蛋白 CD14+CD11b+HAL-DR-MDSC比例
    r P
    ICAM-1蛋白 0.819 <0.001*
    MMP-9蛋白 0.528 0.010*
    NF-κB蛋白 0.736 0.002*
      *P< 0.05。
    下载: 导出CSV 
    | 显示表格

    胆管癌是常见的一种胆道恶性肿瘤,通常情况下其症状出现晚,且具有较高发病率和病死率,严重威胁患者生命健康[7-9]。因此,采取及时有效的诊断和治疗胆管癌方法尤为重要。

    ICAM-1人体正常组织中表达极低,仅某些淋巴细胞、上皮细胞少量表达。ICAM-1主要通过街道肿瘤细胞与白细胞黏附,导致原发肿瘤分离和坏死,增加转移和浸润;血循环中瘤细胞/白细胞结合体,容易在毛细血管床滞留着床[10]。通常情况下,高表达ICAM-1瘤细胞经人淋巴细胞功能相关抗原(LFA-1)结合,从而抑制免疫细胞对肿瘤细胞的杀灭和识别[11]。此外,ICAM-1参与肿瘤与基质的粘附,以及促进癌细胞生长和转移,并且与胆管癌预后关系紧密[12]。本文研究发现,胆管癌患者胆管癌组织中ICAM-1高表达,且于临床分期密切相关。基质金属蛋白酶(MMPs)是形成和影响肿瘤微环境的一种蛋白水解酶家族,其中MMP-9是MMPs中分子量最大成员。MMP-9最初主要以酶原形式分泌而产生,而其被激活后形成IV型胶原酶,使肿瘤表面细胞外基质和基底膜降解、破坏,且可使IV、V、VII和X型胶原降解,以及使肿瘤细胞沿缺失的基膜浸润周围,而造成肿瘤细胞的侵袭和转移,进而促进演变恶性肿瘤[13-15]。研究报道显示,MMP-9的阳性表达与胆管癌组织分化程度、临床分期和转移复发呈正相关[16]。而本文研究发现,胆管癌患者胆管癌组织中MMP-9高表达,且与淋巴结转移密切相关,而与上述研究存在一些差异,其原因可能是由于本文样本量相对较少,还需后续增加样本量进一步研究。NF-κB是细胞内重要的一种转录因子,通常于静息状态下以异源或同源二聚体形式与抑制蛋白结合存在于细胞质中,当细胞受外源性刺激,抑制蛋白与NF-κB剥离,进入细胞核,从而发挥其调控作用[17]。研究报道显示,NF-κB是肿瘤与连续持续炎症的重要中介因子[18]。此外,研究报道显示,NF-κB在胆管癌组织中呈过表达,以及其在肿瘤组中表达水平高于正常组与胆管结石炎症组[19]。本文研究发现,胆管癌患者胆管癌组织NF-κB高表达,且与临床分期密切相关。MDSC是近年来研究发现的具有免疫调节功能一种免疫细胞亚群,能够通过多种途径抑制机体的免疫应答反应且在移植免疫、炎症、肿瘤及自身免疫中发挥重要作用。同时,MDSC限制肿瘤免疫治疗的效果,且参与肿瘤的免疫逃逸。研究报道显示,肿瘤患者外周血中免疫抑制细胞的比例增加,且可促进肿瘤的免疫逃逸[20]。本文研究发现,胆管癌患者中外周血中CD14+CD11b+HAL-DR-MDSC比例升高,且与临床分期密切相关。

    综上所述,ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白表在胆管癌中高表达,外周血中CD14+CD11b+HAL-DR-MDSC比例升高,且ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白表达与CD14+CD11b+HAL-DR-MDSC比例呈线性正相关。

  • 图  1  3组受试者左心室LGE和应变后处理图

    A~C:对照组、HCM无心内膜下LGE组(G1组)、HCM心内膜下LGE组(G2组)的延迟强化图像(黄箭为心内膜下LGE);D~F:对照组、G1组、G2组左心室心肌纵向应变后处理图,于左心室舒张末期勾画心内膜、心外膜轮廓;G:对照组左心室心内膜下纵向应变(endoLS,红色曲线)曲线图;H:G1组左心室endoLS曲线图;I:G2组左心室endoLS曲线图;J:对照组左心室整体纵向应变(GLS,黄色曲线)曲线图;K:G1组左心室GLS曲线图;L:G2组左心室GLS曲线图。

    Figure  1.  Post-processing images of left ventricular LGE and strain in three groups

    图  2  观察者间和观察者内一致性分析(Bland-Altman图)

    Figure  2.  Inter- and intra-observer agreement analysis(Bland-Altman plot)

    图  3  endoLS预测HCM患者发生心内膜下LGE的ROC曲线

    Figure  3.  ROC curve of endoLS in predicting subendocardial LGE in HCM patients

    表  1  3组间基本资料比较[($\bar x \pm s$)/ n(%)]

    Table  1.   Basic information of the three groups[($\bar x \pm s$)/ n(%)]

    参数 对照组(n=49) G1组(n=40) G2组(n=21) χ2/t/F P
     年龄(岁) 46.00±11.14 47.78±9.61 44.42±11.82 0.714 0.492
     男性 29(59.2) 28(70.0) 14(66.7) 1.177 0.555
     BSA(m2 1.67±0.19 1.76±0.16 1.73±0.20 2.484 0.088
     心率(次/分) 68.96±12.50 65.88±11.34 68.00±9.81 0.788 0.458
     收缩压(mmHg) 115.61±11.38 115.15±10.85 116.95±9.74 0.191 0.826
     舒张压(mmHg) 75.92±7.38 74.60±9.20 74.14±7.20 0.477 0.622
     左室流出道梗阻 0 12(30.0) 9(42.9) 1.008 0.315
    CMR 基本参数
     LVMWT(mm) 8.28±1.46 18.82±3.61a 21.57±5.49ab 162.525 <0.001*
     LVM(g) 61.15±15.30 121.90±33.50a 133.30±34.03a 79.043 <0.001*
     LVEDV(mL) 124.84±21.46 130.40±20.95 127.23±22.78 0.733 0.483
     LVESV(mL) 46.01±12.32 44.32±9.32 43.05±9.49 0.621 0.539
     LVSV(mL) 78.84±13.75 86.08±15.52 84.18±20.24 2.466 0.090
     LVMi(g/m2 36.50±7.89 69.43±18.12a 77.20±19.27a 81.269 <0.001*
     LVEDVi(mL/m2 75.02±12.54 74.49±11.40 74.19±13.26 0.041 0.960
     LVESVi(mL/m2 27.55±6.87 25.24±4.74 25.14±5.80 2.092 0.128
     LVSVi(mL/m2 47.47±8.73 49.25±8.95 49.04±11.69 0.448 0.640
     LVEF(%) 63.38±5.99 66.01±4.71 65.62±6.90 2.597 0.079
     %LGE(%) 0 9.05±5.71 11.86±5.24 1.873 0.066
      G1组为HCM无心内膜下LGE组;G2组为HCM心内膜下LGE组;%LGE为LGE质量占左心室心肌质量百分比;与对照组比较,aP < 0.05;与G1组比较,bP < 0.05;*P < 0.05。
    下载: 导出CSV

    表  2  3组间分层纵向应变参数比较[($\bar x \pm s$)%]

    Table  2.   The layer-specific longitudinal strain of the three groups [($\bar x \pm s$)%]

    应变参数 对照组(n=49) G1组(n=40) G2组(n=21) F P
    GLS −17.35±1.77 −12.53±2.49a −10.57±2.56ab 89.291 <0.001*
    endoLS −18.58±1.86 −13.60±2.52a −10.35±2.47ab 115.494 <0.001*
      G1组为HCM无心内膜下LGE组;G2组为HCM心内膜下LGE组;GLS为整体纵向应变;endoLS为心内膜下纵向应变;与对照组比较,aP < 0.001;与G1组比较,bP < 0.01;*P < 0.05。
    下载: 导出CSV

    表  3  HCM发生心内膜下LGE的单因素及多因素Logistic回归分析

    Table  3.   Univariate and multivariate Logistic regression analysis of subendocardial LGE in HCM

    参数 单因素Logistic回归 多因素Logistic回归
    OR (95%CI P OR (95%CI P OR(95%CI P
    年龄 1.031(0.980~1.086) 0.237
    男性 1.167(0.376~3.617) 0.789
    收缩压 0.983(0.933~1.035) 0.519
    左室流出道梗阻 0.571(0.191~1.712) 0.318
    LVMi 0.978(0.950~1.006) 0.128
    LVMWT 0.869(0.765~0.987) 0.030* 0.924(0.788~1.085) 0.335 0.958(0.802~1.144) 0.635
    %LGE 0.915(0.830~1.007) 0.070 0.994(0.875~1.130) 0.931 1.026(0.890~1.183) 0.721
    GLS 1.364(1.073~1.735) 0.011* 1.280(0.975~1.679) 0.075
    endoLS 1.708(1.258~2.320) 0.001* 1.696(1.224~2.349) 0.001*
      %LGE为LGE质量占左心室心肌质量百分比;GLS为整体纵向应变;endoLS为心内膜下纵向应变;*P < 0.05。
    下载: 导出CSV
  • [1] Ommen S R,Mital S,Burke M A,et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. The Journal of Thoracic and Cardiovascular Surgery,2021,162(1):e23-e106. doi: 10.1016/j.jtcvs.2021.04.001
    [2] Yang S,Zhao K,Yang K,et al. Subendocardial involvement as an underrecognized LGE subtype related to adverse outcomes in hypertrophic cardiomyopathy[J]. JACC,Cardiovascular Imaging,2023,16(9):1163-1177. doi: 10.1016/j.jcmg.2023.03.011
    [3] Huang J,Yan Z N,Fan L,et al. Left ventricular systolic function changes in hypertrophic cardiomyopathy patients detected by the strain of different myocardium layers and longitudinal rotation[J]. BMC Cardiovascular Disorders,2017,17(1):214. doi: 10.1186/s12872-017-0651-x
    [4] Chen Z,Li C,Li Y,et al. Layer-specific strain echocardiography may reflect regional myocardial impairment in patients with hypertrophic cardiomyopathy[J]. Cardiovasc Ultrasound,2021,19(1):15. doi: 10.1186/s12947-021-00244-3
    [5] Ananthapadmanabhan S,Vo G,Nguyen T,et al. Direct comparison of multilayer left ventricular global longitudinal strain using CMR feature tracking and speckle tracking echocardiography[J]. BMC Cardiovascular Disorders,2021,21(1):107. doi: 10.1186/s12872-021-01916-8
    [6] Hou X,Xiong X,Li X,et al. Predictive value of cardiac magnetic resonance mechanical parameters for myocardial fibrosis in hypertrophic cardiomyopathy with preserved left ventricular ejection fraction[J]. Front Cardiovasc Med,2022,9:1062258. doi: 10.3389/fcvm.2022.1062258
    [7] Kramer C M,Barkhausen J,Bucciarelli-Ducci C,et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update[J]. Journal of Cardiovascular Magnetic Resonance : Official Journal of the Society for Cardiovascular Magnetic Resonance,2020,22(1): 17.
    [8] Mitchell C,Rahko P S,Blauwet L A,et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: Recommendations from the american society of echocardiography[J]. J Am Soc Echocardiogr,2019,32(1):1-64. doi: 10.1016/j.echo.2018.06.004
    [9] Gao Q,Yi W,Gao C,et al. Cardiac magnetic resonance feature tracking myocardial strain analysis in suspected acute myocarditis: Diagnostic value and association with severity of myocardial injury[J]. BMC Cardiovascular Disorders,2023,23(1):162. doi: 10.1186/s12872-023-03201-2
    [10] Li Z,Han D,Qi T,et al. Hemoglobin A1c in type 2 diabetes mellitus patients with preserved ejection fraction is an independent predictor of left ventricular myocardial deformation and tissue abnormalities[J]. BMC Cardiovascular Disorders,2023,23(1):49. doi: 10.1186/s12872-023-03082-5
    [11] 李志明,韩丹,杞天付,等. 心脏磁共振T1 mapping技术评估肥厚型心肌病心肌纤维化[J]. 中国医学影像学杂志,2022,30(4):341-347.
    [12] Habib M,Adler A,Fardfini K,et al. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: A cardiac magnetic resonance study[J]. JACC. Cardiovascular Imaging,2021,14(5):947-958. doi: 10.1016/j.jcmg.2020.09.037
    [13] Voigt J U,Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease[J]. JACC. Cardiovascular Imaging,2019,12(9):1849-1863. doi: 10.1016/j.jcmg.2019.01.044
    [14] Elliott P M,Anastasakis A,Borger M A,et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: The task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC)[J]. European Heart Journal,2014,35(39):2733-2779. doi: 10.1093/eurheartj/ehu284
    [15] Ishizu T,Seo Y,Kameda Y,et al. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease[J]. Hypertension,2014,63(3):500-506. doi: 10.1161/HYPERTENSIONAHA.113.02149
    [16] Hu J,Zheng Q,Ren W. Evaluation of left ventricular myocardial stratified strain in patients with Kawasaki disease using two-dimensional speckle tracking imaging[J]. Front Cardiovasc Med,2022,9:899945. doi: 10.3389/fcvm.2022.899945
    [17] Sarvari S I,Haugaa K H,Zahid W,et al. Layer-specific quantification of myocardial deformation by strain echocardiography may reveal significant CAD in patients with non-ST-segment elevation acute coronary syndrome[J]. JACC. Cardiovascular Imaging,2013,6(5):535-544. doi: 10.1016/j.jcmg.2013.01.009
    [18] Ananthapadmanabhan S,Deng E,Femia G,et al. Intra- and inter-observer reproducibility of multilayer cardiac magnetic resonance feature tracking derived longitudinal and circumferential strain[J]. Cardiovasc Diagn Ther,2020,10(2):173-182. doi: 10.21037/cdt.2020.01.10
    [19] Tanacli R,Hashemi D,Lapinskas T,et al. Range variability in CMR feature tracking multilayer strain across different stages of heart failure[J]. Sci Rep,2019,9(1):16478. doi: 10.1038/s41598-019-52683-8
    [20] Yang L,Zhang L,Cao S,et al. Advanced myocardial characterization in hypertrophic cardiomyopathy: Feasibility of CMR-based feature tracking strain analysis in a case-control study[J]. Eur Radiol,2020,30(11):6118-6128. doi: 10.1007/s00330-020-06922-6
    [21] Hu B,Zhou Q,Yao X,et al. Layer-Specific strain for long-term outcome prediction after first-onset myocardial infarction[J]. Ultrasound in Medicine & Biology,2020,46(6):1435-1441.
    [22] Fung M J,Leung D Y,Thomas L. Differential myocardial fibre involvement by strain analysis in patients with aortic stenosis[J]. Heart Lung Circ,2018,27(11):1357-1367. doi: 10.1016/j.hlc.2017.08.017
    [23] Qingfeng Z,Yi W,Wenhua L,et al. Evaluation of left ventricular function by treadmill exercise stress echocardiography combined with layer-specific strain technique in essential hypertension patients[J]. J Clin Hypertens (Greenwich),2022,24(3):312-319. doi: 10.1111/jch.14407
    [24] Weil B R,Suzuki G,Canty J M,et al. Transmural variation in microvascular remodeling following percutaneous revascularization of a chronic coronary stenosis in swine[J]. Am J Physiol Heart Circ Physiol,2020,318(3):H696-H705. doi: 10.1152/ajpheart.00502.2019
    [25] Aguiar Rosa S,Rocha Lopes L,Fiarresga A,et al. Coronary microvascular dysfunction in hypertrophic cardiomyopathy: Pathophysiology,assessment,and clinical impact[J]. Microcirculation,2021,28(1):e12656. doi: 10.1111/micc.12656
    [26] Coleman J A,Ashkir Z,Raman B,et al. Mechanisms and prognostic impact of myocardial ischaemia in hypertrophic cardiomyopathy[J]. The International Journal of Cardiovascular Imaging,2023,39(10):1979-1996.
    [27] Funabashi N,Takaoka H,Ozawa K,et al. Endocardial fibrotic lesions have a greater effect on peak longitudinal strain than epicardial fibrotic lesions in hypertrophic cardiomyopathy patients[J]. Int Heart J,2018,59(2):347-353. doi: 10.1536/ihj.17-021
    [28] Saraste A,Barbato E,Capodanno D,et al. Imaging in ESC clinical guidelines: Chronic coronary syndromes[J]. European Heart Journal Cardiovascular Imaging,2019,20(11):1187-1197. doi: 10.1093/ehjci/jez219
  • [1] 周静, 李麟玲, 汪海红, 杨玉琼.  糖尿病肾病开展Triangle分层分级管理+LEARNS模式的效果及心理状态的观察, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240429
    [2] 李文卓, 杨莉, 夏婧.  心脉隆注射液对脓毒症心肌病的临床疗效观察, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221221
    [3] 马海锋, 江魁明.  3.0T磁共振术前诊断儿童胰胆管合流异常的价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221014
    [4] 杨文雨, 周丽坤, 唐艳, 张卫平.  急性脑血管病诊断中磁共振扩散加权成像与动脉自旋标记的应用价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220413
    [5] 张莉, 岳梨蓉, 王睿, 陈涌, 岳万远, 丁昱.  磁共振成像在无髁突骨折的颞颌关节即刻损伤中的诊断价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211228
    [6] 章体玲, 张伟华, 罗庆祎, 夏洪颖, 鲁一兵.  沙库巴曲缬沙坦治疗扩张型心肌病心力衰竭的疗效, 昆明医科大学学报.
    [7] 牟娇, 李洁, 张新金.  EPO通过抑制心肌细胞凋亡保护糖尿病心肌病大鼠的心功能, 昆明医科大学学报.
    [8] 毕国力, 龚霞蓉, 张洁, 芮茂萍, 任丽香, 陈渝晖, 陈婧.  磁共振3D-BRAVO增强成像在脑静脉窦血栓中的诊断价值, 昆明医科大学学报.
    [9] 乔铅, 郝应禄, 李燕萍, 刘海英, 李婷婷, 钱宝堂, 刘芳言.  云南玉溪市一家族性肥厚型心肌病家系致病基因筛查, 昆明医科大学学报.
    [10] 吴晓涛, 李传俊, 伍鑫, 钟世燕.  磁共振成像对强直性脊柱炎早期骶髂关节炎诊断的临床应用价值, 昆明医科大学学报.
    [11] 蔡莉, 段楚玮, 朱云珍, 赵卫, 何波, 张振光.  磁共振小肠造影多序列联合成像在小肠疾病诊断中的应用, 昆明医科大学学报.
    [12] 施湖涛, 宋光义, 龙治刚.  昆明本地人群心脏房室径线及心室收缩功能正常值的磁共振正常参考值, 昆明医科大学学报.
    [13] 李政.  磁共振结合CA199、CEA、CA50、ALP对诊断肝内胆管结石合并早期胆管癌的可行性, 昆明医科大学学报.
    [14] 刘德洪, 邵举薇, 向述天, 刘晨, 王鹏, 李颖文.  磁共振BRAVO序列与TRICKS序列在诊断脑静脉血栓的应用, 昆明医科大学学报.
    [15] 黄振华, 石鑫, 王辉涛, 张劲松, 王光, 郝金刚, 刘建和.  磁共振弥散加权成像在膀胱癌T分期的应用价值, 昆明医科大学学报.
    [16] 杨少华.  血清多种肿瘤标记物联合磁共振成像在胰腺癌中的诊断价值, 昆明医科大学学报.
    [17] 赵英.  帕金森氏病精神障碍的磁共振弥散张量研究, 昆明医科大学学报.
    [18] 谢筱晞.  3.0T磁共振成像评价踝关节运动损伤的应用价值, 昆明医科大学学报.
    [19] 王甄.  磁共振成像对膝关节半月板损伤的诊断价值分析, 昆明医科大学学报.
    [20] 郝金钢.  磁共振灌注加权成像对原发性肝癌诊断的初步研究, 昆明医科大学学报.
  • 期刊类型引用(1)

    1. 林青,孙明华,王佳佳,秦丹丹,何斌,葛英辉. 射血分数保留肥厚型心肌病基于心肌节段厚度的磁共振心肌应变特征. 中华实用诊断与治疗杂志. 2024(12): 1268-1273 . 百度学术

    其他类型引用(0)

  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  503
  • HTML全文浏览量:  731
  • PDF下载量:  13
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-04-09
  • 网络出版日期:  2024-07-09
  • 刊出日期:  2024-08-05

目录

/

返回文章
返回