Prospects of Fecal Microbiota Transplantation for Inflammatory Bowel Disease in the Context of Biological Agents
-
摘要: 炎症性肠病(inflammatory bowel disease,IBD)是一种慢性非特异性肠道炎症性疾病,目前发病机制尚不清楚,缺乏有效的治疗手段。生物制剂的问世,为IBD的治疗开启了新的篇章,一部分患者能达到临床缓解甚至黏膜愈合,但在临床实践中,仍然有不少患者初始治疗无应答或继发性失应答,不能完全控制疾病的进展。研究显示,肠道微生物群的改变在IBD发生发展中发挥关键作用,且可能作为评估生物制剂疗效的预测因子。粪菌移植(fecal microbiota transplantation,FMT)作为一种重建患者肠道微生态的新型治疗手段,在改善IBD症状、诱导并维持疾病的黏膜愈合甚至组织学缓解方面具有一定疗效。在生物制剂时代,FMT在IBD患者中的应用前景如何呢,将总结国内外相关的研究成果,为FMT在生物制剂时代治疗IBD的潜力、可行性等提供理论依据。Abstract: Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory condition of the intestines, and its mechanisms are still unclear, with effective treatments lacking. The advent of biologics has opened a new chapter in the treatment of IBD, with some patients achieving clinical remission or even mucosal healing. However, in clinical practice, there are still quite a few patients who either do not respond to initial treatment or experience secondary loss of response, making it difficult to fully control disease progression. Research shows that changes in the gut microbiota play a crucial role in the onset and progression of IBD, and they may serve as predictive factors for assessing the efficacy of biologics. Fecal microbiota transplantation (FMT), as a new treatment method to restore the gut microecology of patients, has shown some effectiveness in improving IBD symptoms, inducing and maintaining mucosal healing, and even achieving histological remission. What does the future hold for the application of FMT in IBD patients in the era of biologics? This review will summarize relevant research results from both domestic and international sources to provide a theoretical basis for the potential and feasibility of using FMT in treating IBD during the biologics era.
-
复发性流产(recurrent spontaneous abortion,RSA)是临床上常见的一种妊娠生殖障碍性疾病。由于不同国家或地区经济状况及社会背景的差异性,导致国际上对RSA的定义尚不统一。2012年美国生殖医学学会(American society for reproductive medicine,ASRM)和2018年欧洲人类生殖与胚胎学协会(European society of human reproduction and embryology,ESHER)将RSA定义为2次或2次以上的妊娠失败[1-2];英国皇家妇产科医师协会则将RSA定义为与同一性伴侣连续发生3次或3次以上在妊娠24周前发生的妊娠丢失[3];而我国通常将RSA定义为与同一性伴侣连续发生2次及以上在妊娠28周前的妊娠丢失,包括生化妊娠[4]。流行病学调查显示,在育龄妇女中,RSA的发病率从1%~5%不等[5],其病因多种多样,主要与年龄[6]、染色体或基因异常[7]、解剖因素[8]、感染和内分泌功能障碍[6, 9]等相关。然而,目前仍有相当一部分RSA患者的病因及其发病机制不清楚,临床将此类患者称为URSA[4]。
近年来,随着我国医疗技术的突飞猛进,对于病因明确的RSA患者采取针对性诊治措施,如对反复出现胚胎染色体异常的RSA夫妇进行胚胎植入前遗传学检测(preimplantation genetic testing,PGT)、对子宫机能不全患者进行子宫颈环扎术、对RSA合并自身免疫性疾病的患者联合风湿免疫科医师进行评估及制定治疗方案等均有效改善了RSA患者的妊娠结局[9-12];而对于URSA患者而言,目前的治疗缺少有效统一的方法,现有的治疗方案主要是基于生殖免疫学理论,针对母胎界面微环境的免疫因素进行的一些尝试治疗[4],效果存在争议[13]。URSA作为一种病理妊娠不仅使患者承受严重的生理及心理负担,也对家庭、社会造成了不良的影响[14]。因此,探索URSA的发病机制至关重要。
目前,国内外已有研究发现胎盘滋养细胞合成的H2S在胎盘血管形成、发育过程中有着非常重要的作用,胎盘组织H2S的减少会削弱胎盘血管生成,造成胎盘功能障碍,不利于胚胎的着床及其生长发育[15-16]。而DATS作为H2S的供体,可以有效增加实验母猪胎盘血管的生成[17-18],从而有效改善肥胖母猪妊娠结局。然而,对于DATS能否改善URSA小鼠胎盘血管的生成尚无相关研究报告。基于上述发现,本研究将通过构建URSA小鼠模型,探讨外源性给予DATS后,对其胎盘血管形成产生的影响,并深入探讨其可能存在的作用机制,为今后临床治疗和预防URSA提供新的科学依据,具有十分重要的价值。
1. 材料与方法
1.1 主要试剂和仪器
TRIzol试剂盒购自美国Thermo Fisher Scientific公司,凝胶成像系统、PCR仪、电泳仪、垂直电泳槽、湿式转膜槽、纤维垫购自美国Bio-RAD公司,Whatman滤纸购自美国GE公司,VEGFA、VEGFR-2购自美国Proteintech公司,β-actin购自英国Abcam公司,DATS购自上海麦克林生化科技有限公司,H2S ELISA试剂盒购自重庆阆阗生物科技有限公司,Phosphate Buffer Saline(PBS)、Servicebio RT First Strand、2XSYBR Green qCR Master mix (High ROX)购自武汉赛维尔生物科技有限公司,微量核酸蛋白定量仪购自杭州逐真生物技术有限公司,RT-qPCR电泳槽购自北京百晶生物技术有限公司,RIPA裂解液、PMDF、Tween 20、30%制胶液购自北京索莱宝科技有限公司。
1.2 实验动物
URSA模型小鼠购自北京唯尚立德生物科技有限公司,生产许可证号为:SCXK(京)2021-0010。出现阴道栓的母鼠视为妊娠 0.5 d。
1.3 给药和实验分组
将16只URSA妊娠母鼠随机分为对照组与实验组,每组8只小鼠。参照文献进行给药[17]。对照组在常规饲喂日粮的基础上同时给予200 μL PBS进行灌注、实验组在常规饲喂日粮的基础上同时给予200 μL DATS与PBS的混悬液进行灌注。2组小鼠每天灌注1次,总共灌注17次,在妊娠18.5 d上午8:30开始禁食,禁食6 h后行颈椎脱臼处死法处死孕鼠并检测相应指标。
1.4 亚甲蓝分光光度法测定鼠胎盘组织中H2S水平
按照0.1 g鼠胎盘组织加1 mL磷酸钾缓冲液的比例进行冰浴匀浆。匀浆液离心(12000 r/min 10 min,4 ℃),取 0.8 mL 上清液转移至另一离心管中。再加入 0.15 mL 提取液二,漩涡震荡30 s,离心(12000 r/min 10 min,4 ℃)后取上清置于冰上待测。用全自动酶标仪于665 nm 波长处测定吸光度,根据H2S标准曲线计算出鼠胎盘组织匀浆中H2S水平,H2S含量以单位质量鼠胎盘组织中H2S的量(nmol/g)表示。
1.5 RT-qPCR检测胎盘组织中CD31、VEGFA和VEGFR2的相对表达量
课题组首先在pubmed上查询对应物种的目的基因mRNA序列,以CDS序列设计引物。应用软件设计Q-PCR引物(表1)。其次进行总RNA的提取,取适量的胎盘组织于离心管中,加入1 mL的Trizol Reagent裂解液,研磨胎盘组织成匀浆状态。将样品放在4 ℃静置裂解15 min,收集细胞至EP管中。向各EP管中加入200 μL氯仿,上下颠倒混匀至乳化,室温放置15 min;在4 ℃低温离心机中12000 r/min离心15 min;小心吸取上层水相,转移到新的EP管中;然后向各管中加入500 μL异丙醇,4 ℃放置15 min;在4 ℃低温离心机中12000 r/min离心15 min;弃上清,各EP管中加入1 mL 75%乙醇,轻柔晃动洗涤沉淀;在4 ℃低温离心机中7 500 r/min离心5 min,弃上清;沉淀在室温下放置约2 min风干;根据RNA沉淀的量适当加入20 µL~50 µL的RNase-free的H2O,溶解RNA。用枪反复吹打后,吸取2 µL总RNA样品在微量核酸蛋白定量仪中测其浓度以及纯度。按照合成20 µL cDNA需要总RNA样品为2 µg计算所需总RNA的体积计算,公式如下:逆转录中所需总RNA的体积量A = 2 µg/测得的RNA浓度。采用二步法进行逆转录,逆转录完成后,所得cDNA以贝塔-actin作为内参进行反转录酶-聚合酶链反应。最后采用实时荧光定量PCR(Q-PCR)进行CD31的检测,Q-PCR的实验结果采用2-△△Ct法进行分析,其中实验结果 > 1,表示与对照组相比,该样本的该基因表达升高;实验激发 < 1,表示与对照组相比,该样本的该基因表达降低,而2-△△Ct = 2-[(Ct实验组目的基因-Ct实验组内参基因)-(Ct对照组目的基因-Ct对照组内参基因)],见表1。
表 1 引物序列Table 1. Primer sequences基因名称 序列(5′→3′) 长度
(bp)PCR产物
长度(bp)ZNF470-F2 CCCCGGCAATCATAATGGAAA 21 95 ZNF470-R2 CTCCCTCTCAAACAAGTCTTCAC 23 ZNF545-F2 GACCTTTAGCCGTGGTTATCATC 23 88 ZNF545-R2 GGCTTTCCAGCATTCCTTACAT 22 GAPDH-F GGACCTGACCTGCCGTCTAG 20 100 GAPDH-R GTAGCCCAGGATGCCCTTGA 20 F:上游引物、正向;R:下游引物、反向。 1.6 Western blot检测胎盘组织中VEGFA、VEGFR2的蛋白表达水平
收集2组鼠胎盘组织,提取总蛋白,并根据BCA试剂盒说明书操作测定蛋白浓度,将变性后的蛋白溶液进行上样后行SDS-PAGE凝胶电泳分离蛋白,采用湿转法转膜,转膜后使用封闭液(含5%脱脂牛奶的TBST溶液)室温封闭PVDF膜1.5 h后,加入一抗孵育(稀释比例参照抗体说明书),然后与封闭好的PVDF膜在4 ℃条件下过夜,加入二抗孵育,封闭液稀释相应的二抗(稀释比例参照抗体说明书),室温下孵育PVDF膜1.5 h后使用ECL进行显色,并进行分析和检测灰度值。
1.7 统计学处理
采用GraphPad Prism 9.0进行统计分析。采用Shapiro-Wilk正态性检验对检验数据进行正态性分析。采用单因素方差分析对2组之间的差异进行比较分析,数据以平均值±平均值的标准误差(Mean±SEM)表示,P < 0.05为差异具有统计学意义。
2. 结果
2.1 DATS对URSA鼠胎盘组织中H2S的含量的影响
为了研究DATS能否影响URSA鼠胎盘组织中H2S的含量,课题组采用亚甲蓝分光光度法检测正常饲养的URSA鼠胎盘组织和添加DATS饲养的URSA鼠胎盘组织中H2S的含量表达情况。研究结果显示,与对照组胎盘组织中H2S含量(529.182 4±99.748 9) nmol/g相比,实验组胎盘组织中H2S的含量(777.492 2±72.975 9) nmol/g显著升高,且差异有统计学意义(P < 0.001),见图1 。
2.2 DATS对URSA鼠胎盘组织中CD31蛋白相对表达量的影响
为了研究DATS 对胎盘组织中CD31表达的影响情况,课题组分别对2组鼠胎盘组织中的CD31基因进行扩增;扩增后对2组鼠胎盘组织中的CD31蛋白相对表达量进行检测,研究结果显示,与对照组(0.0020±0.0004)比较,实验组(0.0042±0.0006)胎盘组织中CD31的mRNA表达水平显著升高,且差异有统计学意义(P < 0.001),见图2。
2.3 DATS对URSA鼠胎盘组织中VEGFA与VEGFR2 蛋白相对表达量的影响
为了进一步了解DATS 对胎盘组织中血管生成因子VEGFA及VEGFR2的影响,课题组对2组小鼠胎盘组织中的VEGFA及VEGFR2的mRNA表达水平进行检测。研究结果表明,与对照组(0.5200±0.0946)相比,实验组(0.7073±0.0677)胎盘组织中VEGFA的mRNA表达水平显著升高,差异均具有统计学意义(P < 0.001);与对照组(0.3984±0.047)相比,实验组(0.7304±0.1262)胎盘组织中VEGFR2的mRNA表达水平也显著升高,差异均具有统计学意义(P < 0.001),见图3。
3. 讨论
URSA作为一种妇科常见病,目前病因及发病机制尚不清楚,治疗手段及效果均不理想,已逐渐成为全球范围内妇产科医师急需解决的生育难题[19]。URSA患者的不良妊娠结局多发生于妊娠早期[20],而妊娠本身涉及一个复杂、多因素调控的生理过程,良好的胎盘血管形成、发育及分布是维持正常胎盘功能的关键环节,也是成功妊娠的基础[21]。已有研究显示胎盘血管发育异常可使母胎之间的营养供应受阻,最终导致胚胎着床失败[22]。因此,良好的胎盘血管形成不仅影响胎盘自身的血流灌注,而且直接影响胚胎的着床与发育。
H2S作为细胞内普遍存在的第二信使,对胎盘血管生成和胎儿发育具有重要的价值[18]。动物研究显示通过抑制小鼠H2S的生成后,可显著抑制胎盘迷宫组织血管生成,导致小鼠胎儿体重的显著降低,而在给予外源性H2S后则可显著缓解胎盘血管的发育异常及胎儿宫内生长迟缓(intrauterine growth retardation,IUGR) 的发生[15]。进一步研究发现H2S可通过调控胎盘血管的生成及滋养细胞的侵袭能力,重构子宫螺旋动脉,直接影响胎盘的发育与胚胎的着床[15],若上述调控出现异常,可导致胎盘早剥、胚胎停止发育及IUGR等不良妊娠结局的发生[23]。在血管生成事件中,H2S可通过多种途径调控血管内皮细胞的血管生成[24],刺激血管内皮细胞增殖、迁移及成管[25]。然而,对于H2S能否改善URSA小鼠胎盘血管的生成及其可能存在的作用机制目前尚不清楚。因此,课题组首先通过构建URSA小鼠模型,通过外源性给予H2S的供体DATS后,观察URSA小鼠胎盘组织中H2S水平的变化。研究结果显示:添加DATS饲养的URSA小鼠胎盘组织中H2S的水平显著高于未添加组,差异具有统计学意义(P < 0.01)。说明通过外源性给予DATS后,可以显著提高胎盘组织中的H2S水平。为今后临床使用外源性H2S补充胎盘组织中的H2S水平提供基础实验依据。
在血管生成过程中,CD31与VEGF发挥着非常重要的作用[26]。其中,CD31作为内皮细胞和血管细胞的表面分子标志[27],通过调控细胞连接与细胞迁移,参与微血管的生成与崩解[28]。为了探讨外源性H2S供体DATS是否对胎盘组织中的CD31的mRNA表达水平存在影响,本研究通过检测DATS处理后的URSA小鼠胎盘组织中的CD31的mRNA表达水平进行分析,结果显示:实验组胎盘组织中CD31的mRNA表达水平显著高于对照组,差异有统计学意义(P < 0.01)。说明外源性H2S供体DATS能够有效促进URSA小鼠胎盘血管的生成。这一结果与Smink AM 等[29]发现H2S可显著增加与诱导血管生成相关因子(如CD31、VEGF)的表达,从而促进血管的生成的研究结果一致。VEGF家族包括VEGF-A、VEGF-B、VEGFR-1、VEGFR-2等,主要通过调控血管内皮细胞的增殖与迁移能力,促进血管形成与成熟[18]。VEGF的异常表达可引起血管生成异常,并导致胚胎着床失败[30]。现有研究显示VEGFA是 VEGF/VEGFR信号通路中最主要的调节因子,而VEGFR-2 作为 VEGFA 的主要受体,可介导 VEGFA 的大部分下游分子的血管生成作用[31]。VEGFA/VEGFR-2信号通路可通过激活细胞内血管生成相关的下游信号通路刺激血管的生成[31]。为了探讨H2S对VEGFA/VEGFR-2信号通路的影响,本研究通过检测H2S的供体DATS处理后的URSA小鼠胎盘组织中的VEGFA及VEGFR2的mRNA表达水平,研究结果显示:添加DATS饲养的URSA小鼠胎盘组织中VEGFA及VEGFR2的mRNA表达水平显著均显著高于未添加组,差异具有统计学意义(P < 0.01)。说明外源性H2S,DATS能够有效促进URSA小鼠胎盘组织中VEGFA与VEGFR2的mRNA表达水平。这与Miaomiao Wang等发现外源性H2S的供体DATS可通过提高小鼠胎盘组织中 VEGFA与VEGFR2 的活性,促进血管内皮细胞的血管生成有关的研究结果一致[18]。
综上所述,H2S是调节血管生成的重要信号分子。在URSA小鼠妊娠期间给予DATS可显著改善胎盘组织中的血管生成,其机制可能与H2S促进胎盘组织中CD31、VEGF的表达,并通过激活其VEGFA/VEGFR2信号通路相关。这一发现可能为URSA的治疗提供了一个新的潜在的治疗靶点,并为临床应用提供参考。
-
表 1 FMT治疗IBD的安全性及有效性
Table 1. Safety and efficacy of FMT in treatingt IBD
作者 研究类型 纳入人群及特征 有效性 安全性 Zhang等[27] 病例报告 (1)34岁男性,重度CD,有结肠瘘,14 cm×8 cm×10 cm腹腔炎性包块;(2)FMT作为挽救治疗。 (1)FMT后1周,患者的发热、粘液脓血便、腹痛等症状明显减轻,腹腔内炎性包块大小较FMT前明显缩小;(2)FMT后3个月炎性包块吸收,内瘘改善。 未发生FMT不良事件 Vandenplas Y等[28] 病例报告 (1)4个月大婴儿,重度UC,对硫唑嘌呤、皮质类固醇、益生菌、IFX单抗治疗均无效;(2)连续7次FMT作为挽救治疗。 最后一次进行FMT后6个月,继续停止所有药物近3个月后组织学显示正常。 有出汗、呕吐、脸色苍白、心动过速(血压保持在正常水平)、发热,但在一个小时内自然恢复。 Shimizu H
等[29]病例报告 (1)11岁女性患者,有皮质类固醇依赖性UC;(2)对5-ASA、IFX、他克莫司治疗均无反应。 在FMT后40周仍处于临床缓解 未报告不良事件 Wang等[30] 病例报告 2例对激素及TNF-α抗体治疗均无效的难治性免疫相关肠炎患者; 所有患者在FMT后均获得症状缓解及镜下黏膜愈合 未报告不良事件 Uygun A
等[31]前瞻性非对照研究 (1)30例UC患者,所有患者在入组前均使用了标准的类固醇、硫唑嘌呤和抗肿瘤坏死因子治疗,但均无效;(2)除5-ASA外,所有药物在FMT前4周停止使用。 30例患者中有21例(70%)出现了临床反应;30例患者中有13例(43.3%)在第12周获得了临床和内镜下缓解 7例(23.3%)患者出现恶心、呕吐、腹痛、腹泻等轻度不良反应,在对症治疗后1天内消失。 Neeraj等[32] Meta分析 (1)4项前瞻性随机对照设计研究,共277例UC患者;
(2)均为经传统药物和免疫抑制剂治疗失败的UC患者。(1)与安慰剂组(自体粪便或生理盐水,22.6%)相比,FMT组内镜下缓解率更高(42.1%);(2)5例肠皮瘘CD患者中80%(4/5)在FMT后出现肠皮瘘管闭合; 未报告不良事件 He Z等[33] 前瞻性非对照研究 25例合并腹腔内炎症性肿块的CD
患者。首次FMT后3个月,分别有68%(17/25)和52.0%(13/25)的患者达到临床缓解。 未报告不良事件 Xiang L
等[34]前瞻性非对照研究 174例CD患者。 75.3%(131/174)的患者在FMT后1个月达到临床缓解; 未报告不良事件 Costello
等[35]前瞻性对照研究 混合供者FMT(n=38)或自体FMT(n=35) (1)接受混合供者FMT的UC患者32%(12/38),自体FMT的UC患者9%达到(9/35)达到无激素缓解。(2)接受混合供者FMT并在第8周时达到缓解的12例UC中,42%(5/12)在12个月时仍维持临床缓解; 混合供者FMT组中有3例不良事件(2肺炎,艰难梭菌感染、疾病加重);自体FMT组中有2例(贫血,转氨酶升高)。 Wu X等[36] 前瞻性试验的回顾性分析 44例活动性UC患者 FMT后3个月,分别有50.0%(22/44)和29.5%(13/44)的患者获得临床缓解; 大多数不良反应:排便频率增加、发热、腹痛和皮肤瘙痒都是短暂的,无需医疗干预即可缓解 Paramsothy S等[22] 双盲、随机、安慰剂对照试验 85例UC患者,42例随机分配到FMT组(多供体),43例分配到安慰剂组
(等渗盐水)以Mayo评分评价疗效,FMT组患者(17/42,41%)疗效显著高于安慰剂组(5/43,12%)。 实验组1例难治性UC患者发生疾病恶化,另一例因FMT导致身体不适而退出。 -
[1] Fabian O K. Kamaradova,Morphology of inflammatory bowel diseases (IBD)[J]. Cesk Patol,2022,58(1):27-37. [2] Vancamelbeke M. Genetic and Transcriptomic bases of intestinal epithelial barrier dysfunction in inflammatory Bowel Disease[J]. Inflamm Bowel Dis,2017,23(10):1718-1729. doi: 10.1097/MIB.0000000000001246 [3] Burmester G R. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis,juvenile idiopathic arthritis,ankylosing spondylitis,psoriatic arthritis,psoriasis and Crohn's disease[J]. Ann Rheum Dis,2013,72(4):517-524. doi: 10.1136/annrheumdis-2011-201244 [4] Sandborn W J. Adalimumab for maintenance treatment of Crohn's disease: Results of the CLASSIC II trial[J]. Gut,2007,56(9):1232-1239. doi: 10.1136/gut.2006.106781 [5] Ventin-Holmberg R. Bacterial and fungal profiles as markers of infliximab drug response in inflammatory bowel disease[J]. J Crohns Colitis,2021,15(6):1019-1031. doi: 10.1093/ecco-jcc/jjaa252 [6] Cui B. Step-up fecal microbiota transplantation (FMT) strategy[J]. Gut Microbes,2016,7(4):323-328. doi: 10.1080/19490976.2016.1151608 [7] Liu J,Di B ,XU L L. Recent advances in the treatment of IBD: Targets,mechanisms and related therapies[J]. Cytokine Growth Factor Rev,2023, 71: 1-12. [8] Baumgart D C,Le Berre C. Newer biologic and small-molecule therapies for inflammatory bowel disease[J]. N Engl J Med,2021,385(14): 1302-1315. [9] Greuter T. Emerging treatment options for extraintestinal manifestations in IBD[J]. Gut,2021,70(4):796-802. doi: 10.1136/gutjnl-2020-322129 [10] Brandse J F. Serum concentration of anti-TNF antibodies,adverse effects and quality of life in patients with inflammatory bowel disease in remission on maintenance treatment[J]. J Crohns Colitis,2015,9(11):973-981. doi: 10.1093/ecco-jcc/jjv116 [11] Mercer L K,et al. Risk of invasive melanoma in patients with rheumatoid arthritis treated with biologics: results from a collaborative project of 11 European biologic registers[J]. Ann Rheum Dis,2017. 76(2): 386-391. [12] Vermeirem S. Immunogenicity of biologics in inflammatory bowel disease[J]. Therap Adv Gastroenterol,2018,11: 1756283X17750355. [13] Ben-Horin S,U. Kopylov,Y. Chowers. Optimizing anti-TNF treatments in inflammatory bowel disease[J]. Autoimmun Rev,2014,13(1):24-30. doi: 10.1016/j.autrev.2013.06.002 [14] Kennedy N A. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn's disease: A prospective,multicentre,cohort study[J]. Lancet Gastroenterol Hepatol,2019. 4(5): 341 -353. [15] Zhang S. Comparison between washed microbiota transplantation and infliximab: Medical cost during long-term management in patients with inflammatory bowel disease[J]. J Chin Med Assoc,2024,87(1):109-118. [16] Hassouneh R. ,Bajaj J S,Gut microbiota modulation and fecal transplantation: An overview on innovative strategies for hepatic encephalopathy treatment[J]. J Clin Med,2021,10(2):330. doi: 10.3390/jcm10020330 [17] Eiseman B. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis[J]. Surgery,1958,44(5):854-859. [18] Ancona A. The gut-brain axis in irritable bowel syndrome and inflammatory bowel disease[J]. Dig Liver Dis,2021,53(3):298-305. doi: 10.1016/j.dld.2020.11.026 [19] Goeser F. Fecal microbiota transfer for refractory intestinal graft-versus-host disease-experience from two german tertiary centers[J]. Eur J Haematol,2021,107(2):229-245. doi: 10.1111/ejh.13642 [20] Smillie C S. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation[J]. Cell Host Microbe,2018,23(2): 229-240. e5. [21] Zhang W. Fecal microbiota transplantation (FMT) alleviates experimental colitis in mice by gut microbiota regulation[J]. J Microbiol Biotechnol,2020,30(8):1132-1141. doi: 10.4014/jmb.2002.02044 [22] Paramsothy S. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: A randomised placebo-controlled trial[J]. Lancet,2017,389(10075):1218-1228. doi: 10.1016/S0140-6736(17)30182-4 [23] Haifer C. Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): A randomised,double-blind,placebo-controlled trial[J]. Lancet Gastroenterol Hepatol,2022,7(2):141-151. doi: 10.1016/S2468-1253(21)00400-3 [24] Paramsothy S. Faecal microbiota transplantation for Inflammatory bowel disease: A systematic review and meta-analysis[J]. J Crohns Colitis,2017,11(10):1180-1199. doi: 10.1093/ecco-jcc/jjx063 [25] Sokol H. Fmicrobiota transplantation to maintain remission in Crohn's disease: A pilot randomized controlled study[J]. Microbiome,2020,8(1): 12. [26] Schierova D. Gut microbiome changes in patients with active left-sided ulcerative colitis after fecal microbiome transplantation and topical 5-aminosalicylic acid therapy[J]. Cells,2020,9(10):2283. doi: 10.3390/cells9102283 [27] Zhang F M. Fecal microbiota transplantation for severe enterocolonic fistulizing Crohn's disease[J]. World J Gastroenterol,2013,19(41):7213-7216. doi: 10.3748/wjg.v19.i41.7213 [28] Vandenplas. Fecal microbial transplantation in early-onset colitis: caution advised[J]. J Pediatr Gastroenterol Nutr,2015,61(3):e12-14. [29] Shimizu H. Repeated fecal microbiota transplantation in a child with ulcerative colitis[J]. Pediatr Int,2016,58(8):781-785. doi: 10.1111/ped.12967 [30] Wang Y. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis[J]. Nat Med,2018,24(12):1804-1808. doi: 10.1038/s41591-018-0238-9 [31] Uygun A. Fecal microbiota transplantation is a rescue treatment modality for refractory ulcerative colitis[J]. Medicine (Baltimore),2017,96(16):e6479. [32] Narula N. Systematic Review and meta-analysis: Fecal microbiota transplantation for treatment of active ulcerative colitis[J]. Inflamm Bowel Dis,2017,23(10):1702-1709. doi: 10.1097/MIB.0000000000001228 [33] He Z. Multiple fresh fecal microbiota transplants induces and maintains clinical remission in Crohn's disease complicated with inflammatory mass[J]. Sci Rep,2017,7(1):4753. doi: 10.1038/s41598-017-04984-z [34] mmXiang L. Efficacy of faecal microbiota transplantation in Crohn's disease: a new target treatment? [J]Microb Biotechnol,2020,13(3): 760-769. [35] Costello S P. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: A randomized clinical trial[J]. JAMA,2019,321(2):156-164. doi: 10.1001/jama.2018.20046 [36] Wu X. The Underlying Changes in serum metabolic profiles and efficacy prediction in patients with extensive ulcerative colitis undergoing fecal microbiota transplantation[J]. Nutrients,2023,15(15):3340. doi: 10.3390/nu15153340 [37] Cui B. Fecal microbiota transplantation through mid-gut for refractory Crohn's disease: safety,feasibility,and efficacy trial results[J]. J Gastroenterol Hepatol,2015,30(1):51-58. doi: 10.1111/jgh.12727 [38] Cui B. Step-up fecal microbiota transplantation strategy: a pilot study for steroid-dependent ulcerative coliti[J]. J Transl Med,2015,13:298. [39] 杨艳. 溃疡性结肠炎患者对粪菌移植的认知及接受度研究[J]. 河南医学研究,2023,32(3):411-416. doi: 10.3969/j.issn.1004-437X.2023.03.006 [40] Marshall D A. Patient preferences for active ulcerative colitis treatments and fecal microbiota transplantation[J]. Ther Adv Chronic Dis,2024,15: 20406223241239168. [41] Shin J. Complementary therapeutic effect of fecal microbiota transplantation in ulcerative colitis after the response to anti-tumor necrosis factor alpha agent was lost: A case report[J]. Biomedicines,2024,12(4):800. doi: 10.3390/biomedicines12040800 [42] Hsu M. Safety and efficacy of fecal microbiota transplantation in treatment of inflammatory bowel disease in the pediatric population: A systematic review and meta-analysis[J]. Microorganisms,2023,11(5):1272. doi: 10.3390/microorganisms11051272 [43] Fang H,Fu L ,Wang J. Protocol for fecal microbiota transplantation in inflammatory bowel disease: A systematic review and meta-analysis[J]. Biomed Res Int,2018,2018: 8941340. [44] Popov J. Pediatric patient and parent perceptions of fecal microbiota transplantation for the treatment of ulcerative colitis[J]. J Pediatr Gastroenterol Nutr,2021,73(6):684-688. doi: 10.1097/MPG.0000000000002995 [45] Magnusson M K. Anti-TNF therapy response in patients with ulcerative colitis is associated with colonic antimicrobial peptide expression and microbiota composition[J]. Journal of Crohn's and Colitis,2016,10(8):943-952. doi: 10.1093/ecco-jcc/jjw051 [46] Aden K. Metabolic functions of gut microbes associate with efficacy of tumor necrosis factor antagonists in patients with inflammatory bowel diseases[J]. Gastroenterology,2019,157(5): 1279-1292. e11. [47] Yilmaz B. Publisher correction: Microbial network disturbances in relapsing refractory Crohn's disease[J]. Nat Med,2019,25(4):701. [48] Wang Y. Microbial and metabolic features associated with outcome of infliximab therapy in pediatric Crohn's disease[J]. Gut Microbes,2021,13(1):1-18. [49] Radhakrishnan S T. Systematic review: the association between the gut microbiota and medical therapies in inflammatory bowel disease[J]. Aliment Pharmacol Ther,2022,55(1):26-48. doi: 10.1111/apt.16656 [50] Jiang L. A metabolomics-driven model for early remission prediction following vedolizumab treatment in patients with moderate-to-severe active ulcerative colitis[J]. Int Immunopharmacol,2024,128:111527. doi: 10.1016/j.intimp.2024.111527 [51] Zhang F. Microbiota transplantation: concept,methodology and strategy for its modernization[J]. Protein Cell,2018,9(5):462-473. doi: 10.1007/s13238-018-0541-8 [52] Wang H. The safety of fecal microbiota transplantation for crohn's disease: Findings from a long-term study[J]. Adv Ther,2018,35(11):1935-1944. doi: 10.1007/s12325-018-0800-3 [53] Li P. Timing for the second fecal microbiota transplantation to maintain the long-term benefit from the first treatment for Crohn's disease[J]. Appl Microbiol Biotechnol,2019,103(1):349-360. doi: 10.1007/s00253-018-9447-x [54] Tkach S. Efficacy and safety of fecal microbiota transplantation via colonoscopy as add-on therapy in patients with mild-to-moderate ulcerative colitis: A randomized clinical trial[J]. Front Med (Lausanne),2022,9:1049849. [55] Sakai K. Intestinal microbiota and gene expression reveal similarity and dissimilarity between immune-mediated colitis and ulcerative colitis[J]. Front Oncol,2021,11:763468. doi: 10.3389/fonc.2021.763468 [56] HalseyT M. Microbiome alteration via fecal microbiota transplantation is effective for refractory immune checkpoint inhibitor-induced colitis[J]. Sci Transl Med,2023,15(7):eabq4006. doi: 10.1126/scitranslmed.abq4006 [57] Nicholson M R. Efficacy and Outcomes of Faecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection in Children with Inflammatory Bowel Disease[J]. J Crohns Colitis,2022,16(5):768-777. doi: 10.1093/ecco-jcc/jjab202 [58] Agrawal M,et al. The long-term efficacy and safety of fecal microbiota transplant for recurrent,severe,and complicated clostridium difficile infection in 146 elderly individuals[J]. J Clin Gastroenterol,2016,50(5): 403-407. [59] Saeedi B J. Fecal microbiota transplant for clostridium difficile infection in a pregnant patient[J]. Obstet Gynecol,2017,129(3):507-509. doi: 10.1097/AOG.0000000000001911 [60] Wright E K,Ding N S,Niewiadomski O,Management of inflammatory bowel disease[J]. Med J Aust,2018,209(7): 318-323. [61] Carlson P J. Regulatory considerations for fecal microbiota transplantation products[J]. Cell Host Microbe,2020,27(2):173-175. doi: 10.1016/j.chom.2020.01.018 [62] Porcari S,et al. Fecal microbiota transplantation for recurrent Clostridioides difficile infection in patients with concurrent ulcerative colitis[J]. J Autoimmun,2023. 141: 103033. [63] van Lingen E E. Short- and long-term follow-up after fecal microbiota transplantation as treatment for recurrent Clostridioides difficile infection in patients with inflammatory bowel disease[J]. Therap Adv Gastroenterol,2023,16: 17562848231156285. [64] Lopetuso L R,et al. The first international Rome consensus conference on gut microbiota and faecal microbiota transplantation in inflammatory bowel disease[J]. Gut,2023. 72(9): 1642-1650. [65] Gordon H. ECCO guidelines on Inflammatory Bowel Disease and Malignancies[J]. J Crohns Colitis,2023,17(6):827-854. doi: 10.1093/ecco-jcc/jjac187 [66] Nanjing consensus on methodology of washed microbiota transplantation[J]. Chin Med J (Engl),2020,133(19): 2330-2332. 期刊类型引用(1)
1. 刘邦卿,李剑锋,刘晓辉,张劲男,梁金屏. miR-196b靶向ERG促进肺腺癌的增殖和迁移. 昆明医科大学学报. 2023(10): 83-91 . 本站查看
其他类型引用(0)
-