留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PI3K信号通路抑制剂在肺纤维化治疗中的研究进展

孙亚茹 盛光丽 张旋

孙亚茹, 盛光丽, 张旋. PI3K信号通路抑制剂在肺纤维化治疗中的研究进展[J]. 昆明医科大学学报, 2025, 46(6): 156-162. doi: 10.12259/j.issn.2095-610X.S20250620
引用本文: 孙亚茹, 盛光丽, 张旋. PI3K信号通路抑制剂在肺纤维化治疗中的研究进展[J]. 昆明医科大学学报, 2025, 46(6): 156-162. doi: 10.12259/j.issn.2095-610X.S20250620
Yaru SUN, Guangli SHENG, Xuan ZHANG. Research Progress of PI3K Signaling Pathway Inhibitors in the Treatment of Pulmonary Fibrosis[J]. Journal of Kunming Medical University, 2025, 46(6): 156-162. doi: 10.12259/j.issn.2095-610X.S20250620
Citation: Yaru SUN, Guangli SHENG, Xuan ZHANG. Research Progress of PI3K Signaling Pathway Inhibitors in the Treatment of Pulmonary Fibrosis[J]. Journal of Kunming Medical University, 2025, 46(6): 156-162. doi: 10.12259/j.issn.2095-610X.S20250620

PI3K信号通路抑制剂在肺纤维化治疗中的研究进展

doi: 10.12259/j.issn.2095-610X.S20250620
基金项目: 国家自然科学基金(82260727);云南省科技厅-昆明医科大学应用基础研究联合专项基金重点项目 (202101AY070001-010);昆明医科大学抗炎与免疫调节药物研究科技创新团队(CXTD2022003);昆明医科大学研究生创新基金(2024S023)
详细信息
    作者简介:

    孙亚茹(1999~),女,云南宣威人,在读硕士研究生,主要从事抗炎免疫药理研究工作

    通讯作者:

    张旋,E-mail:snoopykm@126.com

  • 中图分类号: R96

Research Progress of PI3K Signaling Pathway Inhibitors in the Treatment of Pulmonary Fibrosis

  • 摘要: 肺纤维化(pulmonary fibrosis,PF)是一种多种病因引起的慢性进行性肺部疾病,也是多种慢性炎症性肺疾病的共同结局。肺纤维化发病率逐年上升,死亡率高,严重威胁患者生命健康。尽管已有吡非尼酮和尼达尼布两个药物上市用于治疗肺纤维化,但其仅能减缓疾病的进展,不能逆转或阻止肺纤维化进程,而且长期服用会产生多种不良反应。因此,研发更具有靶向性、高效性以及患者耐受良好的肺纤维化新药非常必要。磷脂酰肌醇3-激酶(phosphatidylinositol-3-kinase,PI3K)信号通路在肺纤维化发病过程中发挥了重要作用,靶向抑制PI3K信号通路可能是肺纤维化新药研发的重要方向。目前,已有一些PI3K信号通路抑制剂表现出较好的肺纤维化防治作用,但大多数仍处于研究阶段。对PI3K信号通路在PF中的作用进行综述,进一步总结有前景的具有PF治疗效果的PI3K通路抑制剂,包括处于临床试验和临床前研究中的抑制剂,并探讨其作用机制及开发前景。
  • 图  1  PI3K信号通路调控PF的作用机制

    Figure  1.  Mechanism of PI3K signaling pathway in regulating pulmonary fibrosis

    图  2  PI3K通路抑制剂的化学结构

    A: 度维利塞结构式;B: 4-甲基喹唑啉衍生物结构式;C: 奥米帕利西结构式;D: 非美诺司他结构式;E: 沙帕色替结构式;F: 依维莫司;G: 维妥色替结构式;H: 雷帕霉素结构式。

    Figure  2.  Chemical structure of PI3K pathway inhibitors

    表  1  用于PF治疗的潜在PI3K通路抑制剂

    Table  1.   Potential PI3K pathway inhibitors for PF treatment

    药物 靶点 作用
    度维利塞[8] PI3K 缓解纤维化
    CL27c[30] PI3K 抗炎;缓解纤维化
    4-甲基喹唑啉衍生物[31] PI3K 抗炎;抗纤维化
    奥米帕利西[9] PI3K/mTOR 抗纤维化
    非美诺司他[32] PI3K/AKT 抑制TGF-β1诱导的
    肌成纤维细胞增殖
    沙帕色替[33] mTOR 抑制EMT;
    减少胶原沉积
    依维莫司[3435] mTOR 抗炎;抗纤维化
    维妥色替[36] mTOR 抗炎;抗纤维化
    雷帕霉素[37] mTOR 抗炎;抗纤维化
    下载: 导出CSV
  • [1] Koudstaal T,Funke-Chambour M,Kreuter M,et al. Pulmonary fibrosis: From pathogenesis to clinical decision-making[J]. Trends Mol Med,2023,29(12):1076-1087. doi: 10.1016/j.molmed.2023.08.010
    [2] Maher T M,Bendstrup E,Dron L,et al. Global incidence and prevalence of idiopathic pulmonary fibrosis[J]. Respir Res,2021,22(1):197. doi: 10.1186/s12931-021-01791-z
    [3] Lancaster L H,de Andrade J A,Zibrak J D,et al. Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis[J]. Eur Respir Rev,2017,26(146):170057. doi: 10.1183/16000617.0057-2017
    [4] Wind S,Schmid U,Freiwald M,et al. Clinical pharmacokinetics and pharmacodynamics of nintedanib[J]. Clin Pharmacokinet,2019,58(9):1131-1147. doi: 10.1007/s40262-019-00766-0
    [5] Capuzzimati M,Hough O,Liu M. Cell death and ischemia-reperfusion injury in lung transplantation[J]. J Heart Lung Transplant,2022,41(8):1003-1013. doi: 10.1016/j.healun.2022.05.013
    [6] Wang J,Hu K,Cai X,et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[J]. Acta Pharm Sin B,2022,12(1):18-32. doi: 10.1016/j.apsb.2021.07.023
    [7] Margaria J P,Moretta L,Alves-Filho J C,et al. PI3K signaling in mechanisms and treatments of pulmonary fibrosis following sepsis and acute lung injury[J]. Biomedicines,2022,10(4):756. doi: 10.3390/biomedicines10040756
    [8] Li X,Ma X,Miao Y,et al. Duvelisib attenuates bleomycin-induced pulmonary fibrosis via inhibiting the PI3K/Akt/mTOR signalling pathway[J]. J Cell Mol Med,2023,27(3):422-434. doi: 10.1111/jcmm.17665
    [9] Lukey P T,Harrison S A,Yang S,et al. A randomised,placebo-controlled study of omipalisib (PI3K/mTOR) in idiopathic pulmonary fibrosis[J]. Eur Respir J,2019,53(3):1801992. doi: 10.1183/13993003.01992-2018
    [10] Hettiarachchi S U,Li Y H,Roy J,et al. Targeted inhibition of PI3 kinase/mTOR specifically in fibrotic lung fibroblasts suppresses pulmonary fibrosis in experimental models[J]. Sci Transl Med,2020,12(567):eaay3724. doi: 10.1126/scitranslmed.aay3724
    [11] 朱武嫦,莫孝成,苏宏梅,等. 天然产物通过抑制PI3K信号通路抗肝纤维化的研究进展[J]. 中国药理学通报,2024,40(4):619-624. doi: 10.12360/CPB202208011
    [12] Zhu K,Wu Y,He P,et al. PI3K/AKT/mTOR-targeted therapy for breast cancer[J]. Cells,2022,11(16):2508. doi: 10.3390/cells11162508
    [13] Xu J,Li Y,Kang M,et al. Multiple forms of cell death: A focus on the PI3K/AKT pathway[J]. J Cell Physiol,2023,238(9):2026-2038. doi: 10.1002/jcp.31087
    [14] Tian L Y,Smit D J,Jücker M. The role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism[J]. Int J Mol Sci,2023,24(3):2652. doi: 10.3390/ijms24032652
    [15] Mei Q,Liu Z,Zuo H,et al. Idiopathic pulmonary fibrosis: An update on pathogenesis[J]. Front Pharmacol,2021,12:797292.
    [16] 罗成,叶远航,柯佳. 中药基于PI3K/AKT信号通路治疗肺纤维化的研究进展[J]. 沈阳药科大学学报,2025,42(4):311-321.
    [17] Zhang X L,Li B,Zhang X,et al. 18β-Glycyrrhetinic acid monoglucuronide (GAMG) alleviates single-walled carbon nanotubes (SWCNT)-induced lung inflammation and fibrosis in mice through PI3K/AKT/NF-κB signaling pathway[J]. Ecotoxicol Environ Saf,2022,242:113858. doi: 10.1016/j.ecoenv.2022.113858
    [18] Pan L,Cheng Y,Yang W,et al. Nintedanib ameliorates bleomycin-induced pulmonary fibrosis,inflammation,apoptosis,and oxidative stress by modulating PI3K/Akt/mTOR pathway in mice[J]. Inflammation,2023,46(4):1531-1542. doi: 10.1007/s10753-023-01825-2
    [19] Rahmani F,Asgharzadeh F,Avan A,et al. Rigosertib potently protects against colitis-associated intestinal fibrosis and inflammation by regulating PI3K/AKT and NF-κB signaling pathways[J]. Life Sci,2020,249:117470. doi: 10.1016/j.lfs.2020.117470
    [20] Huckestein B R,Zeng K,Westcott R,et al. Mammalian target of rapamycin complex 1 activation in macrophages contributes to persistent lung inflammation following respiratory tract viral infection[J]. Am J Pathol,2024,194(3):384-401. doi: 10.1016/j.ajpath.2023.11.017
    [21] Cadena-Suárez A R,Hernández-Hernández H A,Alvarado-Vásquez N,et al. Role of microRNAs in signaling pathways associated with the pathogenesis of idiopathic pulmonary fibrosis: A focus on epithelial-mesenchymal transition[J]. Int J Mol Sci,2022,23(12):6613. doi: 10.3390/ijms23126613
    [22] 朱雨晴,韩彦琪,韩梁,等. 中药通过抑制上皮间充质转化缓解肺纤维化的研究进展[J]. 中草药,2025,56(7):2559-2570.
    [23] Sun H N,Ren C X,Lee D H,et al. PRDX1 negatively regulates bleomycin-induced pulmonary fibrosis via inhibiting the epithelial-mesenchymal transition and lung fibroblast proliferation in vitro and in vivo[J]. Cell Mol Biol Lett,2023,28(1):48. doi: 10.1186/s11658-023-00460-x
    [24] Weng C M,Li Q,Chen K J,et al. Bleomycin induces epithelial-to-mesenchymal transition via bFGF/PI3K/ESRP1 signaling in pulmonary fibrosis[J]. Biosci Rep,2020,40(1):BSR20190756. doi: 10.1042/BSR20190756
    [25] Zhao H,Wang Y,Qiu T,et al. Autophagy,an important therapeutic target for pulmonary fibrosis diseases[J]. Clin Chim Acta,2020,502:139-147. doi: 10.1016/j.cca.2019.12.016
    [26] Peng J,Xiao X,Li S,et al. Aspirin alleviates pulmonary fibrosis through PI3K/AKT/mTOR-mediated autophagy pathway[J]. Exp Gerontol,2023,172:112085. doi: 10.1016/j.exger.2023.112085
    [27] Gong H,Lyu X,Liu Y,et al. Eupatilin inhibits pulmonary fibrosis by activating Sestrin2/PI3K/Akt/mTOR dependent autophagy pathway[J]. Life Sci,2023,334:122218. doi: 10.1016/j.lfs.2023.122218
    [28] Alsayed H A,Mohammad H M F,Khalil C M,et al. Autophagy modulation by irbesartan mitigates the pulmonary fibrotic alterations in bleomycin challenged rats: Comparative study with rapamycin[J]. Life Sci,2022,303:120662. doi: 10.1016/j.lfs.2022.120662
    [29] Li P,Hao X,Liu J,et al. miR-29a-3p regulates autophagy by targeting Akt3-mediated mTOR in SiO(2)-induced lung fibrosis[J]. Int J Mol Sci,2023,24(14):11440. doi: 10.3390/ijms241411440
    [30] Campa C C,Silva R L,Margaria J P,et al. Inhalation of the prodrug PI3K inhibitor CL27c improves lung function in asthma and fibrosis[J]. Nat Commun,2018,9(1):5232. doi: 10.1038/s41467-018-07698-6
    [31] Lin S,Jin J,Liu Y,et al. Discovery of 4-methylquinazoline based PI3K inhibitors for the potential treatment of idiopathic pulmonary fibrosis[J]. J Med Chem,2019,62(19):8873-8879. doi: 10.1021/acs.jmedchem.9b00969
    [32] Zhang W,Zhang Y,Tu T,et al. Dual inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 attenuates TGFβ1 induced lung and tumor fibrosis[J]. Cell Death Dis,2020,11(9):765. doi: 10.1038/s41419-020-02916-w
    [33] Xu Z,Lv Y,Kong D,et al. Sapanisertib attenuates pulmonary fibrosis by modulating Wnt5a/mTOR signalling[J]. Basic & Clinical Pharmacology & Toxicology,2023,133(3):226-236.
    [34] Pandolfi L,Marengo A,Japiassu K B,et al. Liposomes loaded with everolimus and coated with hyaluronic acid: A promising approach for lung fibrosis[J]. Int J Mol Sci,2021,22(14):7743. doi: 10.3390/ijms22147743
    [35] González-Sánchez E,Muñoz-Callejas A,Gómez-Román J,et al. Targeted nanotherapy with everolimus reduces inflammation and fibrosis in scleroderma-related interstitial lung disease developed by PSGL-1 deficient mice[J]. Br J Pharmacol,2022,179(18):4534-4548. doi: 10.1111/bph.15898
    [36] Shaikh T B,Chandra Y,Andugulapati S B,et al. Vistusertib improves pulmonary inflammation and fibrosis by modulating inflammatory/oxidative stress mediators via suppressing the mTOR signalling[J]. Inflamm Res,2024,73(7):1223-1237. doi: 10.1007/s00011-024-01894-5
    [37] Gomez-Manjarres D C,Axell-House D B,Patel D C,et al. Sirolimus suppresses circulating fibrocytes in idiopathic pulmonary fibrosis in a randomized controlled crossover trial[J]. JCI Insight,2023,8(8):e166901. doi: 10.1172/jci.insight.166901
    [38] He Y,Sun M M,Zhang G G,et al. Targeting PI3K/Akt signal transduction for cancer therapy[J]. Signal Transduct Target Ther,2021,6(1):425. doi: 10.1038/s41392-021-00828-5
    [39] Xie J,Xu K,Cai Z,et al. Efficacy and safety of first-line PD-L1/PD-1 inhibitors in limited-stage small cell lung cancer: A multicenter propensity score matched retrospective study[J]. Transl Lung Cancer Res,2024,13(3):526-539. doi: 10.21037/tlcr-24-24
    [40] Zhang L,Li Y,Hu C,et al. CDK6-PI3K signaling axis is an efficient target for attenuating ABCB1/P-gp mediated multi-drug resistance (MDR) in cancer cells[J]. Mol Cancer,2022,21(1):103. doi: 10.1186/s12943-022-01524-w
    [41] Huang T,Gao J,Cai L,et al. Treating pulmonary fibrosis with non-viral gene therapy: From bench to bedside[J]. Pharmaceutics,2022,14(4):813. doi: 10.3390/pharmaceutics14040813
  • [1] 张海行, 张敬云, 许丹丹, 曹路, 李晶晶.  miR-23通过调控PI3K/AKT/mTOR通路改善高血压性心力衰竭大鼠心肌血管生成的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20251105
    [2] 殷娥高, 雷雯, 杨眉, 刘永骏, 董昭兴.  抑制mTOR信号通路对博来霉素诱导肺纤维化的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250608
    [3] 李志霄, 郑霞, 李春玲, 刘庆圣, 张衡.  miR-205-5p靶向ERBB3调控PI3K/AKT/mTOR通路抑制血管生成在痔疮中的分子机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240604
    [4] 刘巍敏, 麻艺群, 田卓, 湯諹.  PI3K/Akt信号通路在增生性瘢痕中的调控作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230313
    [5] 刘聪, 吴贵帅, 普瑞, 李树德, 陶建平, 张忍发.  EGCG通过抑制TGF-β1/Smads信号通路改善高脂高糖饮食诱导的肥胖大鼠心肌纤维化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220506
    [6] 胡业刚, 张玮.  遗传性T淋巴细胞免疫缺陷在百草枯所致肺纤维化中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220402
    [7] 皮娜, 何琴, 钟燕, 靳璇, 朱振东, 张旋.  滇龙胆草对肺纤维化小鼠肺组织NF-κB和CTGF表达的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210402
    [8] 刘永骏, 王颖, 杨眉, 殷娥高, 李婷, 董昭兴.  氢气水调控自噬对百草枯中毒大鼠肺纤维化的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210918
    [9] 李婷, 邓树豪, 刘永骏, 董昭兴.  免疫因素在肺纤维化疾病中的研究进展, 昆明医科大学学报.
    [10] 邰文琳, 丁家伟, 郑博洋, 吴翰欣, 高凌, 张伟, 董昭兴, 徐益恒.  循环纤维细胞在ALI/ARDS中的预后作用, 昆明医科大学学报.
    [11] 王雅楠, 李治纲, 张超, 李树德, 李涛, 彭建志.  同型半胱氨酸通过促进脂肪组织TRB3表达抑制PI3K/Akt信号通路, 昆明医科大学学报.
    [12] 王应霞.  苦胆草对博来霉素致大鼠肺纤维化的防治作用, 昆明医科大学学报.
    [13] 雷雯.  IL-27调控TGF-β/Smad通路在博来霉素诱导肺纤维化中的作用, 昆明医科大学学报.
    [14] 宋新焕.  苯基咪唑类Pin1抑制剂的2D-QSAR研究, 昆明医科大学学报.
    [15] 贺小玉.  TGF-β1、CTGF对判断慢性阻塞性肺疾病合并纤维化的临床意义, 昆明医科大学学报.
    [16] 董昭兴.  IL-27在博来霉素诱导肺纤维化模型中的保护作用, 昆明医科大学学报.
    [17] 谷万港.  基于结构的CXCR4抑制剂的虚拟筛选, 昆明医科大学学报.
    [18] 谷万港.  基于结构的HIV-1蛋白酶抑制剂的虚拟筛选, 昆明医科大学学报.
    [19] 谷万港.  基于结构的HIV-1蛋白酶抑制剂的虚拟筛选, 昆明医科大学学报.
    [20] 张济周.  三七总皂苷对肺心病兔肺纤维化组织Cathepsin B表达的影响, 昆明医科大学学报.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  189
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-12
  • 刊出日期:  2025-06-25

目录

    /

    返回文章
    返回