TP53 Promotes Pyroptosis and Inhibits Cell Invasion and Migration through the MMP1 Signaling Pathway in NIH-3T3 Cells
-
摘要:
目的 探究TP53通过MMP1/NLRP3信号通路调控胚胎成纤维细胞焦亡、侵袭、迁移的分子机制。 方法 对小鼠胚胎成纤维细胞(NIH-3T3)转染慢病毒,分为空白对照组(Control)、阴性对照组(Vector)、实验组(oeTP53、oeTP53+shNC、oeTP53+shMMP1)。采用CCK-8法检测细胞增殖及活力,流式细胞仪检测细胞凋亡情况,划痕及侵袭实验检测细胞迁移侵袭能力,采用免疫共沉淀(Co-IP)验证P53与MMP1蛋白相互作用,RT-qPCR检测TP53、Collagen Ⅰ、Collagen Ⅲ、α-SMA的mRNA表达水平,Westen bolt检测P53、Collagen Ⅰ、Collagen Ⅲ、α-SMA及焦亡相关蛋白的表达水平;透射电镜观察细胞焦亡小体的变化。 结果 与Control及Vector组比较,oeTP53组细胞的增殖活性降低(P < 0.01)、细胞凋亡率升高(P < 0.0001 )、侵袭(P <0.0001 )及迁移能力(P <0.0001 )降低;CollagenⅠ(P < 0.001)、CollagenⅢ(P < 0.01)、α-SMA(P < 0.01)蛋白表达降低,NLRP3 (P < 0.05)及cleaved-caspase-1表达升高(P < 0.01),且焦亡小体大量出现。对oeTP53组中MMP1的蛋白水平检测发现其升高(P < 0.05),Co-IP表明p53蛋白和MMP1存在相互作用。与oeTP53组比较,oeTP53+shMMP1组中细胞活力升高(P < 0.001),细胞凋亡率降低(P < 0.01),细胞迁移侵袭能力升高(P < 0.01);瘢痕形成相关蛋白CollagenⅠ(P < 0.01)、CollagenⅢ(P < 0.001)、α-SMA(P < 0.05)蛋白表达升高,细胞焦亡相关蛋白NLRP3(P < 0.01)及cleaved-caspase-1(P < 0.001)的表达降低,且焦亡小体数量减少。结论 过表达TP53能够抑制小鼠胚胎成纤维细胞生长增殖、迁移、侵袭能力,降低瘢痕形成相关蛋白的表达,促进细胞焦亡,其作用机制可能与MMP1/NLRP3通路有关。 Abstract:Objective To explore the molecular mechanism by which TP53 regulating pyroptosis, invasion and migration of embryonic fibroblasts through MMP1/NLRP3 signaling pathway. Methods NIH-3T3 murine embryonic fibroblasts were transfected with lentivirus and grouped as Control, Vector, oeTP53, oeTP53+shNC, and oeTP53+shMMP1. Cell proliferation and viability were assessed via CCK-8 assay, apoptosis by flow cytometry, and migration/invasion through scratch and invasion experiments. Protein interaction between P53 and MMP1 was confirmed by Co-immunoprecipitation. RT-qPCR evaluated mRNA expression of TP53, Collagen I, Collagen III, and α-SMA, while Western blot analyzed protein levels of these markers and pyroptosis-related proteins. Transmission electron microscopy was employed to examine cellular pyroptotic body modifications. Results Compared with Control and Vector groups, the oeTP53 group showed reduced cell proliferation activity (P < 0.01), increased cell apoptosis rate (P < 0.0001 ), decreased invasion (P <0.0001 ) and migration capabilities (P <0.0001 ); reduced Collagen I (P < 0.001), Collagen III (P < 0.01), and α-SMA (P < 0.01) protein expressions; increased NLRP3 (P < 0.05) and cleaved-caspase-1 expressions (P < 0.01); and numerous pyroptotic bodies. MMP1 protein levels were found to be elevated in the oeTP53 group (P < 0.05), and Co-IP demonstrated an interaction between p53 and MMP1 proteins. Compared with oeTP53 group, the oeTP53+shMMP1 group showed increased cell viability (P < 0.001), decreased cell apoptosis rate (P < 0.01), and increased cell migration (P < 0.01) and invasion capabilities (P < 0.01), increased scar formation-related protein expressions of Collagen I (P < 0.01), Collagen III (P < 0.001), and α-SMA (P < 0.05); decreased pyroptosis-related protein expressions of NLRP3 (P < 0.01) and cleaved-caspase-1 (P < 0.001); and reduced pyroptotic bodies.Conclusion Overexpression of TP53 can inhibit mouse embryonic fibroblast proliferation, migration, and invasion, reduce scar formation-related protein expressions, and promote cell pyroptosis, with its mechanism potentially related to the MMP1/NLRP3 pathway. -
Key words:
- TP53 /
- MMP1 /
- Post-burn scar formation /
- Scar formation /
- Pyroptosis
-
表 1 sh RNA序列表
Table 1. sh RNA sequences
序列编号 引物序列(5'-3') shMMP1#1 CACATGACTTTCCTGGAAT shMMP1#2 TTGTGGCTTATGGATTCAT shMMP1#3 AAGATGAAAGGTGGACCAA shNC TTCTCCGAACGTGTCACGT 表 2 荧光定量PCR扩增引物列表
Table 2. Nucleotide sequences of the primers used for real-time quantitative PCR
引物名称 引物序列(5'-3') MMP1 forward GGACACCAACTATTGCTTCAG MMP1 reverse ATGTCCTTGGGGTATCCGTGTAG β-actin forward CCTAAGGCCAACCGTGAAAAG β-actin reverse AGGCATACAGGGACAGCACAG 表 3 Western blot中所用一抗
Table 3. Primary antibodies used in Western blot
一抗 稀释比例 种属 MMP1 1∶ 1000 Rabbit Collagen Ⅰ 1∶ 1000 Rabbit Collagen Ⅲ 1∶ 1000 Rabbit α-SMA 1∶ 1000 Rabbit β-actin 1∶ 1000 Mouse NLRP3 1∶ 1000 Rabbit pro-caspase-1 1∶ 5000 Rabbit cleaved-caspase-1 1∶ 1000 Rabbit -
[1] Ault P,Plaza A,Paratz J. Scar massage for hypertrophic burns scarring-A systematic review[J]. Burns,2018,44(1):24-38. doi: 10.1016/j.burns.2017.05.006 [2] Moortgat P,Meirte J,Maertens K,et al. Can a cohesive silicone bandage outperform an adhesive silicone gel sheet in the treatment of scars? A randomized comparative trial[J]. Plastic and Reconstructive Surgery,2019,143(3):902-911. doi: 10.1097/PRS.0000000000005369 [3] Nunez J H,Strong A L,Comish P,et al. A review of laser therapies for the treatment of scarring and vascular anomalies[J]. Advances in Wound Care,2023,12(2):68-84. doi: 10.1089/wound.2021.0045 [4] Bharadia S K,Burnett L,Gabriel V. Hypertrophic scar[J]. Physical Medicine and Rehabilitation Clinics,2023,34(4):783-798. [5] Liang Y,Zhou R,Fu X,et al. HOXA5 counteracts the function of pathological scar-derived fibroblasts by partially activating p53 signaling[J]. Cell Death & Disease,2021,12(1):40. [6] Wu Y,Pi D,Zhou S,et al. Ginsenoside Rh3 induces pyroptosis and ferroptosis through the Stat3/p53/NRF2 axis in colorectal cancer cells[J]. Acta Biochimica et Biophysica Sinica,2023,55(4):587-600. doi: 10.3724/abbs.2023068 [7] Xie J,Xiang Z,Kai Z,et al. Construction and validation of the diagnostic model of keloid based on