留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丹参酮Ⅰ调控Wnt/β-catenin信号通路缓解大鼠脓毒症相关急性肾损伤

任靖宇 蒋兴鹏 李正超 文世媛 朱砂 茹金

任靖宇, 蒋兴鹏, 李正超, 文世媛, 朱砂, 茹金. 丹参酮Ⅰ调控Wnt/β-catenin信号通路缓解大鼠脓毒症相关急性肾损伤[J]. 昆明医科大学学报, 2025, 46(6): 29-37. doi: 10.12259/j.issn.2095-610X.S20250604
引用本文: 任靖宇, 蒋兴鹏, 李正超, 文世媛, 朱砂, 茹金. 丹参酮Ⅰ调控Wnt/β-catenin信号通路缓解大鼠脓毒症相关急性肾损伤[J]. 昆明医科大学学报, 2025, 46(6): 29-37. doi: 10.12259/j.issn.2095-610X.S20250604
Jingyu REN, Xingpeng JIANG, Zhengchao LI, Shiyuan WEN, Sha ZHU, Jin RU. Tanshinone Ⅰ Alleviates Sepsis Associated Acute Kidney Injury in Rats by Regulating Wnt/β-catenin Signaling Pathway[J]. Journal of Kunming Medical University, 2025, 46(6): 29-37. doi: 10.12259/j.issn.2095-610X.S20250604
Citation: Jingyu REN, Xingpeng JIANG, Zhengchao LI, Shiyuan WEN, Sha ZHU, Jin RU. Tanshinone Ⅰ Alleviates Sepsis Associated Acute Kidney Injury in Rats by Regulating Wnt/β-catenin Signaling Pathway[J]. Journal of Kunming Medical University, 2025, 46(6): 29-37. doi: 10.12259/j.issn.2095-610X.S20250604

丹参酮Ⅰ调控Wnt/β-catenin信号通路缓解大鼠脓毒症相关急性肾损伤

doi: 10.12259/j.issn.2095-610X.S20250604
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金(202101AY070001-238);云南省呼吸系统疾病临床医学中心平台开放课题基金(2022LCZXKF-HX07)
详细信息
    作者简介:

    任靖宇(1977~),男,云南楚雄人,医学硕士,副主任医师,主要从事危重症救治研究工作

    通讯作者:

    茹金,E-mail:rujin227@163.com

  • 中图分类号: R692.5

Tanshinone Ⅰ Alleviates Sepsis Associated Acute Kidney Injury in Rats by Regulating Wnt/β-catenin Signaling Pathway

  • 摘要:   目的  探讨丹参酮Ⅰ(tanshinone Ⅰ,Tan Ⅰ)调节Wnt/β-catenin信号通路对脓毒症相关急性肾损伤(sepsis associated acute kidney injury,SA-AKI)大鼠的作用。  方法  将Sprague Dawley大鼠随机分为Sham、SA-AKI、SA-AKI+5 mg/kg Tan Ⅰ、SA-AKI+10 mg/kg Tan Ⅰ、SA-AKI+15 mg/kg Tan Ⅰ(SA-AKI+Tan Ⅰ)、SA-AKI+盐霉素钠(Wnt信号抑制剂,salinomycin sodium,SS,SA-AKI+SS组)、SA-AKI+SS+Tan Ⅰ、SA-AKI+Wnt信号激活剂(laduviglusib,LG,SA-AKI+LG组)、SA-AKI+LG+Tan Ⅰ,每组8只(含每组2只备用)。利用盲肠结扎穿孔术(cecal ligation and puncture,CLP)诱导大鼠SA-AKI模型,Tan Ⅰ、SS和LG经腹腔注射至大鼠。苏木精-伊红和末端脱氧核苷酸转移酶介导的dUTP缺口末端标记测定法染色观察大鼠肾脏组织病理损伤,酶联免疫吸附实验检测中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase-associated lipocalin,NGAL)、IL-1β、IL-8、IL-6、TNF-α血清浓度,肌酐(Creatinine,Cre)和血尿素氮(blood urea nitrogen,BUN)试剂盒检测Cre和BUN血清浓度。Western blot和免疫荧光染色检测Wnt1、GSK3β和β-catenin的表达及荧光强度。  结果  10 mg/kg和15 mg/kg的Tan Ⅰ可明显减轻SA-AKI大鼠肾脏损伤(P < 0.05),抑制SA-AKI标志物NGAL、Cre和BUN和炎性细胞因子水平(P < 0.05),减少细胞凋亡,抑制Wnt1、GSK3β并促进β-catenin表达(P < 0.05)。5 mg/kg Tan Ⅰ对大鼠SA-AKI具有一定保护作用,但与Sham组比较,无统计学差异(P > 0.05)。SS处理可减弱CLP诱导的大鼠肾损伤和炎性细胞因子的产生(P < 0.05),LG处理进一步加剧了CLP诱导的大鼠肾损伤(P < 0.05)。Tan Ⅰ可逆转LG对SA-AKI大鼠肾损伤的促进作用(P < 0.05)。  结论  Tan Ⅰ通过抑制Wnt/β-catenin信号通路,对CLP诱导的大鼠SA-AKI具有保护作用。
  • 图  1  Tan Ⅰ减轻SA-AKI大鼠肾损伤

    A:大鼠肾组织H&E染色(20×);B:肾组织损伤评分;C~D:试剂盒检测大鼠血清中血Cre和BUN的含量;E~I:ELISA检测大鼠血清中NGAL、IL-1β、IL-8、IL-6、TNF-α浓度;J:大鼠肾组织TUNEL染色(20×);*P < 0.05;**P < 0.01;***P < 0.001。

    Figure  1.  Tan Ⅰ attenuates renal injury in SA-AKI rats

    图  2  Tan Ⅰ抑制Wnt/β-catenin信号通路蛋白表达

    A~B:Western blot检测5 mg/kg、10 mg/kg和15 mg/kg Tan Ⅰ对Wnt1、GSK3β和β-catenin蛋白表达的作用;C:5 mg/kg、10 mg/kg和15 mg/kg Tan Ⅰ处理后Wnt1、GSK3β和β-catenin免疫荧光染色结果(40×);*P < 0.05;**P < 0.01;***P < 0.001。

    Figure  2.  Tan Ⅰ represses the proteins expression of Wnt/β-catenin signalling pathway

    图  3  Tan Ⅰ抑制Wnt/β-catenin信号通路蛋白表达

    A~B:Western blot检测Wnt1、GSK3β和β-catenin蛋白表达;C:Wnt1、GSK3β和β-catenin免疫荧光染色结果(40×);*P < 0.05;**P < 0.01;***P < 0.001。

    Figure  3.  Tan Ⅰ represses the expression of Wnt/β-catenin signalling pathway

    图  4  Tan Ⅰ通过Wnt/β-catenin信号通路缓解大鼠SA-AKI

    A:大鼠肾组织H&E染色(20×);B:肾脏组织损伤评分;C~D:生化试剂盒检测大鼠血清中血Cre和BUN的含量;E~I:ELISA试剂盒检测大鼠血清中NGAL、IL-1β、IL-8、IL-6、TNF-α浓度;J:大鼠肾组织TUNEL染色(20×);*P < 0.05;**P < 0.01;***P < 0.001。

    Figure  4.  Tan Ⅰ alleviates SA-AKI in rats by regulating Wnt/β-catenin signalling pathway

  • [1] Xu X,Nie S,Liu Z,et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults[J]. Clin J Am Soc Nephrol,2015,10(9):1510-1518. doi: 10.2215/CJN.02140215
    [2] Chen S,Li S,Kuang C,et al. Aspirin reduces the mortality risk of sepsis-associated acute kidney injury: An observational study using the MIMIC IV database[J]. Front Pharmacol,2023,14:1186384. doi: 10.3389/fphar.2023.1186384
    [3] Kounatidis D,Vallianou N G,Psallida S,et al. Sepsis-associated acute kidney injury: Where are we now?[J]. Medicina (Kaunas),2024,60(3):434. doi: 10.3390/medicina60030434
    [4] Huang Y,Yu S H,Zhen W X,et al. Tanshinone I,a new EZH2 inhibitor restricts normal and malignant hematopoiesis through upregulation of MMP9 and ABCG2[J]. Theranostics,2021,11(14):6891-6904. doi: 10.7150/thno.53170
    [5] Zheng L,Zhang Y,Liu G,et al. Tanshinone I regulates autophagic signaling via the activation of AMP-activated protein kinase in cancer cells[J]. Anticancer Drugs,2020,31(6):601-608. doi: 10.1097/CAD.0000000000000908
    [6] Zhao J,Liu H,Hong Z,et al. Tanshinone I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC[J]. Mol Med,2023,29(1):84. doi: 10.1186/s10020-023-00671-0
    [7] Sharma A,Yang W L,Ochani M,et al. Mitigation of sepsis-induced inflammatory responses and organ injury through targeting Wnt/β-catenin signaling[J]. Sci Rep,2017,7(1):9235. doi: 10.1038/s41598-017-08711-6
    [8] Zeng J Y,Wang Y,Hong F Y,et al. Tanshinone IIA is superior to paricalcitol in ameliorating tubulointerstitial fibrosis through regulation of VDR/Wnt/β-catenin pathway in rats with diabetic nephropathy[J]. Naunyn Schmiedebergs Arch Pharmacol,2024,397(6):3959-3977. doi: 10.1007/s00210-023-02853-3
    [9] Bellomo R,Kellum J A,Ronco C,et al. Acute kidney injury in sepsis[J]. Intensive Care Med,2017,43(6):816-828. doi: 10.1007/s00134-017-4755-7
    [10] Wu M,Yang F,Huang D,et al. Tanshinone I attenuates fibrosis in fibrotic kidneys through down-regulation of inhibin beta-A[J]. BMC Complement Med Ther,2022,22(1):110. doi: 10.1186/s12906-022-03592-3
    [11] Zhou J,Jiang Y Y,Chen H,et al. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway[J]. Cell Prolif,2020,53(2):e12739. doi: 10.1111/cpr.12739
    [12] Gao M,Ou H,Jiang Y,et al. Tanshinone IIA attenuates sepsis-induced immunosuppression and improves survival rate in a mice peritonitis model[J]. Biomed Pharmacother,2019,112:108609. doi: 10.1016/j.biopha.2019.108609
    [13] Liu J,Wu Y H,Zhang Z L,et al. Tanshinone IIA improves sepsis-induced acute lung injury through the ROCK2/NF-κB axis[J]. Toxicol Appl Pharmacol,2022,446:116021. doi: 10.1016/j.taap.2022.116021
    [14] Huang L,Zheng M,Zhou Y,et al. Tanshinone IIA attenuates cardiac dysfunction in endotoxin-induced septic mice via inhibition of NADPH oxidase 2-related signaling pathway[J]. Int Immunopharmacol,2015,28(1):444-449. doi: 10.1016/j.intimp.2015.07.004
    [15] Song Y Q,Lin W J,Hu H J,et al. Sodium tanshinone IIA sulfonate attenuates sepsis-associated brain injury via inhibiting NOD-like receptor 3/caspase-1/gasdermin D-mediated pyroptosis[J]. Int Immunopharmacol,2023,118:110111. doi: 10.1016/j.intimp.2023.110111
    [16] Zhu W,Lu Q,Wan L,et al. Sodium tanshinone II A sulfonate ameliorates microcirculatory disturbance of small intestine by attenuating the production of reactie oxygen species in rats with sepsis[J]. Chin J Integr Med,2016,22(10):745-751. doi: 10.1007/s11655-015-2083-8
    [17] Meng Z J,Wang C,Meng L T,et al. Sodium tanshinone IIA sulfonate attenuates cardiac dysfunction and improves survival of rats with cecal ligation and puncture-induced sepsis[J]. Chin J Nat Med,2018,16(11):846-855.
    [18] Li Z Y,Huang G D,Chen L,et al. Tanshinone IIA induces apoptosis via inhibition of Wnt/β‑catenin/MGMT signaling in AtT‑20 cells[J]. Mol Med Rep,2017,16(5):5908-5914. doi: 10.3892/mmr.2017.7325
    [19] Zeng J,Bao X. Tanshinone IIA attenuates high glucose-induced epithelial-to-mesenchymal transition in HK-2 cells through VDR/Wnt/β-catenin signaling pathway[J]. Folia Histochem Cytobiol,2021,59(4):259-270. doi: 10.5603/FHC.a2021.0025
    [20] Valenta T,Hausmann G,Basler K. The many faces and functions of β-catenin[J]. Embo j,2012,31(12):2714-2736. doi: 10.1038/emboj.2012.150
    [21] Ye J,Feng H,Peng Z. miR-23a-3p inhibits sepsis-induced kidney epithelial cell injury by suppressing Wnt/β-catenin signaling by targeting wnt5a[J]. Braz J Med Biol Res,2022,55:e11571. doi: 10.1590/1414-431x2021e11571
    [22] Wu H,Wang J,Ma Z. Long noncoding RNA HOXA-AS2 mediates microRNA-106b-5p to repress sepsis-engendered acute kidney injury[J]. J Biochem Mol Toxicol,2020,34(4):e22453. doi: 10.1002/jbt.22453
    [23] Sen P,Gupta K,Kumari A,et al. Wnt/β-Catenin antagonist pyrvinium exerts cardioprotective effects in polymicrobial sepsis model by attenuating calcium dyshomeostasis and mitochondrial dysfunction[J]. Cardiovasc Toxicol,2021,21(7):517-532. doi: 10.1007/s12012-021-09643-4
    [24] Xie B,Wang M,Zhang X,et al. Gut-derived memory γδ T17 cells exacerbate sepsis-induced acute lung injury in mice[J]. Nat Commun,2024,15(1):6737. doi: 10.1038/s41467-024-51209-9
    [25] Li Z,Shan X,Yang G,et al. LGK974 suppresses the formation of deep vein thrombosis in mice with sepsis[J]. Int Immunopharmacol,2024,127:111458. doi: 10.1016/j.intimp.2023.111458
    [26] Li B,Xia Y,Mei S,et al. Histone H3K27 methyltransferase EZH2 regulates apoptotic and inflammatory responses in sepsis-induced AKI[J]. Theranostics,2023,13(6):1860-1875. doi: 10.7150/thno.83353
    [27] Huang X,Wei P,Fang C,et al. Compromised endothelial Wnt/β-catenin signaling mediates the blood-brain barrier disruption and leads to neuroinflammation in endotoxemia[J]. J Neuroinflammation,2024,21(1):265. doi: 10.1186/s12974-024-03261-x
    [28] Chen M,Huang S,Weng S,et al. Songorine ameliorates LPS-induced sepsis cardiomyopathy by Wnt/β-catenin signaling pathway-mediated mitochondrial biosynthesis[J]. Naunyn Schmiedebergs Arch Pharmacol,2024,397(7):4713-4725. doi: 10.1007/s00210-023-02897-5
  • [1] 杨少华, 许永平, 赵棁预, 方兴保, 阮振兴.  EIF5A1通过Wnt/β-Catenin信号通路促进肝内胆管癌细胞增殖和迁移侵袭, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250706
    [2] 李芬, 赵婕, 张海溪, 张琳, 辜学忠.  噬血细胞综合征患者的铁代谢指标、细胞因子和肝功能的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241115
    [3] 孟德欣, 周晓萍, 孟瑚, 何荟, 熊玲俐, 莫小米.  血清RANKL、OPG、FGF23与慢性肾脏病患者肾功能及钙磷代谢指标的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230213
    [4] 冯毅, 王小峰, 白西民, 姚胜, 党俊涛, 赵云洁, 蔡冰.  miR-149-5p通过MSH5/Wnt信号通路调控胶质瘤细胞恶性生物学行为, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230823
    [5] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  M2巨噬细胞来源的外泌体miR-1246调控胃癌细胞的生长和侵袭, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230724
    [6] 吴飞鹏, 高勇强, 洪丽菊, 吴琪燕, 程绘珺, 李娇霞, 周友俊, 郑贤东.  分化型甲状腺癌碘治疗前停药后短期甲减状态下甲状腺功能与肾功能的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220128
    [7] 杨金荣, 武坤, 聂波, 贺振新, 杨雨宇, 孙杰, 曾云.  成人HPS临床特征及多种细胞因子水平与预后的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211220
    [8] 王勤志, 李名武, 王锋.  ShRNA-COX-2基因沉默对类风湿关节炎滑膜细胞的影响, 昆明医科大学学报.
    [9] 张乐, 彭静, 夏加伟, 岳云璇.  血液净化技术救治艾滋病并急性肾功能衰竭的疗效, 昆明医科大学学报.
    [10] 屈晶磊, 杨远征.  换血对高胆红素血症患儿肾功能、炎症因子及血液内环境的影响, 昆明医科大学学报.
    [11] 聂祖庆, 张琼, 王鹏飞, 杨丽娟, 杨雯虹, 王若花, 马林昆, 杨明.  外伤性视神经损伤后大鼠视网膜中细胞因子的变化和来源, 昆明医科大学学报.
    [12] 侯峰强, 董山潮, 雷喜锋, 张伟.  紫杉醇对人胆管癌QBC939细胞wnt/β-catenin信号通路基因和蛋白表达的影响, 昆明医科大学学报.
    [13] 刘虎军, 高莉萍.  不同剂量盐酸氨溴索注射液治疗老年慢性阻塞性肺疾病急性加重期患者对炎性细胞因子的影响, 昆明医科大学学报.
    [14] 胡建鹏.  龙血素A对大鼠肝星状细胞增殖及Frizzled-4受体蛋白表达的影响, 昆明医科大学学报.
    [15] 李定彪.  阻断Wnt-1信号通路对云南肺癌细胞株的影响, 昆明医科大学学报.
    [16] 贾朋伟.  血清IGF-2及IGFBP-2与糖尿病肾病进展指标的相关性, 昆明医科大学学报.
    [17] 杨婧.  Th17细胞及相关细胞因子在原发性胆汁性肝硬化患者的表达, 昆明医科大学学报.
    [18] 胡江天.  机械力作用下细胞骨架及相关信号传导通路应答机制, 昆明医科大学学报.
    [19] 吴丽珍.  急性低温暴露对家兔心肝肾功能的影响, 昆明医科大学学报.
    [20] 龙奎.  丹参酮IIA磺酸钠对大鼠急性胰腺炎高迁移率族蛋白B1下调作用的研究, 昆明医科大学学报.
  • 加载中
图(4)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  110
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-25
  • 刊出日期:  2025-06-25

目录

    /

    返回文章
    返回