留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抑制PPARγ表达对BMSCs成骨分化的影响

蒲龙 周旋然 江陈榕 李云轩 袁勇

丁淇, 支银娥, 王珊, 刘晖, 吴文娟, 何黎, 刘海洋. 岗松中二氢黄酮的分离、绝对构型的确定及细胞毒活性[J]. 昆明医科大学学报, 2021, 42(6): 56-61. doi: 10.12259/j.issn.2095-610X.S20210608
引用本文: 蒲龙, 周旋然, 江陈榕, 李云轩, 袁勇. 抑制PPARγ表达对BMSCs成骨分化的影响[J]. 昆明医科大学学报, 2024, 45(9): 17-23. doi: 10.12259/j.issn.2095-610X.S20240903
Qi DING, Yin-e ZHI, Shan WANG, Hui LIU, Wen-juan WU, Li HE, Hai-yang LIU. Isolation, Configurational Assignment, and Cytotoxic Effects of Dihydroflavones from BaeckeafrutescensL[J]. Journal of Kunming Medical University, 2021, 42(6): 56-61. doi: 10.12259/j.issn.2095-610X.S20210608
Citation: Long PU, Xuanran ZHOU, Chenrong JIANG, Yunxuan LI, Yong YUAN. Effect of Inhibiting PPARγ Expression on Osteogenic Differentiation of BMSCs[J]. Journal of Kunming Medical University, 2024, 45(9): 17-23. doi: 10.12259/j.issn.2095-610X.S20240903

抑制PPARγ表达对BMSCs成骨分化的影响

doi: 10.12259/j.issn.2095-610X.S20240903
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202201AY070001-128);昆明医科大学第二附属医院院内科技计划项目(2022yk13);昆明医科大学研究生教育创新基金项目(2023S297)
详细信息
    作者简介:

    蒲龙(1996~),男,云南麻栗坡人,在读硕士研究生,主要从事骨与关节疾病研究工作

    通讯作者:

    袁勇,E-mail:yuanyongdoc@163.com

  • 中图分类号: R68

Effect of Inhibiting PPARγ Expression on Osteogenic Differentiation of BMSCs

  • 摘要:   目的  探究抑制过氧化物酶增殖物激活受体γ(peroxisome proliferator-activated receptor γ,PPARγ)表达对BMSCs成骨分化的影响,为原发性骨质疏松症(primary psteoporosis ,POP)的治疗提供理论基础。  方法  将骨密度正常患者提取的BMSCs分为正常对照组(CON组),POP患者提取的BMSCs分为原发性骨质疏松组(POP组),取POP组细胞加入PPARγ抑制剂,分为抑制剂组(INR组),经成骨诱导分化后,检测各组细胞中骨桥蛋白(osteopontin, OPN)、骨钙素(osteocalcin,OCN)、Osterix、Runt相关转录因子2 (runt-related transcription factor 2 ,Runx2)的表达情况;碱性磷酸酶(alkaline phosphatase,ALP)染色观察各组BMSCs成骨分化情况。  结果  POP组ALP阳性细胞数低于CON组和INR组(P < 0.05);与CON组相比,POP组中OCN、OPN、Osterix、Runx2表达量降低,差异具有统计学意义(P < 0.05);与POP组相比,INR组中OCN、OPN、Osterix、Runx2表达量升高,差异具有统计学意义(P < 0.05)。  结论  抑制PPARγ表达后,BMSCs成骨分化特异性基因(ALP、OCN、OPN、Osterix、Runx2)表达增加。
  • 岗松 (Baeckeafrutescens)为桃金娘科 (Myrtaceae) 岗松属 (BaeckeaL.) 植物,是南方民间的常用著名药材。以叶如松针较短而得名,又名鸡儿松、松毛枝、长松、沙松等。全球约有68种岗松属植物,而我国仅有岗松一个种,主要分布于海南、广东、广西、福建、浙江、江西等省份[1]。岗松属植物主要含有挥发油、间苯三酚、黄酮类、萜类等化学成分。其中,二氢黄酮类成分是一种的具有广泛的药理作用的化合物,如抗癌[2]、PTP1B抑制[3]、抗氧化[4]、抗菌[5]和抗炎[6-7]等活性。具有生物活性的天然产物一直以来都是治疗各种疾病的新药的最有价值的来源之一[8]

    作为本研究组对桃金娘科植物中活性次生代谢产物挖掘研究工作的一部分,本研究从岗松的枝叶中分离得到5个二氢黄酮类化合物,图1,其中化合物135为首次从该植物中分离得到。尽管这些成分已被报道[9-16],但它们的绝对构型报道较混乱。因此,笔者采用手性拆分、ORD和ECD计算的方法进一步确定了它们的绝对构型。此外,评价了这些成分对4种人肿瘤细胞株(HCT116、Hela、DU145和A549)的细胞毒活性。

    图  1  从岗松中分离得到的五个二氢黄酮类化合物的结构
    Figure  1.  Structures of five dihydroflavonoids obtained from twigs and leaves ofB.frutescens

    旋光数据在AUTOPOL Ⅵ旋光仪上测定;圆二色谱在Applied Photophysics分光偏振计上测定;NMR谱在Bruker Avance Ⅲ-500核磁共振仪上测定,TMS作为内标;ESI-MS在Agilent 1290 UPLC/6540 Q-TOF质谱仪上测定;硅胶 (80~100目,200~300目,中国青岛海祥化工厂);凝胶为Sephadex LH-20 (40~70 μm;Healthcare BioSciences AB,Uppsala, Sweden),反相填充材料Rp-18(50 μm, 德国Merck公司);半制备型HPLC为Agilent 1260型高效液相色谱;色谱柱为ZORBAXSB-C18柱 (9.4 × 250 mm, 5.0 μm) , CHIRALPAK IC (4.64 × 250 mm, 10 × 250 mm, 5.0 μm)柱。

    岗松 (B. frutescens) 枝叶于2016年10月采自广西壮族自治区东兴市,由中国科学院昆明植物研究所李嵘研究员鉴定。标本保存于中国科学院昆明植物研究所植物化学与西部植物资源持续利用国家重点实验室刘海洋课题组。

    1.3.1   提取分离

    岗松枝叶 (10.0 kg) 粉碎后甲醇回流提取3次,合并提取液,减压回收甲醇,得到浸膏1.3 kg。浸膏用1.0 kg 硅胶 (80~100 目)拌样,2.0 kg 硅胶 (200~300 目)装柱,用石油醚-乙酸乙酯 (1∶0→0∶1,v/v) 和氯仿-甲醇 (1∶0→1∶1,v/v) 梯度洗脱得到七个 (Fr.1-Fr.7) 不同馏分。Fr.2 (53 g) 用正相硅胶划段(石油醚-丙酮,1∶0→1∶1,v/v)后,合并为三个馏分,经反复使用Rp-18色谱柱(甲醇-水,1∶1→1∶0,v/v),硅胶柱层析 (石油醚-丙酮,10∶1→1∶1,v/v), Sephadex LH-20色谱柱(氯仿-甲醇,1∶1,v/v)及半制备HPLC(乙腈-水,60%→80%,v/v)分离纯化得到了化合物1 (81.1 mg)、2 (23.6 mg)和3(401.5 mg)。Fr. 5 (48 g) 用MCI gel脱色,脱色后经Rp-18色谱柱 (甲醇-水,1∶1→1∶0,v/v),硅胶柱层析(氯仿-甲醇,1∶1,v/v),进一步使用半制备HPLC(乙腈-水,30%→50%,v/v)分离纯化得到了化合物4 (7.2 mg)和5 (118.7 mg)。

    1.3.2   手性分析及拆分

    分离得到的化合物1-5分别进行HPLC手性分析 (色谱柱:CHIRALPAK I,4.64 × 250 mm, 5.0 μm; 色谱条件:正己烷-异丙醇,1∶0→3∶2, v/v, 30 min) , 显示化合物13只有一个峰,化合物245分别都有两个峰(图2)。进一步手性拆分 (色谱柱:CHIRALPAK I,10 × 250 mm, 5.0 μm; 色谱条件:正己烷-异丙醇,70∶30,v/v),分离得到(+)-2,(-)-2,(+)-4,(-)-4, (+)-5和(-)-5

    图  2  化合物1-5的HPLC手性分析图
    Figure  2.  Chiral HPLC analysis for compounds 1-5
    1.3.3   计算方法

    ORD和ECD的计算主要通过Gaussian 16软件来实现的。首先,化合物12的构象通过CONFLEX 8B软件进行了分析,并分别给出了3个 (图3)和1个 (图4) 可用构象。这些初始结构通过密度泛函理论 (DFT) 在B3LYP/6-31+G(d) 水平上进行了优化。优化后构象的ECD计算通过依时性密度泛函理论 (TDDFT) 在B3LYP/6-311++G (2d, p) 水平上进行,而ORD计算则通过依时性密度泛函理论 (TDDFT) 在B3LYP/6-31++G (d, p) 水平上进行。计算后的ECD图谱通过SpecDis 1.6软件来实现其可视化。

    图  3  化合物1的计算数据
    Figure  3.  Computational data for 2R-1
    图  4  化合物2的计算数据
    Figure  4.  Computational data for 2R-2
    1.3.4   细胞毒活性

    在96孔微孔板上使用MTT法评估化合物15对四种人肿瘤细胞株 (HCT116、CCRF-CEM、DU145和A549)的细胞毒活性。对化合物进行了5个剂量测试,剂量范围为10‒8~10‒4 M,各化合物的IC50值通过非线性回归分析计算。以广谱抗肿瘤药喜树碱(CPT)为阳性对照,每个试验重复3次。

    化合物1:淡黄色粉末C16H14O6;negative ESI-MSm/z 269 [M‒H];[α] ‒46.8 (c = 0.22,MeOH);ECD (MeOH) λmax (Δε)220 (+3.26),237 (‒0.08),256 (+0.79),281 (‒3.56),336 (+0.46) nm;1H NMR(Acetone-d6,500 MHz) δ: 5.51 (1H,dd,J = 12.9,2.7 Hz,H-2),1.97 (3H,s,H3-6),6.07 (1H,s,H-8),7.38 (1H,m,H-4′ ),7.43 (2H,m,H-3′ /H-5′ ),7.55 (2H,d,J = 7.4 Hz,H-2′ /H-6′ ),12.42 (1H,s,OH-5),3.31 (1H,dd,J = 17.1,12.9 Hz,H-3a),2.78 (1H,dd,J = 17.1,2.7 Hz,H-3b);13C NMR (Acetone-d6,125 MHz)δ: 79.9 (C-2),43.7 (C-3),196.8 (C-4),162.4 (C-5),104.8 (C-6),7.0 (6-CH3),165.1 (C-7),95.2 (CH-8),161.6 (C-9),103.0 (C-10),140.2 (C-1′ ),127.3 ×2 (CH-2′ /CH-6′ ),129.4 ×2 (CH-3′ /CH-5′ ),129.3 (CH-4′ )。以上数据与文献[10]报道的5,7-二羟基-6-甲基二氢黄酮的数据基本一致。

    初步ORD计算结果表明, (2R)-1的比旋光值为正值(+180.38), 而化合物1的测试比旋光值为‒46.8 (c = 0.22,MeOH), 由此推断化合物1为2S构型,此结论通过后续的ECD计算(图5)结果进一步得到证实。

    图  5  化合物1的测试和计算ECD谱
    Figure  5.  Experimental and calculated ECD spectra of 1

    化合物2:淡黄色粉末C17H16O4;negative ESI-MSm/z283 [M -H]-; [α] +21.5 (c = 0.14, MeOH) for (+)-2, [α] -21.4 (c = 0.14, MeOH) for (-)-2; ECD (MeOH) λmax (Δε)220 (-3.20), 242 (-0.19), 254 (-0.41), 287 (+2.79), 338 (-0.43) nm for (+)-2, ECD (MeOH) λmax (Δε)220 (+3.20), 237 (+0.19), 256 (+0.41), 287 (+2.79), 338 (+0.43) nm for (-)-2; 1H NMR (CDCl3, 500 MHz) δ: 2.01 (3H, s, CH3-6), 2.86 (1H, dd, J = 17.1, 3.1 Hz, H-3b), 3.04 (1H, dd, J = 17.1, 12.7 Hz, H-3a), 3.86 (3H, s, OCH3-7), 5.42 (1H, dd, J = 12.7, 3.1 Hz, H-2), 6.10 (1H, s, H-8), 7.36~7.48 (5H, m, H-2'-H-6'), 12.12 (1H, s, OH-5); 13C NMR data (CDCl3, 125 MHz)δ: 78.5 (C-2), 43.5 (C-3), 196.3 (C-4), 162.4 (C-5), 105.0 (C-6), 166.0 (C-7), 92.3 (C-8), 158.9 (C-9), 102.9 (C-10), 139.0 (C-1'), 125.9 (C-2'), 128.8 (C-3'), 128.6 (C-4'), 128.8 (C-5'), 125.9 (C-6'), 7.6 (6-Me), 55.9 (7-OMe). 13C NMR data显示其与化合物1高度相似,主要区别在于多了一个甲氧基的信号。化合物2与文献[11]报道的化合物5-羟基-7-甲氧基-6-甲基二氢黄酮数据基本一致。经进一步手性拆分并结合ECD计算结果 (图6) 分别确定(+)-2 {[α] +21.5 (c = 0.14, MeOH)} 和(-)-2{[α]-21.4 (c = 0.14, MeOH)}的绝对构型分别为2R和2S

    图  6  化合物2的测试和计算ECD谱
    Figure  6.  Experimental and calculated ECD spectra of 2

    化合物3:淡黄色粉末C17H16O4; negative ESI-MS m/z269 [M ‒H]; [α] ‒20.8 (c = 0.12, MeOH); 1H NMR (CDCl3, 500 MHz)δ: 2.82 (1H, dd, J = 17.2, 3.1Hz, H-3b), 3.08 (1H, dd, J = 17.2, 13.1Hz, H-3a), 3.80 (3H, s, OCH3-7), 5.41 (1H, dd, J = 13.1, 3.1 Hz, H-2), 6.06 (1H, d, J = 2.3Hz, H-6), 6.08 (1H, d, J = 2.3Hz, H-8), 7.37~7.47 (5H, m, H-2'‒H-6'), 12.03 (1H, s, OH-5); 13C NMR data (CDCl3, 125 MHz)δ: 79.3 (C-2), 43.4 (C-3), 195.8 (C-4), 164.2 (C-5), 95.2 (C-6), 168.0 (C-7), 94.3 (C-8), 162.8 (C-9), 103.2 (C-10), 138.4 (C-1'), 126.2 (C-2'), 128.9 (C-3'), 128.9 (C-4'), 128.9 (C-5'), 126.2 (C-6'), 55.7(7-OMe)。以上数据与文献报道的(2S)-乔松酮[11,12]数据基本一致。通过与化合物1的比旋光值对比而判定其绝对构型为2S

    化合物4:淡黄色粉末C17H16O4; negative ESI-MS m/z283 [M ‒H]; [α]+38.5 (c = 0.16, MeOH) for (+)-4,[α]‒38.6 (c = 0.16, MeOH) for (‒)-4;ECD (MeOH) λmax (Δε) 218 (‒3.45), 243 (‒0.17), 254 (‒0.41), 289 (+3.00), 338 (‒0.44) nm for (+)-4, ECD (MeOH) λmax (Δε) 218 (+3.45), 243 (+0.17), 254 (+0.41), 289 (‒3.00), 338 (+0.44) nm for (‒)-4; 1H NMR (CDCl3, 500 MHz) δ: 2.01 (3H, s, CH3-6), 2.84 (1H, dd, J = 3.1, 3.1 Hz, H-3b), 3.04 (1H, dd, J = 3.1, 3.1 Hz, H-3a), 3.86 (3H, s, OCH3-7), 5.42 (1H, dd, J = 3.1, 3.1 Hz, H-2), 6.10 (1H, s, H-6), 7.42 (5H, m, H-2'‒H-6'), 12.12 (1H, s, OH-5); 13C NMR data (CDCl3, 125 MHz)δ: 78.5 (C-2), 43.4 (C-3), 196.3 (C-4), 162.4 (C-5), 92.2 (C-6), 166.0 (C-7), 104.9 (C-8), 158.8 (C-9), 102.8 (C-10), 138.9 (C-1'), 125.8 (C-2'), 128.8 (C-3'), 128.5 (C-4'), 128.8 (C-5'), 125.8 (C-6'), 55.9 (7-OMe), 7.5 (8-Me)。以上数据与文献报道的(±)-5-羟基-7-甲氧基-8-甲基二氢黄酮[13-14]数据基本一致。

    化合物5:淡黄色粉末C17H16O4; negative ESI-MS m/z283 [M ‒H]; [α]‒41.5 (c = 0.18, MeOH) for (‒)-5;ECD (MeOH) λmax (Δε) 208(‒0.93), 219 (‒3.42), 243 (‒0.35), 254 (‒0.41), 292 (+3.21), 338 (‒0.54) nm for (+)-5, ECD (MeOH) λmax (Δε) 208 (+0.93), 219 (+3.42), 243 (+0.35), 254 (+0.41), 292 (‒3.21), 338 (+0.54) nm for (‒)-5; 1H NMR (Pyridine-d5, 500 MHz) δ: 2.39 (3H, s, CH3-6), 2.92 (1H, J = 17.0, 2.6 Hz, H-3a), 3.33 (1H, J = 17.0, 13.0 Hz, H-3b), 5.49 (1H, dd, J = 13.0, 2.6 Hz, H-2), 7.10 (1H, d, J = 8.1 Hz, H-5'), 7.27 (1H, d, J = 8.1 Hz, H-6'), 7.52 (1H, s, H-2'), 13.03 (1H, s, OH-5); 13C NMR data (Pyridine-d5, 125 MHz)δ:79.9 (C-2), 43.6 (C-3), 196.6 (C-4), 162.3 (C-5), 105.0 (C-6), 166.3 (C-7), 95.1 (C-8), 161.6 (C-9), 102.7 (C-10), 130.9 (C-1'), 115.4 (C-2'), 147.5 (C-3'), 147.9 (C-4'), 116.5 (C-5'), 118.8 (C-6'), 7.7 (6-Me)。以上数据与文献报道的(±)-6-甲基-圣草酚[15-16]数据基本一致。

    通过与化合物2的测试ECD图谱对比,(+)-4/(+)-5和(‒)-4/(‒)-5的绝对构型分别确定为2R和2S,见图7

    图  7  化合物4和5的计算ECD谱
    Figure  7.  Calculated ECD spectra of 4 and 5

    以广谱抗肿瘤药喜树碱 (CPT) 为阳性对照,评价了以上化合物对4种人肿瘤细胞株 (HCT116、CCRF-CEM、DU145和A549)的细胞毒活性。结果显示化合物(±)-2对HCT116和DU145有一定的活性,IC50值分别为(41.84 ± 3.66) μΜ和(13.54 ± 1.15) μΜ;而化合物3对DU145的具有显著的细胞毒活性,IC50值为(4.56 ± 0.42) μΜ。

    从岗松中分离得到5个二氢黄酮类化合物,通过NMR和MS数据分析以及ORD和ECD计算确定了它们的结构及其绝对构型,其中化合物1、35为首次从该植物中分离得到。化合物3对DU145的具有显著的细胞毒活性,IC50值为4.56 μM。从自然界中得到的手性天然产物通常被认为是以光学纯形式生物合成的[17],但是已有大量的外消旋体或富含对映体的混合物已从自然来源报道[18]。有趣的是,岗松中的二氢黄酮类成分分别以光学纯 (13)、外消旋体 (4)和不对等对映体 (25)三种形式存在,此发现为二氢黄酮对映体的生物合成途径提供了一定证据。尽管比旋光值在一定程度上是判定光学纯单体绝对构型的重要指标之一[18],但在实际科学研究过程中,不对等对映体的实测值实际上是由对映体过量部分产生的,从而产生误判。因此,对于天然手性产物的立体异构体组成的评价理应引起更多的关注。

  • 图  1  CD45、CD90蛋白条带

    Figure  1.  CD45,CD90 protein bands

    图  2  各组PPARγ免疫荧光染色(标尺为50 μm)

    A:CON组PPARγ表达的免疫荧光图; B:POP组PPARγ表达的免疫荧光图; C:INR组PPARγ表达的免疫荧光图。

    Figure  2.  Immunofluorescence staining for PPARγ in each group (scale bar: 50 μm)

    图  3  PPARγ表达情况

    与POP组比较,***P < 0.001。

    Figure  3.  PPARγ expression

    图  4  各组ALP染色(中性红染色,标尺为50 μm)

    A:CON组ALP染色;B:POP组ALP染色;C:INR组ALP染色。

    Figure  4.  ALP staining for each group (Neutral red staining,scale bar: 50 μm)

    图  5  基因相对表达量

    A:BMSCs中OCN基因相对表达量;B: BMSCs中OPN基因相对表达量;C: BMSCs中Osterix基因相对表达量;D: BMSCs中Runx2基因相对表达量。*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  5.  Relative mRNA expression

    图  6  蛋白相对表达量

    A:BMSCs中OCN蛋白相对表达量;B:BMSCs中OPN蛋白相对表达量;C:BMSCs中Osterix蛋白相对表达量;D:BMSCs中Runx2蛋白相对表达量。*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  6.  Relative protein expression

    表  1  免疫荧光半定量方差分析($ \bar x \pm s $,n = 3)

    Table  1.   The ANOVA for semi-quantification of immunofluorescence ($ \bar x \pm s $,n = 3)

    组别平均荧光强度
    CON组27.65±3.93
    POP组105.98±13.95
    INR组40.72±13.20
    F41.229
    P<0.001*
      *P < 0.05。
    下载: 导出CSV

    表  2  各组基因相对表达量($ \bar x \pm s $,n = 3)

    Table  2.   Relative expression of genes in each group($ \bar x \pm s $,n = 3)

    组别 OCN OPN Osterix Runx2
    CON组 0.95±0.07 1.21±0.20 1.20±0.17 1.23±0.20
    POP组 0.40±0.07 0.46±0.03 0.58±0.11 0.48±0.04
    INR组 0.66±0.05 0.80±0.03 0.85±0.12 0.86±0.16
    F 59.832 31.647 15.947 19.007
    P <0.001* 0.001* 0.004* 0.003*
      *P < 0.05。
    下载: 导出CSV

    表  3  各组蛋白相对表达量($ \bar x \pm s $,n = 3)

    Table  3.   Expression levels of each group of proteins($ \bar x \pm s $,n = 3)

    组别 OCN OPN Osterix Runx2
    CON组 0.74±0.07 0.44±0.06 0.55±0.02 0.54±0.16
    POP组 0.51±0.11 0.3±0.03 0.22±0.03 0.31±0.08
    INR组 0.89±0.28 0.51±0.03 0.38±0.06 0.52±0.02
    F 7.189 37.672 93.211 9.690
    P 0.006* <0.001* <0.001* 0.002*
      *P < 0.05。
    下载: 导出CSV
  • [1] 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022)[J]. 中国全科医学,2023,26(14):1671-1691.
    [2] Muruganandan S,Ionescu A M,Sinal C J. At the crossroads of the adipocyte and osteoclast differentiation programs: Future therapeutic perspectives[J]. International Journal of Molecular Sciences,2020,21(7):2277. doi: 10.3390/ijms21072277
    [3] Wu H,Li X,Shen C. Peroxisome proliferator-activated receptor gamma in white and brown adipocyte regulation and differentiation[J]. Physiological Research,2020,69(5):759-773.
    [4] Vita F,Gangemi S,Pioggia G,et al. Physical activity and post-transcriptional regulation of aging decay: Modulation of pathways in postmenopausal osteoporosis[J]. Medicina-Lithuania,2022,58(6):767.
    [5] Li X,Ning L,Ma J,et al. The PPAR-γ antagonist T007 inhibits RANKL-induced osteoclastogenesis and counteracts OVX-induced bone loss in mice[J]. Cell Communication and Signaling: CCS,2019,17(1):136. doi: 10.1186/s12964-019-0442-3
    [6] Lee M J. Hormonal regulation of adipogenesis[J]. Comprehensive Physiology,2017,7(4):1151-1195.
    [7] Yu B,Wang CY. Osteoporosis and periodontal diseases - an update on their association and mechanistic links[J]. Periodontology,2000,2022,89(1):99-113.
    [8] Agidigbi T S,Kim C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ros-mediated osteoclast diseases[J]. International Journal of Molecular Sciences,2019,20(14):3576. doi: 10.3390/ijms20143576
    [9] Domazetovic V,Marcucci G,Iantomasi T,et al. Oxidative stress in bone remodeling: role of antioxidants[J]. Clinical Cases in Mineral and Bone Metabolism,2017,14(2):209-216. doi: 10.11138/ccmbm/2017.14.1.209
    [10] Zhou Q,Zhu L,Zhang D,et al. Oxidative stress-related biomarkers in postmenopausal osteoporosis: A systematic review and meta-analyses[J]. Disease Markers,2016,2016:7067984.
    [11] Abdallah B M. Marrow adipocytes inhibit the differentiation of mesenchymal stem cells into osteoblasts via suppressing bmp-signaling[J]. Journal of Biomedical Science,2017,24(1):11-11. doi: 10.1186/s12929-017-0321-4
    [12] Chandra A,Rajawat J. Skeletal aging and osteoporosis: Mechanisms and therapeutics[J]. International Journal of Molecular Sciences,2021,22(7):3553. doi: 10.3390/ijms22073553
    [13] Ahmadian M,Suh J M,Hah N,et al. PPARγ signaling and metabolism: the good,the bad and the future[J]. Nature Medicine,2013,19(5):557-566. doi: 10.1038/nm.3159
    [14] Cao J,Ou G,Yang N,et al. Impact of targeted PPARγ disruption on bone remodeling[J]. Mol Cell Endocrinol,2015,410:27-34. doi: 10.1016/j.mce.2015.01.045
    [15] Albers J,Keller J,Baranowsky A,et al. Canonical wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin[J]. The Journal of Cell Biology,2013,200(4):537-549. doi: 10.1083/jcb.201207142
    [16] Li Y,Yao L,Lu J. IL-35 inhibits adipogenesis via PPARγ-wnt/β-catenin signaling pathway by targeting axin2[J]. Int Immunopharmacol,2023,122:110615. doi: 10.1016/j.intimp.2023.110615
    [17] Komori T. Regulation of proliferation,differentiation and functions of osteoblasts by runx2[J]. Int J Mol Sci,2019,20(7):1694. doi: 10.3390/ijms20071694
  • [1] 钱石兵, 史会萍, 李艳秋, 杨镕羽, 段开文.  根尖牙乳头干细胞成骨分化的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240926
    [2] 钱石兵, 张凌鹏, 殷凌云, 李昌全, 李虎, 于鸿滨.  不同浓度的牙髓干细胞成骨能力的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230214
    [3] 徐倩, 崔玉梅, 马思明, 林云红, 熊依菁, 宋子珺, 李旭东.  miR-148a-3p靶向SMURF2调节牙髓干细胞和口腔上皮细胞共培养体系成骨分化及牙釉质发育的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231103
    [4] 李博一, 牛玲, 马蓉, 张娴, 刘方, 唐艳, 苗翠娟, 张程, 韩竺君.  护骨素基因启动子区T950C多态性与2型糖尿病合并骨质疏松症的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220306
    [5] 李博一, 牛玲, 马蓉, 张娴, 刘方, 唐艳, 苗翠娟, 韩竺君, 张程.  护骨素基因启动子区T950C多态性与昆明地区2型糖尿病伴骨质疏松症的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211112
    [6] 颜玲玲, 钱志宏, 倪悦, 吴煌.  维生素D及钙补充影响POP人群心脑血管类疾病发生的临床调查, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211036
    [7] 刘冲, 曹慧, 杨彩彩, 王震.  柚皮苷调控miR-199a-5p/ECE1分子轴促进骨损伤修复, 昆明医科大学学报.
    [8] 张颖, 卢钰, 赵智, 李韬, 毕尼, 施志约, 王迎松, 解京明, 宋跃明, 常利涛, 关帅, 唐林波.  实心椎弓根镙钉骨水泥钉道强化技术治疗伴有骨质疏松症脊柱退行性疾患的临床疗效, 昆明医科大学学报.
    [9] 赵娴, 韩雪松, 周箐竹, 李杉, 刘流, 王松梅.  EPCs与BMSCs干细胞联合培养体系修复机体骨缺损, 昆明医科大学学报.
    [10] 纪亲龙, 孔祥东, 戚珊红, 李超, 凡军, 沙勇, 王少峰.  杯苋甾酮抑制破骨分化和促进成骨分化的双向作用治疗骨质疏松症, 昆明医科大学学报.
    [11] 业磊, 佟发春, 李健, 王龙, 赵江铭, 刘毅, 王健.  PPARγ在肾癌细胞凋亡中的调控作用, 昆明医科大学学报.
    [12] 杨再英.  骨质疏松症对骨性关节炎发病机制的影响, 昆明医科大学学报.
    [13] 胡正雄.  TGF-β2和geneX对BrdU标记骨髓间充质干细胞增殖与成骨分化的作用, 昆明医科大学学报.
    [14] 徐玉善.  绝经后骨质疏松症的T细胞亚群的变化及意义, 昆明医科大学学报.
    [15] 赵刚.  骨质疏松症的基层预防——社区干预及防治, 昆明医科大学学报.
    [16] 姚寒曦.  HtrA1 及其相关因子MGP、BMP-2 在人牙周膜细胞体外成骨分化和矿化过程中的动态表达, 昆明医科大学学报.
    [17] 杨秋萍.  胰高血糖素样肽-1与糖尿病性骨质疏松症, 昆明医科大学学报.
    [18] 于乐.  男性原发性骨质疏松患者VEGF及HIF-1与骨代谢指标相关性分析, 昆明医科大学学报.
    [19] 武斌.  大豆苷元对人乳牙牙髓干细胞增殖和成骨分化的影响, 昆明医科大学学报.
    [20] 柯兴氏综合症致骨质疏松症28例临床分析, 昆明医科大学学报.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1235
  • HTML全文浏览量:  739
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 网络出版日期:  2024-06-14
  • 刊出日期:  2024-09-25

目录

/

返回文章
返回