Correlation between 24-hour Urinary Sodium Excretion,IL-18 Level and Urinary Albumin in Patients with Type 2 Diabetes Mellitus
-
摘要:
目的 以24 h尿钠排泄水平(24 h UNa)作为钠摄入量评估指标,评估不同钠盐的摄入水平与血清炎症因子对2型糖尿病(T2DM)患者尿白蛋白(UA)发生风险的影响。 方法 纳入T2DM患者130例,依据尿白蛋白/肌酐比值(UACR)水平分为UA阳性组60例和UA阴性组70例。收集患者的临床资料,检测炎性因子及24 h尿液相关指标。采用Spearman相关分析T2DM患者临床指标与UACR的相关性;二元Logistic回归分析T2DM患者临床指标对UA的影响;二分类回归法分析24 h UNa和IL-18关联对UA的影响。 结果 24 h UNa水平(OR = 1.019,95%CI 1.003~1.035,P = 0.017)与IL-18 (OR = 1.204,95%CI 1.060~1.368,P = 0.004)是T2DM患者UA阳性的独立危险因素。联合分析提示,与低钠低IL-18组比较,高钠高IL-18组UA阳性风险显著增加(OR = 10.774,95%CI 2.105~55.155,P = 0.004)。 结论 24 h UNa、IL-18水平升高是T2DM患者UA发生的危险因素。 Abstract:Objective To evaluate the effects of different sodium intake levels and serum inflammatory factors on the risk of urinary albumin (UA) in patients with type 2 diabetes mellitus (T2DM) by using 24 h UNa as an indicator of sodium intake. Methods 130 T2DM patients were included and divided into a UA-positive group (60 cases) and a UA-negative group (70 cases) according to urinary albumin/creatinine ratio (UACR). Clinical data of patients were collected and inflammatory factors and 24-hour urine-related indexes were detected. spearman correlation analysis was used to analyze the correlation between clinical indicators and UACR in T2DM patients. The effect of clinical indicators on UA in T2DM patients was analyzed by binary Logistic regression. The effect of 24 h UNa and IL-18 correlation on UA was analyzed by binary regression method. Results 24 h UNa level (OR = 1.019, 95%CI 1.003~1.035, P = 0.017)and IL-18 (OR = 1.204, 95%CI1.060~1.368, P = 0.004)were independent risk factors for positive UA in T2DM patients. Conjoint analysis suggested a significantly increased risk of UA positive in the high-sodium and high-IL-18 groups (OR = 10.774, 95%CI 2.105~55.155, P = 0.004)compared with the low-sodium and low-IL-18 groups. Conclusion Increased levels of 24 h UNa and IL-18 are risk factors for UA in T2DM patients. -
Key words:
- Type 2 diabetes mellitus /
- Urinary albumin /
- 24 h Urinary sodium excretion /
- IL-18
-
表 1 一般临床资料比较[n(%)/M(P25,P75)/$ \bar x \pm s $]
Table 1. Comparison of general clinical data [n(%)/M(P25,P75)/$ \bar x \pm s $]
项目 UA阴性组(n=70) UA阳性组(n=60) χ2/T/Z P 男/女 41/29(58.6/41.4) 32/28(53.3/46.7) 0.036 0.548 年龄(岁) 56(51,56) 56(50,60) −0.617 0.537 糖尿病病程(a) 6.00(3.00,13.00) 4.5(0.00,11.00) −2.625 0.009* BMI(kg/m2) 24.00(22.15,26.74) 24.63(22.19,26.85) −0.353 0.724 FPG(mmol/L) 5.86(4.72,7.74) 6.98(5.88,10.83) −3.661 <0.001* HbA1C(%) 8.1(7.1,9.95) 9.2(7.6,11.9) −2.789 0.005* HOMA-IR 2.75(1.49,5.11) 4.10(2.61,6.93) −0.842 0.400 TC(mmol/L) 4.45±1.12 5.13±1.35 1.740 0.002* TG(mmol/L) 1.67(1.15,2.66) 1.89(1.37,2.74) −1.700 0.089 HDL-C(mmol/L) 1.04±0.25 1.08±0.27 −0.866 0.337 LDL-C(mmol/L) 2.59±0.93 2.88±1.05 0.105 0.099 Crea(μmol/L) 71.33±16.73 62.23±18.03 0.319 0.003* eGFR[mL/(min×1.73 m2)] 98.6(93.5,103.9) 105.25(96.4,114.8) 1.773 0.006* SBP(mmHg) 120(116,127.5) 128.5(118.7,135) −2.387 0.017* DBP(mmHg) 75(71,78) 80.5(75.3,88) −3.347 0.001* mAlb(mg) 10.60(7.78,15.80) 77.56(39,130.95) −9.434 <0.001* 24 h UNa(mmol) 167.44(127.67,213.75) 221.8(167.44,247.80) −3.374 0.001* 24 h UK(mmol) 39.87±15.51 32.33±11.34 5.793 0.002* 24 h U(Na/K) 4.41(3.52,5.74) 5.97(4.63,8.02) −5.179 <0.001* 25-OHD(nmol/L) 56.37±21.01 31.46±13.07 −5.979 <0.001* K(mmol/L) 3.57±0.32 3.88±0.37 0.534 <0.001* Na(mmol/L) 144.4(141.8,147) 138.1(136.75,139.2) 0.013 <0.001* IL-1β(pg/mL) 5.88(3.53,13.95) 2.58(2.20,3.19) −4.305 <0.001* IL-6(pg/mL) 5.46(4.75,6.84) 5.42(4.46,6.25) −0.707 0.480 IL-18(pg/mL) 33.03(27.77,44.55) 48.08(38.08,58.83) −3.225 0.001* IL-34(pg/mL) 6.14(3.19,11.06) 4.58(2.83,7.08) −1.601 0.109 *P < 0.05。 表 2 T2DM患者UA阳性影响因素的回归分析
Table 2. Regression analysis of positive factors influencing UA in T2DM patients
因素 单因素回归分析 多因素回归分析 β 标准误 OR (95%CI) P β 标准误 OR(95%CI) P 24 h UNa 0.006 0.002 1.006(1.002~1.010) 0.006 0.019 0.008 1.019(1.003~1.035) 0.017* IL-18 0.044 0.017 1.045(1.010~-1.081) 0.011 0.186 0.065 1.204(1.060~1.368) 0.004* 糖尿病病程 −0.062 0.027 0.940(0.892~0.992) 0.023 0.048 0.087 1.049(0.884~1.244) 0.585 TC 0.462 0.159 1.587(1.162~2.170) 0.004 1.891 0.764 6.626(1.484~29.594) 0.013* FPG 0.256 0.070 1.291(1.125~1.482) 0.000 −0.363 0.251 0.696(0.425~1.139) 0.149 DBP 0.077 0.025 1.080(1.029~1.134) 0.002 0.222 0.108 1.248(1.011~1.542) 0.040* IL-1β −0.068 0.031 0.934(0.879~0.993) 0.030 0.001 0.047 1.001(0.913~1.098) 0.980 SBP 0.030 0.015 1.031(1.001~1.061) 0.040 −0.154 0.070 0.858(0.747~0.985) 0.029* Na −0.356 0.061 0.701(0.621~0.790) 0.000 −1.023 0.343 0.359(0.184~0.704) 0.003* HbA1c 0.247 0.083 1.280(1.088~1.506) 0.003 −0.014 0.253 0.986(0.601~1.619) 0.957 *P < 0.05。 表 3 24 h UNa和IL-18关联对UA阳性的危险度分析
Table 3. Analysis of the risk of UA positive associated with 24 h UNa and IL-18
模型 UACR阳性 OR 95%CI P Model 1 高钠低IL-18组 vs 低钠低IL-18组 6.857 1.903~24.702 0.003* 低钠高IL-18组 vs 低钠低IL-18组 6.857 1.903~24.702 0.003* 高钠高IL-18组 vs 低钠低IL-18组 5.786 1.731~19.336 0.004* Model 2 高钠低IL-18组 vs 低钠低IL-18组 7.232 1.873~27.919 0.004* 低钠高IL-18组 vs 低钠低IL-18组 6.694 1.630~27.484 0.008* 高钠高IL-18组 vs 低钠低IL-18组 7.298 1.985~26.825 0.003* Model 3 高钠低IL-18组 vs 低钠低IL-18组 8.935 1.792~44.559 0.008* 低钠高IL-18组 vs 低钠低IL-18组 11.666 2.106~64.619 0.005* 高钠高IL-18组 vs 低钠低IL-18组 10.774 2.105~55.155 0.004* 模型1:未校正;模型2:校正年龄、性别、有无高血压、糖尿病病程、BMI;模型3:模型2+校正TC、TG、LDL-C、HbA1C、HOMA-IR。 -
[1] Zhang X X,Kong J,Yun K. Prevalence of diabetic nephropathy among patients with type 2 diabetes mellitus in China: a Meta-analysis of observational studies[J]. J Diabetes Res,2020,2020:2315607. [2] Vallon V,Thomson S C. The tubular hypothesis of nephron filtration and diabetic kidney disease[J]. Nat Rev Nephrol,2020,16(6):317-336. doi: 10.1038/s41581-020-0256-y [3] Whitham D. Nutrition for the prevention and treatment of chronic kidney disease in diabetes[J]. Can J Diabetes,2014,38(5):344-348. doi: 10.1016/j.jcjd.2014.07.222 [4] Fang K,He Y,Fang Y,et al. Dietary Sodium Intake and Food Sources Among Chinese Adults: Data from the CNNHS 2010-2012[J]. Nutrients,2020,12(2):453. doi: 10.3390/nu12020453 [5] Hipgrave D B,Chang S,Li X,et al. Salt and sodium intake in China[J]. Jama,2016,315(7):703-705. doi: 10.1001/jama.2015.15816 [6] Tang,R,Kou M,Wang X,et al. Self-reported frequency of adding salt to food and risk of incident chronic kidney disease[J]. JAMA Netw Open,2023,6(12):e2349930. doi: 10.1001/jamanetworkopen.2023.49930 [7] Kawabata N,Kawamura T,Utsunomiya K,et al. High salt intake is associated with renal involvement in Japanese patients with type 2 diabetes mellitus[J]. Intern Med,2015,54(3):311-317. doi: 10.2169/internalmedicine.54.2464 [8] Vegter S,Perna A,Postma M J,et al. Sodium intake,ACE inhibition,and progression to ESRD[J]. J Am Soc Nephrol,2012,23(1):165-173. doi: 10.1681/ASN.2011040430 [9] Rayego-Mateos S,Rodrigues-Diez R R,Fernandez-Fernandez B,et al. Targeting inflammation to treat diabetic kidney disease: The road to 2030[J]. Kidney Int,2023,103(2):282-296. doi: 10.1016/j.kint.2022.10.030 [10] 桑小溪 . 糖尿病肾病发病机制的研究进展[J]. 当代医学,2019,25( 17) : 193-194. [11] 陈欢,詹菊,罗敏,等. 雷公藤多苷对糖尿病肾病炎症因子的影响和安全性的 Meta 分析[J]. 海峡药学,2020,32(10):102-107. [12] Parvanova A,Trillini M,Podest à M A,et al. Moderate salt restriction with or without paricalcitol in type 2 diabetes and losartan-resistant macroalbuminuria (PROCEED): A randomised,double-blind,placebo-controlled,crossover trial[J]. Lancet Diabetes Endo,2018,6(1):27-40. doi: 10.1016/S2213-8587(17)30359-5 [13] Yamazaki T,Mimura I,Tanaka T,et al. Treatment of diabetic kidney disease: current and future[J]. Diabetes Metab J.,2021,45(1):11-26. doi: 10.4093/dmj.2020.0217 [14] 中国2型糖尿病防治指南(2020年版)(上)[J]. 中国实用内科杂志,2021,41(9): 757-784. [15] 刘鑫,郭丰,刘丽鸣,等. 2型糖尿病患者24 h尿钠排泄和25羟维生素D与白蛋白尿的相关性研究[J]. 中华内分泌代谢杂志,2022,38(12):1040-1045. doi: 10.3760/cma.j.cn311282-20220501-00278 [16] 中华医学会糖尿病学分会微血管并发症学组,薛耀明,朱大龙. 中国糖尿病肾脏病防治指南(2021年版)[J]. 中华糖尿病杂志,2021,13(8):762-784. [17] Sun N,Mu J,Li Y. An expert recommendation on salt intake and blood pressure management in Chinese patients with hypertension: A statement of the chinese medical association hypertension professionalcommittee[J]. J Clin Hypertens (Greenwich),2019,21(4):446-450. doi: 10.1111/jch.13501 [18] Liu Z,Man Q,Li Y,et al. Estimation of 24-hour urinary sodium and potassium excretion among Chinese adults: A cross-sectional study from the China National Nutrition Survey[J]. The AmericanJournal of Clinical Nutrition,2024,119(1):164-173. [19] Hodson E M,Cooper T E. Altered dietary salt intake for preventing diabetic kidney disease and its progression[J]. Cochrane Database Syst Rev,2023,1(1):CD006763. [20] National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update[J]. Am J Kidney Dis,2012,60(5):850-886. doi: 10.1053/j.ajkd.2012.07.005 [21] Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention,phase II. The Trials of Hypertension Prevention Collaborative Research Group[J]. Arch Intern Med,1997,157(6):657-667. doi: 10.1001/archinte.1997.00440270105009 [22] Briend A,Gall M P,Berglund L,et al. Sodium intake and outcomes in chronic kidney disease: A meta-analysis of observational studies [J]. The Lancet,2020,395(10224):881-892. [23] Kim H Y,Choi H S,Kim C S,et al. Effect of urinary angiotensinogen and high-salt diet on blood pressure in patients with chronic kidney disease: Results from the Korean Cohort Study for Outcome in Patients with Chronic Kidney Disease (KNOW-CKD)[J]. Korean J Intrern Med,2021,36(3):659-667. doi: 10.3904/kjim.2020.077 [24] 王越,李启富. 炎症与糖尿病肾病新进展[J]. 中华糖尿病杂志,2015,7(11):706-708. doi: 10.3760/cma.j.issn.1674-5809.2015.11.011 [25] Shahzad K,Bock F,Dong W,et al. Nlrp3 -inflamma some activation in non-myeloid-derived cells aggravates diabetic nephropathy[J]. Kidney Int,2015,87(1):74-84. doi: 10.1038/ki.2014.271 [26] Zhang J,Liu J,Qin X. Advances in early biomarkers of diabetic nephropathy[J]. Rev Assoc Med Bras,2018,64(1):85-92. doi: 10.1590/1806-9282.64.01.85 [27] Yaribeygi H,Atkin S L,Sahebkar A. Interleukin-18 and diabetic nephropathy: A review[J]. J Cell Physiol,2019,234(5):5674-5682. doi: 10.1002/jcp.27427