Tanshinone Ⅰ Alleviates Sepsis Associated Acute Kidney Injury in Rats by Regulating Wnt/β-catenin Signaling Pathway
-
摘要:
目的 探讨丹参酮Ⅰ(tanshinone Ⅰ,Tan Ⅰ)调节Wnt/β-catenin信号通路对脓毒症相关急性肾损伤(sepsis associated acute kidney injury,SA-AKI)大鼠的作用。 方法 将Sprague Dawley大鼠随机分为Sham、SA-AKI、SA-AKI+5 mg/kg Tan Ⅰ、SA-AKI+10 mg/kg Tan Ⅰ、SA-AKI+15 mg/kg Tan Ⅰ(SA-AKI+Tan Ⅰ)、SA-AKI+盐霉素钠(Wnt信号抑制剂,salinomycin sodium,SS,SA-AKI+SS组)、SA-AKI+SS+Tan Ⅰ、SA-AKI+Wnt信号激活剂(laduviglusib,LG,SA-AKI+LG组)、SA-AKI+LG+Tan Ⅰ,每组8只(含每组2只备用)。利用盲肠结扎穿孔术(cecal ligation and puncture,CLP)诱导大鼠SA-AKI模型,Tan Ⅰ、SS和LG经腹腔注射至大鼠。苏木精-伊红和末端脱氧核苷酸转移酶介导的dUTP缺口末端标记测定法染色观察大鼠肾脏组织病理损伤,酶联免疫吸附实验检测中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase-associated lipocalin,NGAL)、IL-1β、IL-8、IL-6、TNF-α血清浓度,肌酐(Creatinine,Cre)和血尿素氮(blood urea nitrogen,BUN)试剂盒检测Cre和BUN血清浓度。Western blot和免疫荧光染色检测Wnt1、GSK3β和β-catenin的表达及荧光强度。 结果 10 mg/kg和15 mg/kg的Tan Ⅰ可明显减轻SA-AKI大鼠肾脏损伤(P < 0.05),抑制SA-AKI标志物NGAL、Cre和BUN和炎性细胞因子水平(P < 0.05),减少细胞凋亡,抑制Wnt1、GSK3β并促进β-catenin表达(P < 0.05)。5 mg/kg Tan Ⅰ对大鼠SA-AKI具有一定保护作用,但与Sham组比较,无统计学差异(P > 0.05)。SS处理可减弱CLP诱导的大鼠肾损伤和炎性细胞因子的产生(P < 0.05),LG处理进一步加剧了CLP诱导的大鼠肾损伤(P < 0.05)。Tan Ⅰ可逆转LG对SA-AKI大鼠肾损伤的促进作用(P < 0.05)。 结论 Tan Ⅰ通过抑制Wnt/β-catenin信号通路,对CLP诱导的大鼠SA-AKI具有保护作用。 -
关键词:
- 脓毒症相关急性肾损伤 /
- 丹参酮Ⅰ /
- Wnt信号通路 /
- 肾功能 /
- 炎性细胞因子
Abstract:Objective To investigate the effect of Tan Ⅰ on SA-AKI in rats by mediating Wnt/β-catenin signaling pathway. Methods Sprague-Dawley rats were randomly divided into the following groups (n = 8 per group, including 2 reserve animals per group): Sham, SA-AKI, SA-AKI + 5 mg/kg Tan I, SA-AKI + 10 mg/kg Tan I, SA-AKI + 15 mg/kg Tan I (SA-AKI+Tan I), SA-AKI + salinomycin sodium (SS, Wnt signal inhibitor, SA-AKI + SS), SA-AKI + SS + Tan I, SA-AKI + laduviglusib (LG, Wnt signal activator, SA-AKI + LG), and SA-AKI + LG + Tan I. Rat SA-AKI model was induced by cecal ligation and puncture (CLP), with Tan I, SS, and LG administered via intraperitoneal injection. Hematoxylin-eosin and TUNEL staining were used to observe renal tissue pathological damage. Enzyme-linked immunosorbent assay was used to detect serum concentrations of neutrophil gelatinase-associated lipocalin (NGAL), IL-1β, IL-8, IL-6, and TNF-α. Creatinine (Cre) and blood urea nitrogen (BUN) kit were used to detect serum Cre and BUN concentrations. Western blot and immunofluorescence staining were used to detect the expression and fluorescence intensity of Wnt1, GSK3β, and β-catenin. Results Administration of Tan I at doses of 10 mg/kg and 15 mg/kg significantly attenuated renal injury in rats with SA-AKI (P < 0.05), suppressed the levels of SA-AKI biomarkers NGAL, Cre, and BUN and pro-inflammatory cytokines (P < 0.05), reduced apoptosis, and downregulated Wnt1 and GSK3β while upregulating β-catenin expression (P < 0.05). Although Tan I at 5 mg/kg exhibited a modest protective effect against SA-AKI in rats, no statistically significant difference was observed compared to the sham group (P > 0.05). SS weakened CLP-induced kidney injury and the production of inflammatory cytokines in rats (P < 0.05), and LG further aggravated CLP-induced kidney injury in rats (P < 0.05). Tan Ⅰ reversed the promoting effect of LG on kidney injury in SA-AKI rats (P < 0.05). Conclusion Tan Ⅰ provides a protective effect on CLP-induced SA-AKI rat by inhibiting Wnt/β-catenin signaling pathway. -
图 2 Tan Ⅰ抑制Wnt/β-catenin信号通路蛋白表达
A~B:Western blot检测5 mg/kg、10 mg/kg和15 mg/kg Tan Ⅰ对Wnt1、GSK3β和β-catenin蛋白表达的作用;C:5 mg/kg、10 mg/kg和15 mg/kg Tan Ⅰ处理后Wnt1、GSK3β和β-catenin免疫荧光染色结果(40×);*P < 0.05;**P < 0.01;***P < 0.001。
Figure 2. Tan Ⅰ represses the proteins expression of Wnt/β-catenin signalling pathway
-
[1] Xu X,Nie S,Liu Z,et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults[J]. Clin J Am Soc Nephrol,2015,10(9):1510-1518. doi: 10.2215/CJN.02140215 [2] Chen S,Li S,Kuang C,et al. Aspirin reduces the mortality risk of sepsis-associated acute kidney injury: An observational study using the MIMIC IV database[J]. Front Pharmacol,2023,14:1186384. doi: 10.3389/fphar.2023.1186384 [3] Kounatidis D,Vallianou N G,Psallida S,et al. Sepsis-associated acute kidney injury: Where are we now?[J]. Medicina (Kaunas),2024,60(3):434. doi: 10.3390/medicina60030434 [4] Huang Y,Yu S H,Zhen W X,et al. Tanshinone I,a new EZH2 inhibitor restricts normal and malignant hematopoiesis through upregulation of MMP9 and ABCG2[J]. Theranostics,2021,11(14):6891-6904. doi: 10.7150/thno.53170 [5] Zheng L,Zhang Y,Liu G,et al. Tanshinone I regulates autophagic signaling via the activation of AMP-activated protein kinase in cancer cells[J]. Anticancer Drugs,2020,31(6):601-608. doi: 10.1097/CAD.0000000000000908 [6] Zhao J,Liu H,Hong Z,et al. Tanshinone I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC[J]. Mol Med,2023,29(1):84. doi: 10.1186/s10020-023-00671-0 [7] Sharma A,Yang W L,Ochani M,et al. Mitigation of sepsis-induced inflammatory responses and organ injury through targeting Wnt/β-catenin signaling[J]. Sci Rep,2017,7(1):9235. doi: 10.1038/s41598-017-08711-6 [8] Zeng J Y,Wang Y,Hong F Y,et al. Tanshinone IIA is superior to paricalcitol in ameliorating tubulointerstitial fibrosis through regulation of VDR/Wnt/β-catenin pathway in rats with diabetic nephropathy[J]. Naunyn Schmiedebergs Arch Pharmacol,2024,397(6):3959-3977. doi: 10.1007/s00210-023-02853-3 [9] Bellomo R,Kellum J A,Ronco C,et al. Acute kidney injury in sepsis[J]. Intensive Care Med,2017,43(6):816-828. doi: 10.1007/s00134-017-4755-7 [10] Wu M,Yang F,Huang D,et al. Tanshinone I attenuates fibrosis in fibrotic kidneys through down-regulation of inhibin beta-A[J]. BMC Complement Med Ther,2022,22(1):110. doi: 10.1186/s12906-022-03592-3 [11] Zhou J,Jiang Y Y,Chen H,et al. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway[J]. Cell Prolif,2020,53(2):e12739. doi: 10.1111/cpr.12739 [12] Gao M,Ou H,Jiang Y,et al. Tanshinone IIA attenuates sepsis-induced immunosuppression and improves survival rate in a mice peritonitis model[J]. Biomed Pharmacother,2019,112:108609. doi: 10.1016/j.biopha.2019.108609 [13] Liu J,Wu Y H,Zhang Z L,et al. Tanshinone IIA improves sepsis-induced acute lung injury through the ROCK2/NF-κB axis[J]. Toxicol Appl Pharmacol,2022,446:116021. doi: 10.1016/j.taap.2022.116021 [14] Huang L,Zheng M,Zhou Y,et al. Tanshinone IIA attenuates cardiac dysfunction in endotoxin-induced septic mice via inhibition of NADPH oxidase 2-related signaling pathway[J]. Int Immunopharmacol,2015,28(1):444-449. doi: 10.1016/j.intimp.2015.07.004 [15] Song Y Q,Lin W J,Hu H J,et al. Sodium tanshinone IIA sulfonate attenuates sepsis-associated brain injury via inhibiting NOD-like receptor 3/caspase-1/gasdermin D-mediated pyroptosis[J]. Int Immunopharmacol,2023,118:110111. doi: 10.1016/j.intimp.2023.110111 [16] Zhu W,Lu Q,Wan L,et al. Sodium tanshinone II A sulfonate ameliorates microcirculatory disturbance of small intestine by attenuating the production of reactie oxygen species in rats with sepsis[J]. Chin J Integr Med,2016,22(10):745-751. doi: 10.1007/s11655-015-2083-8 [17] Meng Z J,Wang C,Meng L T,et al. Sodium tanshinone IIA sulfonate attenuates cardiac dysfunction and improves survival of rats with cecal ligation and puncture-induced sepsis[J]. Chin J Nat Med,2018,16(11):846-855. [18] Li Z Y,Huang G D,Chen L,et al. Tanshinone IIA induces apoptosis via inhibition of Wnt/β‑catenin/MGMT signaling in AtT‑20 cells[J]. Mol Med Rep,2017,16(5):5908-5914. doi: 10.3892/mmr.2017.7325 [19] Zeng J,Bao X. Tanshinone IIA attenuates high glucose-induced epithelial-to-mesenchymal transition in HK-2 cells through VDR/Wnt/β-catenin signaling pathway[J]. Folia Histochem Cytobiol,2021,59(4):259-270. doi: 10.5603/FHC.a2021.0025 [20] Valenta T,Hausmann G,Basler K. The many faces and functions of β-catenin[J]. Embo j,2012,31(12):2714-2736. doi: 10.1038/emboj.2012.150 [21] Ye J,Feng H,Peng Z. miR-23a-3p inhibits sepsis-induced kidney epithelial cell injury by suppressing Wnt/β-catenin signaling by targeting wnt5a[J]. Braz J Med Biol Res,2022,55:e11571. doi: 10.1590/1414-431x2021e11571 [22] Wu H,Wang J,Ma Z. Long noncoding RNA HOXA-AS2 mediates microRNA-106b-5p to repress sepsis-engendered acute kidney injury[J]. J Biochem Mol Toxicol,2020,34(4):e22453. doi: 10.1002/jbt.22453 [23] Sen P,Gupta K,Kumari A,et al. Wnt/β-Catenin antagonist pyrvinium exerts cardioprotective effects in polymicrobial sepsis model by attenuating calcium dyshomeostasis and mitochondrial dysfunction[J]. Cardiovasc Toxicol,2021,21(7):517-532. doi: 10.1007/s12012-021-09643-4 [24] Xie B,Wang M,Zhang X,et al. Gut-derived memory γδ T17 cells exacerbate sepsis-induced acute lung injury in mice[J]. Nat Commun,2024,15(1):6737. doi: 10.1038/s41467-024-51209-9 [25] Li Z,Shan X,Yang G,et al. LGK974 suppresses the formation of deep vein thrombosis in mice with sepsis[J]. Int Immunopharmacol,2024,127:111458. doi: 10.1016/j.intimp.2023.111458 [26] Li B,Xia Y,Mei S,et al. Histone H3K27 methyltransferase EZH2 regulates apoptotic and inflammatory responses in sepsis-induced AKI[J]. Theranostics,2023,13(6):1860-1875. doi: 10.7150/thno.83353 [27] Huang X,Wei P,Fang C,et al. Compromised endothelial Wnt/β-catenin signaling mediates the blood-brain barrier disruption and leads to neuroinflammation in endotoxemia[J]. J Neuroinflammation,2024,21(1):265. doi: 10.1186/s12974-024-03261-x [28] Chen M,Huang S,Weng S,et al. Songorine ameliorates LPS-induced sepsis cardiomyopathy by Wnt/β-catenin signaling pathway-mediated mitochondrial biosynthesis[J]. Naunyn Schmiedebergs Arch Pharmacol,2024,397(7):4713-4725. doi: 10.1007/s00210-023-02897-5 -
下载: