Research Progress on Immunotoxicology of Pyrethroid Pesticides Exposures
-
摘要: 免疫功能是人体的重要生理功能,在维持人类健康中起着至关重要的作用。拟除虫菊酯类农药(pyrethroid pesticides, PYRs)及其代谢产物可对机体产生免疫毒性,导致免疫相关疾病的患病风险增加。通过对PYRs暴露对机体免疫器官、免疫细胞和免疫分子的影响及其免疫毒理学机制进行综述,并对生命早期PYRs暴露所致机体免疫毒性进行总结和展望,为人类PYRs暴露的免疫毒理学研究提供新的思路和建议。Abstract: Immune function is an important physiological function in the human body that plays a crucial role in maintaining human health. Pyrethroid pesticides (PYRs) and their metabolites can have immunotoxic effects on the body, increasing the risk of immune-related diseases. This review summarizes the effects of PYRs exposure on the body’ s immune organs, immune cells, and immune molecules, as well as the immunotoxic mechanisms, and provides a summary and outlook on the immunotoxicity caused by early-life PYRs exposure, offering new ideas and recommendations for human studies on the immunotoxicity of PYRs exposure.
-
Key words:
- Pyrethrins /
- Pesticides /
- Immune function /
- Immunotoxicity
-
拟除虫菊酯是从植物除虫菊中提取的天然除虫菊酯合成衍生物[1]。拟除虫菊酯类农药(pyrethroid pesticides,PYRs)具有高效、低毒、体内降解快等特点[2],广泛应用于农作物防控害虫和家庭卫生杀虫剂[3]。普通人群可通过食物摄入和环境接触广泛暴露于PYRs及其代谢产物[4−5]。免疫功能是人体的重要生理功能,在维持人类健康中起着至关重要的作用。PYRs暴露可产生免疫毒性[6],从而导致机体免疫功能低下[7]和免疫平衡紊乱[8]。本文通过对PYRs暴露对机体免疫器官、免疫细胞、免疫分子和免疫应答的影响及其机制进行综述,并对生命早期PYRs暴露所致发育免疫毒性进行总结和展望,为人类PYRs暴露的免疫毒理学研究提供新的思路和建议。
1. PYRs对免疫系统的免疫毒性
1.1 PYRs对免疫器官和组织的免疫毒性
PYRs暴露可降低胸腺和脾脏重量、细胞数和细胞活力,抑制骨髓细胞有丝分裂,从而影响机体免疫器官和免疫组织的结构与功能。Chauhan等[9]的研究表明,口服1.38 mg/(kg·d)氯氰菊酯60 d可致瑞士白化病小鼠骨髓细胞染色体畸变率和红细胞微核率明显增高,提高氯氰菊酯暴露量至2.76 mg/(kg·d)后骨髓细胞的有丝分裂指数受到明显抑制,G0/G1期骨髓细胞数量明显增多,而S期和G2/M期骨髓细胞数量明显减少。雌性C57BL/6N小鼠1次性皮肤接触苄氯菊酯可导致胸腺和脾脏重量及细胞数量呈剂量依赖性减少[10]。同样,在暴露于不同剂量溴氰菊酯啮齿类动物中,也观察到胸腺和脾脏重量减低和细胞数量减少[11],细胞活力则出现剂量依赖性降低[6,11]。部分研究结果[12−13]提示PYRs暴露对啮齿类动物肝脏和脾脏重量没有影响。Jin等[12]的研究结果表明,青春期雄性ICR小鼠连续口服20 mg/(kg·d)联苯菊酯3周,成年期小鼠胸腺和脾脏重量无明显改变。连续28 d皮肤暴露于12%的氯氰菊酯对大鼠胸腺和脾脏重量也没有影响[13]。这可能和不同研究中PYRs的种类、暴露时间和暴露方式不同有关。
1.2 PYRs对免疫细胞的免疫毒性
PYRs暴露可抑制机体白细胞细胞活力及淋巴细胞增殖,降低淋巴细胞及巨噬细胞数量和活性,抑制巨噬细胞功能,增加淋巴细胞凋亡率,从而影响机体细胞免疫功能。口服氟氯氰菊酯或暴露于溴氰菊酯喷雾杀虫剂可降低大鼠巨噬细胞的活性,抑制巨噬细胞的扩散和吞噬功能[14−15]。间断暴露于苄氯菊酯小鼠脾脏巨噬细胞数量以剂量依赖的方式明显减少[16]。体外实验表明,氰戊菊酯可导致巨噬细胞胞质空泡化,异染色质浓缩和DNA片段化,从而影响巨噬细胞的功能完整性[17]。PYRs及其代谢产物可抑制白细胞的细胞活力[18],浓度依赖性抑制淋巴细胞增殖[19]。氯氰菊酯可增加人淋巴细胞微核率、染色体非整倍体和染色体失衡发生率,核分裂指数明显降低,并出现剂量依赖性的DNA损伤及凋亡细胞百分率增加[20−21]。