weighted gene co-expression network analysis (WGCNA) and differential expression analysis[J]. Journal of Plastic Surgery and Hand Surgery,2023,57(1-6):163-171. doi: 10.1080/2000656X.2021.2024557 [8] Liu Y,Su Z,Tavana O,et al. Understanding the complexity of p53 in a new era of tumor suppression[J]. Cancer Cell,2024,42(6):946-967. doi: 10.1016/j.ccell.2024.04.009 [9] Ladin D A,Hou Z,Patel D,et al. p53 and apoptosis alterations in keloids and keloid fibroblasts[J]. Wound Repair and Regeneration,1998,6(1):28-37. doi: 10.1046/j.1524-475X.1998.60106.x [10] Teofoli P,Barduagni S,Ribuffo M,et al. Expression of Bcl-2,p53,c-jun and c-fos protooncogenes in keloids and hypertrophic scars[J]. Journal of Dermatological Science,1999,22(1):31-37. doi: 10.1016/S0923-1811(99)00040-7 [11] Guo Q,Li Y,Chen Y,et al. β-Elemene induces apoptosis by activating the P53 pathway in human hypertrophic scar fibroblasts[J]. IUBMB Life,2022,74(6):508-518. doi: 10.1002/iub.2614 [12] Chen W,Yang K B,Zhang Y Z,et al. Synthetic lethality of combined ULK1 defection and p53 restoration induce pyroptosis by directly upregulating GSDME transcription and cleavage activation through ROS/NLRP3 signaling[J]. Journal of Experimental & Clinical Cancer Research,2024,43(1):248. [13] Zhuang C,Zhao J,Zhang S,et al. Escherichia coli infection mediates pyroptosis via activating p53-p21 pathway-regulated apoptosis and cell cycle arrest in bovine mammary epithelial cells[J]. Microbial Pathogenesis,2023,184:106338. doi: 10.1016/j.micpath.2023.106338 [14] Wang Y,Jing L,Lei X,et al. Umbilical cord mesenchymal stem cell-derived apoptotic extracellular vesicles ameliorate cutaneous wound healing in type 2 diabetic mice via macrophage pyroptosis inhibition[J]. Stem Cell Research & Therapy,2023,14(1):257. [15] 方晓. 白介素-1 alpha调控基质金属蛋白酶-1的表达在二氧化碳点阵激光治疗增生性瘢痕中的作用和机制研究 [D]. 合肥: 安徽医科大学,2022. [16] 张谊. miR-222调控MMP1干预增生性瘢痕成纤维细胞增殖的机制研究 [D]. 广州: 南方医科大学,2020. [17] 王琪. MMP-1、TIMP-1在唇裂术后上唇部皮肤增生性瘢痕和扁平性瘢痕组织中的表达 [D]. 青岛: 青岛大学,2017. [18] 王东明. 齐墩果酸对瘢痕疙瘩成纤维细胞的作用及其机制研究 [D]. 延吉: 延边大学,2019. [19] Keskin E S,Keskin E R,Öztürk M B,et al. The effect of MMP-1 on wound healing and scar formation[J]. Aesthetic Plastic Surgery,2021,45(6):2973-2979. doi: 10.1007/s00266-021-02369-2 [20] Zhang Y,Lin X,Zhang L,et al. MicroRNA-222 regulates the viability of fibroblasts in hypertrophic scars via matrix metalloproteinase 1[J]. Experimental and Therapeutic Medicine,2018,15(2):1803-1808. [21] Zhou P,Song N C,Zheng Z K,et al. MMP2 and MMP9 contribute to lung ischemia–reperfusion injury via promoting pyroptosis in mice[J]. BMC Pulmonary Medicine,2022,22(1):230. doi: 10.1186/s12890-022-02018-7 -
下载: