Effect of Inhibiting PPARγ Expression on Osteogenic Differentiation of BMSCs
-
摘要:
目的 探究抑制过氧化物酶增殖物激活受体γ(peroxisome proliferator-activated receptor γ,PPARγ)表达对BMSCs成骨分化的影响,为原发性骨质疏松症(primary psteoporosis ,POP)的治疗提供理论基础。 方法 将骨密度正常患者提取的BMSCs分为正常对照组(CON组),POP患者提取的BMSCs分为原发性骨质疏松组(POP组),取POP组细胞加入PPARγ抑制剂,分为抑制剂组(INR组),经成骨诱导分化后,检测各组细胞中骨桥蛋白(osteopontin, OPN)、骨钙素(osteocalcin,OCN)、Osterix、Runt相关转录因子2 (runt-related transcription factor 2 ,Runx2)的表达情况;碱性磷酸酶(alkaline phosphatase,ALP)染色观察各组BMSCs成骨分化情况。 结果 POP组ALP阳性细胞数低于CON组和INR组(P < 0.05);与CON组相比,POP组中OCN、OPN、Osterix、Runx2表达量降低,差异具有统计学意义(P < 0.05);与POP组相比,INR组中OCN、OPN、Osterix、Runx2表达量升高,差异具有统计学意义(P < 0.05)。 结论 抑制PPARγ表达后,BMSCs成骨分化特异性基因(ALP、OCN、OPN、Osterix、Runx2)表达增加。 Abstract:Objective To investigate the impact of inhibiting peroxisome proliferator-activated receptor γ (PPARγ) expression on osteogenic differentiation of BMSCs, so as to provide a theoretical basis for the treatment of primary osteoporosis (POP). Methods BMSCs were extracted from patients with normal bone density and categorized into the normal control group(CON group). BMSCs extracted from patients with primary osteoporosis were categorized into the primary osteoporosis group (POP group). The cells from the POP group were treated with a PPARγ inhibitor and divided into the inhibitor group (INR group). Following osteogenic differentiation, the expression of osteopontin (OPN), osteocalcin (OCN), Osterix, and runt-related transcription factor 2 (Runx2) was evaluated in the cells of each group.The alkaline phosphatase (ALP) staining was employed to assess the osteogenic differentiation of BMSCs in each group. Results The quantity of ALP-positive cells in the POP group was lower than that in the CON and INR groups (P < 0.05). The expression of OCN, OPN, Osterix, and Runx2 was found to be decreased in the POP group when compared to the CON group, with statistically significant differences (P < 0.05). Conversely, the expression of OCN, OPN, Osterix, and Runx2 was elevated in the INR group when compared to the POP group, with statistically significant differences (P < 0.05). Conclusion Increased expression of osteogenic differentiation-specific genes (ALP, OCN, OPN, Osterix, Runx2) in BMSCs after inhibition of PPARγ expression. -
Key words:
- POP /
- PPARγ /
- BMSCs /
- Osteogenic differentiation
-
表 1 免疫荧光半定量方差分析($ \bar x \pm s $,n = 3)
Table 1. The ANOVA for semi-quantification of immunofluorescence ($ \bar x \pm s $,n = 3)
组别 平均荧光强度 CON组 27.65±3.93 POP组 105.98±13.95 INR组 40.72±13.20 F 41.229 P <0.001* *P < 0.05。 表 2 各组基因相对表达量($ \bar x \pm s $,n = 3)
Table 2. Relative expression of genes in each group($ \bar x \pm s $,n = 3)
组别 OCN OPN Osterix Runx2 CON组 0.95±0.07 1.21±0.20 1.20±0.17 1.23±0.20 POP组 0.40±0.07 0.46±0.03 0.58±0.11 0.48±0.04 INR组 0.66±0.05 0.80±0.03 0.85±0.12 0.86±0.16 F 59.832 31.647 15.947 19.007 P <0.001* 0.001* 0.004* 0.003* *P < 0.05。 表 3 各组蛋白相对表达量($ \bar x \pm s $,n = 3)
Table 3. Expression levels of each group of proteins($ \bar x \pm s $,n = 3)
组别 OCN OPN Osterix Runx2 CON组 0.74±0.07 0.44±0.06 0.55±0.02 0.54±0.16 POP组 0.51±0.11 0.3±0.03 0.22±0.03 0.31±0.08 INR组 0.89±0.28 0.51±0.03 0.38±0.06 0.52±0.02 F 7.189 37.672 93.211 9.690 P 0.006* <0.001* <0.001* 0.002* *P < 0.05。 -
[1] 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022)[J]. 中国全科医学,2023,26(14):1671-1691. [2] Muruganandan S,Ionescu A M,Sinal C J. At the crossroads of the adipocyte and osteoclast differentiation programs: Future therapeutic perspectives[J]. International Journal of Molecular Sciences,2020,21(7):2277. doi: 10.3390/ijms21072277 [3] Wu H,Li X,Shen C. Peroxisome proliferator-activated receptor gamma in white and brown adipocyte regulation and differentiation[J]. Physiological Research,2020,69(5):759-773. [4] Vita F,Gangemi S,Pioggia G,et al. Physical activity and post-transcriptional regulation of aging decay: Modulation of pathways in postmenopausal osteoporosis[J]. Medicina-Lithuania,2022,58(6):767. [5] Li X,Ning L,Ma J,et al. The PPAR-γ antagonist T007 inhibits RANKL-induced osteoclastogenesis and counteracts OVX-induced bone loss in mice[J]. Cell Communication and Signaling: CCS,2019,17(1):136. doi: 10.1186/s12964-019-0442-3 [6] Lee M J. Hormonal regulation of adipogenesis[J]. Comprehensive Physiology,2017,7(4):1151-1195. [7] Yu B,Wang CY. Osteoporosis and periodontal diseases - an update on their association and mechanistic links[J]. Periodontology,2000,2022,89(1):99-113. [8] Agidigbi T S,Kim C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ros-mediated osteoclast diseases[J]. International Journal of Molecular Sciences,2019,20(14):3576. doi: 10.3390/ijms20143576 [9] Domazetovic V,Marcucci G,Iantomasi T,et al. Oxidative stress in bone remodeling: role of antioxidants[J]. Clinical Cases in Mineral and Bone Metabolism,2017,14(2):209-216. doi: 10.11138/ccmbm/2017.14.1.209 [10] Zhou Q,Zhu L,Zhang D,et al. Oxidative stress-related biomarkers in postmenopausal osteoporosis: A systematic review and meta-analyses[J]. Disease Markers,2016,2016:7067984. [11] Abdallah B M. Marrow adipocytes inhibit the differentiation of mesenchymal stem cells into osteoblasts via suppressing bmp-signaling[J]. Journal of Biomedical Science,2017,24(1):11-11. doi: 10.1186/s12929-017-0321-4 [12] Chandra A,Rajawat J. Skeletal aging and osteoporosis: Mechanisms and therapeutics[J]. International Journal of Molecular Sciences,2021,22(7):3553. doi: 10.3390/ijms22073553 [13] Ahmadian M,Suh J M,Hah N,et al. PPARγ signaling and metabolism: the good,the bad and the future[J]. Nature Medicine,2013,19(5):557-566. doi: 10.1038/nm.3159 [14] Cao J,Ou G,Yang N,et al. Impact of targeted PPARγ disruption on bone remodeling[J]. Mol Cell Endocrinol,2015,410:27-34. doi: 10.1016/j.mce.2015.01.045 [15] Albers J,Keller J,Baranowsky A,et al. Canonical wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin[J]. The Journal of Cell Biology,2013,200(4):537-549. doi: 10.1083/jcb.201207142 [16] Li Y,Yao L,Lu J. IL-35 inhibits adipogenesis via PPARγ-wnt/β-catenin signaling pathway by targeting axin2[J]. Int Immunopharmacol,2023,122:110615. doi: 10.1016/j.intimp.2023.110615 [17] Komori T. Regulation of proliferation,differentiation and functions of osteoblasts by runx2[J]. Int J Mol Sci,2019,20(7):1694. doi: 10.3390/ijms20071694