溴氰菊酯以浓度依赖性方式导致小鼠脾脏T淋巴细胞(T细胞)和B淋巴细胞(B细胞)数量减少[22],其中CD3+、CD4+、CD19+和CD4+ CD8+ (Double positive,DP)T细胞明显减少,而CD8+ T细胞比例明显增加[6,23],导致机体适应性免疫功能降低。苄氯菊酯可使小鼠胸腺淋巴细胞活力降低,CD4- CD8-、DP和CD 8+ T细胞的凋亡明显增加[10]。联合暴露于溴比斯的明和PYRs的小鼠 CD4+ T细胞和CD19+ B细胞活化和增殖,激活体内适应性免疫,产生自身免疫应答及自身免疫性疾病[24]。暴露于PYRs工人CD3+、CD4+和CD20+ 淋巴细胞数降低[25],CD4/CD8比值降低[26],从而导致机体免疫细胞损伤及免疫平衡紊乱。溴氰菊酯可通过抑制淋巴细胞功能而损害小鼠细胞免疫,削弱小鼠对白色念珠菌感染的抵抗力[27]。PYRs可使大鼠脾细胞内空斑形成细胞数量明显减少[15−16],迟发型超敏反应时间延长,从而抑制其体液免疫和细胞免疫功能。
1.3 PYRs对免疫分子的影响
PYRs暴露可使机体促炎细胞因子和血浆趋化因子水平及其转录因子mRNA的表达水平升高,抗炎细胞因子和急性期反应蛋白水平及其转录因子mRNA表达水平降低,血清免疫球蛋白水平降低,导致急、慢性炎症反应和免疫功能紊乱,并影响机体体液免疫应答。
PYRs可使非靶标生物肿瘤坏死因子(tumor necrosis factor,TNF)-α、白细胞介素(Interleukin,IL)-1β、IL-6、IL-8和IL-12等促炎细胞因子水平及其转录因子mRNA的表达水平升高[8,24,28−32],抗炎细胞因子IL-4、IL-10水平及其转录因子mRNA表达水平降低[8]。 PYRs暴露可使血浆趋化因子CX3CL1及Rantes水平升高,而使机体产生慢性炎症反应[24,32]。暴露于PYRs工人的血清C3c、C4和急性期反应蛋白α1-酸性糖蛋白水平显著降低[25],但与动物实验结果有所不同的是,血清促炎细胞因子IL-12p70、干扰素(interferon,IFN)-γ、IL-2和IL-8水平降低,这些改变可能会降低人体抵抗感染的能力和癌症的防御能力[33]。
关于PYRs暴露对机体免疫分子影响的体外研究结果不尽相同。溴氰菊酯可使大鼠胸腺细胞和脾细胞中IL-2,IL-4和IFN-γ的水平降低[6]。β-氯氰菊酯及其代谢物3-苯氧基苯甲酸不但可使小鼠巨噬细胞促炎性细胞因子IL-1β,CXCL-1、TNF-α和IL-6的mRNA表达水平降低,而且IFN-β的mRNA表达水平亦明显降低,提示暴露于PYRs可能会影响巨噬细胞的抗病毒活性[34]。氟氯氰菊酯以浓度依赖的方式抑制人淋巴细胞IFN-γ mRNA的表达水平,IL-4浓度明显升高[35]。氰戊菊酯可使人血清C3b,C3d和C3a水平明显升高,CH50水平明显降低[17],从而可能导致自身免疫性疾病、多种过敏性疾病的发生率增高,机体抵抗化脓性细菌的能力降低。暴露于PYRs工人血清免疫球蛋白(immunoglobulin,Ig)G,IgM和IgA水平明显降低[25],从而影响机体的体液免疫功能。
2. PYRs所致免疫毒性的机制
PYRs暴露可导致机体氧化应激标志物的水平升高和抗氧化酶活性降低,激活氧化应激信号通路及线粒体介导的内在凋亡途径,并可导致Th1/Th2失衡,引起免疫平衡紊乱,见图1。
2.1 激活氧化损伤
PYRs暴露可激活小鼠氧化应激信号通路[11],导致体内活性氧(reactive oxygen species,ROS)、丙二醛(malondialdehyde,MDA)、一氧化氮(nitric oxide,NO)等氧化应激标志物的水平升高[8,11,29−30],非酶类抗氧化剂[29]和抗氧化酶活性降低[8,26,29−32]。氧化应激还能够诱导过氧化物酶体增殖物活化受体(peroxisome proliferative activated receptor,PPAR)α、PPARγ[36]、TNF-α、脂肪酸合成酶和甾醇调控元件结合蛋白1c的mRNA表达水平上调,从而导致氧化损伤[37]、脂肪代谢障碍和炎症相关因子水平增加[30]。
2.2 诱导细胞凋亡
β-氯氰菊酯可致小鼠p53、天冬氨酸特异性半胱氨酸蛋白酶(cysteinyl aspartate specific proteinase,Caspase)-3、Caspase-9的mRNA水平升高,Bcl-2 mRNA水平降低,而Caspase-8 mRNA水平没有变化,提示PYRs可激活线粒体介导的内在凋亡途径[22,34]。溴氰菊酯可使小鼠胸腺细胞和脾细胞中Caspase-3活化,导致胸腺细胞和脾细胞出现DNA片段化而至细胞凋亡增加[11]。溴氰菊酯以浓度依赖的方式增加大鼠ROS水平,增强Caspase-3活性,促进胸腺细胞凋亡增加,而使用抗氧化剂N-乙酰半胱氨酸后凋亡细胞明显减少,提示氧化应激在溴氰菊酯诱导Caspase-3激活导致的凋亡信号通路中起着重要作用[38]。
2.3 免疫平衡紊乱
大鼠暴露于氟氯氰菊酯后促炎细胞因子TNF、IL-1、IL-6和IFN-γ 水平及其转录因子mRNA表达水平显著增高,抗炎细胞因子IL-4和IL-10的水平及其转录因子mRNA表达水平显著降低,导致免疫平衡紊乱而产生过度炎症反应及自身免疫性疾病[8]。体外实验中,S-生物菊酯可导致Th1/Th2失衡,使过敏患者淋巴细胞IL-4/IFN-γ升高[19,39- 40],从而加重免疫平衡紊乱。
3. PYRs所致免疫毒性的信号传导通路
PYRs暴露可通过激活Ca2+/钙调素(calmodulin,CaM)信号传导通路而导致免疫细胞凋亡增加,可通过降低核因子E2相关因子2(nuclear factor erythroid-2-related actor 2,Nrf2)和血红素加氧酶-1(heme oxygenase 1,HO-1)表达水平、激活toll样受体(toll-like receptor,TLR)/核因子-κB(nuclear factor kappa B,NF-κB)信号传导途径激活氧化应激,导致机体免疫细胞氧化损伤和凋亡增加,见图1。
3.1 Ca2+/CaM 信号传导通路
Enan等[41]研究表明,雄性小鼠暴露于溴氰菊酯可使体内Ca2+ 浓度增高,Ca2+ 与CaM结合,形成Ca2+/CaM并激活CaM,通过磷酸化重要的转录因子如活化T细胞核因子p,改变Ca2+/CaM依赖性蛋白激酶磷酸酶级联反应,并通过拮抗钙调神经磷酸酶(calcineurin,CaN)的作用而导致免疫细胞凋亡。
3.2 Nrf2/HO-1信号传导通路
Shi 等[31]研究表明,溴氰菊酯可通过降低大鼠体内Nrf2和HO-1表达水平而产生免疫系统氧化损伤。而姜黄素和西他列汀等药物可通过清除氧自由基、抗氧化剂作用和提高Nrf2和HO-1的表达水平来减轻细胞损伤,提示其通过上调Nrf2/HO-1信号通路活性而发挥抗氧化、抗炎、调节Ca2+内流、调节细胞死亡等多种效应[42],从而减轻溴氰菊酯导致的免疫细胞毒性。
3.3 TLR/NF-κB信号传导通路
PYRs暴露可使非靶标生物TLR-4和TLR-5 mRNA表达水平增加,激活TLR/NF-κB信号传导途径[43],从而激活氧化应激信号通路及Caspase-3依赖性凋亡途径[11,29],促炎细胞因子mRNA表达水平和血浆趋化因子CX3CL1明显增高[24,28],MDA和NO水平显著增加,抗氧化酶活性降低,诱导抗炎细胞因子转录因子mRNA水平降低[8],产生过度的炎症反应,引起免疫细胞损害和凋亡增加[29]。
4. PYRs与发育免疫毒性
发育免疫毒理学(developmental immunotoxicology,DIT)是免疫毒理学的分支学科,重点关注环境有害物质暴露对发育中免疫系统的免疫毒性[44]。动物发育毒理学研究表明,孕期PYRs暴露可引起子代代谢紊乱和氧化应激,并激活线粒体途径介导的细胞凋亡,淋巴细胞数减少,促炎性细胞因子水平升高,引起子代发育免疫毒性。大鼠妊娠期间(从妊娠的第7天到第16天)口服氯氰菊酯50 mg/kg可引起子代胸腺和脾脏细胞数减少,自然杀伤细胞数量、CD4+ T细胞和CD8+ T细胞数量及百分比均明显减少,DP胸腺细胞百分比明显增高,并且这种改变在生后15 d影响最明显[45],提示氯氰菊酯可降低子代大鼠的胸腺、脾脏细胞增殖能力,并在DP细胞阶段影响胸腺细胞的分化。大鼠在整个妊娠过程中暴露于0.02 mg/(kg·d) α-氯氰菊酯会导致孕鼠及其子代代谢紊乱和氧化应激[46]。斑马鱼胚胎暴露于氯氰菊酯,新孵化的斑马鱼细胞凋亡中的关键基因P53、Puma、Bax、Apaf1、Caspase-9和Caspase-3的mRNA水平及一氧化氮合酶的mRNA水平和NO的总含量升高,表明氯氰菊酯可能在胚胎期诱导斑马鱼线粒体途径介导的细胞凋亡并引起氧化损伤,导致先天性免疫系统损伤[47]。幼鼠出生后第6至21天暴露于34.05 mg/kg苄氯菊酯,成年后其促炎性细胞因子IL-1β,IL-2,IFN-γ升高,白细胞Nurr1蛋白水平升高,诱导TNF-α和趋化因子Rantes升高,导致成年大鼠慢性炎症反应[32]。Neta等[48]研究表明,胎儿脐血PYRs暴露水平与IL-10的表达水平呈负相关,提示孕期PYRs暴露可能提高子代感染、哮喘和过敏性疾病的患病风险。
5. 小结
PYRs可通过激活Ca2+/CaM 、Nrf2/HO-1、TLR/NF-κB等信号传导通路激活氧化应激,导致机体免疫系统氧化损伤和凋亡增加,并对免疫器官、免疫细胞和免疫分子产生影响,从而导致免疫毒性。生命早期是机体的组织、器官、系统发育的关键时期[49],也是免疫功能发育的关键窗口期[50]。人群研究显示,孕晚期PYRs暴露与2岁前儿童持续发热和中耳炎的发生率增加有关[51],而孕期PYRs暴露对子代的免疫功能影响的人群研究仅局限在脐血PYRs暴露与细胞因子的关联[48],并未详细阐述其与子代免疫功能的关系。因此,明确生命早期PYRs暴露对子代免疫功能的影响对进一步研究PYRs暴露的人群免疫毒性具有重要意义。
-
[1] Chrustek A,Holynska-Iwan I,Dziembowska I,et al. Current research on the safety of pyrethroids used as insecticides[J]. Medicina (Kaunas),2018,54(4):1-15. [2] Burns C J,Pastoor T P. Pyrethroid epidemiology: A quality-based review[J]. Crit Rev Toxicol,2018,48(4):297-311. doi: 10.1080/10408444.2017.1423463 [3] Qi Z,Song X,Xiao X,et al. Effects of prenatal exposure to pyrethroid pesticides on neurodevelopment of 1-year- old children: A birth cohort study in China[J]. Ecotoxicol Environ Saf,2022,234(4):113384. [4] Chauhan R,Kumari B,Rana M K. Effect of fruit and vegetable processing on reduction of synthetic pyrethroid residues[J]. Rev Environ Contam Toxicol,2014,229(1):89-110. [5] Saillenfait A M,Ndiaye D,Sabate J P. Pyrethroids: Exposure and health effects-an update[J]. Int J Hyg Environ Health,2015,218(3): 281-292. [6] Kumar A,Sharma R,Rana D,et al. Protective effect of alpha-tocopherol in deltamethrin induced immunotoxicity[J]. Endocr Metab Immune Disord Drug Targets,2019,19(2):171-184. doi: 10.2174/1871530318666180801144822 [7] Dawood M,Abdel-Kader M F,Moustafa E M,et al. Growth performance and hemato-immunological responses of Nile tilapia (Oreochromis niloticus) exposed to deltamethrin and fed immunobiotics[J]. Environ Sci Pollut Res Int,2020,27(11):11608-11617. doi: 10.1007/s11356-020-07775-8 [8] Hussein M M,Ahmed M M. The Th1/Th2 paradigm in lambda cyhalothrin-induced spleen toxicity: The role of thymoquinone[J]. Environ Toxicol Pharmacol,2016,41(1):14-21. [9] Chauhan L K,Varshney M,Pandey V,et al. ROS-dependent genotoxicity,cell cycle perturbations and apoptosis in mouse bone marrow cells exposed to formulated mixture of cypermethrin and chlorpyrifos[J]. Mutagenesis,2016,31(6):635-642. doi: 10.1093/mutage/gew031 [10] Prater M R,Gogal R J,Blaylock B L,et al. Single-dose topical exposure to the pyrethroid insecticide,permethrin in C57BL/6N mice: Effects on thymus and spleen[J]. Food Chem Toxicol,2002,40(12):1863-1873. doi: 10.1016/S0278-6915(02)00163-1 [11] Kumar A,Sasmal D,Sharma N. Mechanism of deltamethrin induced thymic and splenic toxicity in mice and its protection by piperine and curcumin: In vivo study[J]. Drug Chem Toxicol,2018,41(1):33-41. doi: 10.1080/01480545.2017.1286352 [12] Jin Y,Pan X,Fu Z. Exposure to bifenthrin causes immunotoxicity and oxidative stress in male mice[J]. Environ Toxicol,2014,29(9):991-999. doi: 10.1002/tox.21829 [13] Aroonvilairat S,Tangjarukij C,Sornprachum T,et al. Effects of topical exposure to a mixture of chlorpyrifos,cypermethrin and captan on the hematological and immunological systems in male Wistar rats[J]. Environ Toxicol Pharmacol,2018,59(4):53-60. [14] Righi D A,Xavier F G,Palermo-Neto J. Effects of type II pyrethroid cyhalothrin on rat innate immunity: A flow cytometric study[J]. Int Immunopharmacol,2009,9(1):148-152. [15] Emara A M,Draz E I. Immunotoxicological study of one of the most common over-the-counter pyrethroid insecticide products in Egypt[J]. Inhal Toxicol,2007,19(12):997-1009. [16] Punareewattana K,Smith B J,Blaylock B L,et al. Topical permethrin exposure inhibits antibody production and macrophage function in C57Bl/6N mice[J]. Food Chem Toxicol,2001,39(2):133-139. doi: 10.1016/S0278-6915(00)00116-2 [17] Dutta R,Das N. Immunomodulation of serum complement (C3) and macrophages by synthetic pyrethroid fenvalerate: In vitro study[J]. Toxicology,2011,285(3):126-132. doi: 10.1016/j.tox.2011.04.012 [18] Zhang Y,Zhao M,Jin M,et al. Immunotoxicity of pyrethroid metabolites in an in vitro model[J]. Environ Toxicol Chem,2010,29(11):2505-2510. [19] Diel F,Horr B,Borck H,et al. Pyrethroids and piperonyl-butoxide affect human T-lymphocytes in vitro[J]. Toxicol Lett,1999,107(1):65-74. [20] Ramos-Chavez L A,Sordo M,Calderon-Aranda E,et al. A permethrin/allethrin mixture induces genotoxicity and cytotoxicity in human peripheral blood lymphocytes[J]. J Toxicol Environ Health A,2015,78(1):7-14. doi: 10.1080/15287394.2015.956025 [21] Calderon-Segura M E,Gomez-Arroyo S,Cortes-Eslava J,et al. In vitro cytotoxicity and genotoxicity of Furia((R))180 SC (zeta-cypermethrin) and Bulldock 125((R))SC (beta-cyfluthrin) pyrethroid insecticides in human peripheral blood lymphocytes[J]. Toxicol Mech Methods,2018,28(4):268-278. doi: 10.1080/15376516.2017.1402977 [22] Kumar A,Sasmal D,Bhaskar A,et al. Deltamethrin-induced oxidative stress and mitochondrial caspase-dependent signaling pathways in murine splenocytes[J]. Environ Toxicol,2016,31(7):808-819. doi: 10.1002/tox.22091 [23] Kumar A,Gupta M,Sharma R,et al. Deltamethrin-induced immunotoxicity and its protection by Quercetin: An experimental study[J]. Endocr Metab Immune Disord Drug Targets,2020,20(1):67-76. doi: 10.2174/1871530319666190410144540 [24] Joshi U,Pearson A,Evans J E,et al. A permethrin metabolite is associated with adaptive immune responses in Gulf War Illness[J]. Brain Behav Immun,2019,81(10):545-559. [25] Hadnagy W,Leng G,Sugiri D,et al. Pyrethroids used indoors-immune status of humans exposed to pyrethroids following a pest control operation-a one year follow-up study[J]. Int J Hyg Environ Health,2003,206(2): 93-102. [26] El O E,Abdel-Hamid M A,Hamdy A M. Immunological and genotoxic effects of occupational exposure to alpha-cypermethrin pesticide[J]. Int J Occup Med Environ Health,2017,30(4):603-615. [27] Rehman H,Mohan A,Tabassum H,et al. Deltamethrin increases candida albicans infection susceptibility in mice[J]. Scand J Immunol,2011,73(5):459-464. doi: 10.1111/j.1365-3083.2011.02521.x [28] Zhang L,Zhao X,Yan S,et al. The immune responses of the Chinese rare minnow (Gobiocypris rarus) exposed to environmentally relevant concentrations of cypermethrin and subsequently infected by the bacteria Pseudomonas fluorescens[J]. Environ Pollut,2019,250(7):990-997. [29] Aouey B,Derbali M,Chtourou Y,et al. Pyrethroid insecticide lambda-cyhalothrin and its metabolites induce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure[J]. Environ Sci Pollut Res Int,2017,24(6):5841-5856. doi: 10.1007/s11356-016-8323-4 [30] Moustafa G G,Hussein M M. Lambda cyhalothrin toxicity induces alterations in lipogenic genes and inflammatory factors in rat liver[J]. Jpn J Vet Res,2016,64(1):25-38. [31] Shi W,Zhang D,Wang L,et al. Curcumin synergistically potentiates the protective effect of sitagliptin against chronic deltamethrin nephrotoxicity in rats: Impact on pro-inflammatory cytokines and Nrf2/Ho-1 pathway[J]. J Biochem Mol Toxicol,2019,33(10):e22386. [32] Fedeli D,Montani M,Carloni M,et al. Leukocyte Nurr1 as peripheral biomarker of early-life environmental exposure to permethrin insecticide[J]. Biomarkers,2012,17(7):604-609. doi: 10.3109/1354750X.2012.706641 [33] Costa C,Rapisarda V,Catania S,et al. Cytokine patterns in greenhouse workers occupationally exposed to alpha-cypermethrin: An observational study[J]. Environ Toxicol Pharmacol,2013,36(3):796-800. doi: 10.1016/j.etap.2013.07.004 [34] Wang X,He B,Kong B,et al. beta-Cypermethrin and its metabolite 3-phenoxybenzoic acid exhibit immunotoxicity in murine macrophages[J]. Acta Biochim Biophys Sin (Shanghai),2017,49(12):1083-1091. doi: 10.1093/abbs/gmx111 [35] Diel F,Horr B,Borck H,et al. Pyrethroid insecticides influence the signal transduction in T helper lymphocytes from atopic and nonatopic subjects[J]. Inflamm Res,2003,52(4):154-163. doi: 10.1007/s000110300066 [36] Scatena R,Martorana G E,Bottoni P,et al. Mitochondrial dysfunction by synthetic ligands of peroxisome proliferator activated receptors (PPARs)[J]. IUBMB Life,2004,56(8):477-482. doi: 10.1080/15216540400008416 [37] Elbanna R,Osman K A,Salama M S. Biomarkers of oral subacute toxicity of deltamethrin in exposed male Albino rats[J]. Toxicol Ind Health,2023,39(12):735-753. doi: 10.1177/07482337231209360 [38] Kumar A,Sasmal D,Sharma N. Deltamethrin induced an apoptogenic signalling pathway in murine thymocytes : Exploring the molecular mechanism[J]. J Appl Toxicol,2014,34(12): 1303-1310. [39] Diel F,Horr B,Detscher M,et al. Pyrethroids and the synergist piperonyl-butoxide (PBO) affect T-cells and basophils[J]. Inflamm Res,1999,48(1):15-16. [40] Diel F,Detscher M,Schock B,et al. In vitro effects of the pyrethroid S-bioallethrin on lymphocytes and basophils from atopic and nonatopic subjects[J]. Allergy,1998,53(11):1052-1059. doi: 10.1111/j.1398-9995.1998.tb03814.x [41] Enan E,Pinkerton K E,Peake J,et al. Deltamethrin-induced thymus atrophy in male Balb/c mice[J]. Biochem Pharmacol,1996,51(4):447-454. doi: 10.1016/0006-2952(95)02200-7 [42] 王甜甜,陈淳媛,杨雷,等. Nrf2/HO-1信号轴在氧化应激性疾病中的机制[J]. 中南大学学报(医学版),2019,44(1):74-80. doi: 10.11817/j.issn.1672-7347.2019.01.012 [43] Li B,Wang Y,Zhao H,et al. Oxidative stress is involved in the activation of NF-kappaB signal pathway and immune inflammatory response in grass carp gill induced by cypermethrin and/or sulfamethoxazole[J]. Environ Sci Pollut Res Int,2022,29(13):19594-19607. doi: 10.1007/s11356-021-17197-9 [44] Dietert R R. Developmental immunotoxicology: Focus on health risks[J]. Chem Res Toxicol,2009,22(1):17-23. doi: 10.1021/tx800198m [45] Santoni G,Cantalamessa F,Cavagna R,et al. Cypermethrin-induced alteration of thymocyte distribution and functions in prenatally-exposed rats[J]. Toxicology,1998,125(1):67-78. doi: 10.1016/S0300-483X(97)00152-2 [46] Hocine L,Merzouk H,Merzouk S A,et al. The effects of alpha-cypermethrin exposure on biochemical and redox parameters in pregnant rats and their newborns[J]. Pestic Biochem Physiol,2016,134(11):49-54. [47] Jin Y,Zheng S,Fu Z. Embryonic exposure to cypermethrin induces apoptosis and immunotoxicity in zebrafish (Danio rerio)[J]. Fish Shellfish Immunol,2011,30(4-5):1049-1054. doi: 10.1016/j.fsi.2011.02.001 [48] Neta G,Goldman L R,Barr D,et al. Fetal exposure to chlordane and permethrin mixtures in relation to inflammatory cytokines and birth outcomes[J]. Environ Sci Technol,2011,45(4):1680-1687. doi: 10.1021/es103417j [49] Michael B,Gregory A R,Aleksandr Y A,et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations,1990–2021: A systematic analysis for the Global Burden of Disease Study 2021[J]. The Lancet,2024,403(10440):2162-2203. doi: 10.1016/S0140-6736(24)00933-4 [50] Kuper C F,van Bilsen J,Cnossen H,et al. Development of immune organs and functioning in humans and test animals: Implications for immune intervention studies[J]. Reprod Toxicol,2016,64(9):180-190. [51] Huang J,Eskenazi B,Bornman R,et al. Maternal peripartum serum DDT/E and urinary pyrethroid metabolite concentrations and child infections at 2 years in the VHEMBE birth cohort[J]. Environ Health Perspect,2018,126(6):67006. doi: 10.1289/EHP2657 -