留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脂肪组织线粒体功能在肥胖中的作用

钱映 杨寄镯 黄娟 袁科迪 刘俊仪 冯月梅 殷建忠

钱映, 杨寄镯, 黄娟, 袁科迪, 刘俊仪, 冯月梅, 殷建忠. 脂肪组织线粒体功能在肥胖中的作用[J]. 昆明医科大学学报, 2025, 46(7): 1-9. doi: 10.12259/j.issn.2095-610X.S20250701
引用本文: 钱映, 杨寄镯, 黄娟, 袁科迪, 刘俊仪, 冯月梅, 殷建忠. 脂肪组织线粒体功能在肥胖中的作用[J]. 昆明医科大学学报, 2025, 46(7): 1-9. doi: 10.12259/j.issn.2095-610X.S20250701
Ying QIAN, Jizhuo YANG, Juan HUANG, Kedi YUAN, Junyi LIU, Yuemei FENG, Jianzhong YIN. The Role of Mitochondrial Function in Adipose Tissue in Obesity[J]. Journal of Kunming Medical University, 2025, 46(7): 1-9. doi: 10.12259/j.issn.2095-610X.S20250701
Citation: Ying QIAN, Jizhuo YANG, Juan HUANG, Kedi YUAN, Junyi LIU, Yuemei FENG, Jianzhong YIN. The Role of Mitochondrial Function in Adipose Tissue in Obesity[J]. Journal of Kunming Medical University, 2025, 46(7): 1-9. doi: 10.12259/j.issn.2095-610X.S20250701

脂肪组织线粒体功能在肥胖中的作用

doi: 10.12259/j.issn.2095-610X.S20250701
基金项目: 国家自然科学基金(82260641,81860597);云南省基础研究专项计划重点项目(202501AS070132);云南省高校服务重点产业科技项目(博士生服务产业科研创新培育项目,FWCY-BSPY2024079);昆明医科大学一流学科特色团队(2024XKTDTS15);云南省赵星专家工作站(202505AF350064)
详细信息
    作者简介:

    钱映(1997~),女,云南安宁人,博士,在站博士后,主要从事营养流行病学研究工作

    杨寄镯与钱映对本文有同等贡献

    通讯作者:

    殷建忠,E-mail:yinjianzhong2005@sina.com

  • 中图分类号: R151

The Role of Mitochondrial Function in Adipose Tissue in Obesity

More Information
    Corresponding author: 殷建忠,二级教授,博士生导师,国务院政府特殊津贴专家,云岭教学名师,国家级一流本科课程负责人,教育部首届高校健康教育教指委委员,健康云南发展智库首席专家,云南省高校营养与食品安全重点实验室主任、精准营养与公共健康博士生导师团队带头人,省级专家工作站项目负责人。研究领域:营养流行病学。主持国家重点研发计划课题1项、国家自然科学基金 4 项、云南省科技厅基础研究专项计划重点项目1项。获云南省哲学社会科学优秀成果一等奖1项、科技进步三等奖 4 项、卫生科技成果二等奖1项及三等奖3项。代表性成果发表于The Lancet Regional Health-Western Pacific、JHEP Reports、eLife等期刊,入选ESI高水平论文2篇,在The BMJ发表文章简评(Rapid Response)15篇,论文摘要入选Cell SymposiumThe Lancet Summit国际学术会议。主持完成教育部公共卫生与预防医学学术学位研究生课程建设项目,获云南省高等教育教学成果奖二等奖1项。
  • 摘要: 肥胖已成为全球重大公共卫生问题,我国肥胖形势也日益严峻。脂肪组织分为白色脂肪组织(white adipose tissue,WAT)和棕色脂肪组织(brown adipose tissue,BAT),通过分泌多种脂肪因子调节机体代谢稳态。线粒体作为能量代谢的核心细胞器,其功能障碍与肥胖密切相关。肥胖状态下,线粒体动力学失衡、氧化应激及代谢功能障碍等均可导致代谢紊乱。而线粒体功能障碍不仅影响脂肪组织,还波及肌肉、肝脏等多器官受损,进而加剧肥胖及相关代谢疾病。近年来,靶向线粒体功能障碍治疗策略正被积极探索,但临床转化面临挑战。对脂肪组织线粒体功能障碍与肥胖关联进行综述,分析其机制及现有治疗策略,旨为肥胖诊疗提供新视角。
  • 图  1  脂肪细胞特征比较

    Figure  1.  Comparison of adipocyte characteristics

    图  2  线粒体动力学失衡与氧化应激恶性循环机制示意图

    Figure  2.  Schematic diagram of the vicious cycle between mitochondrial dynamics imbalance and oxidative stress

    图  3  线粒体代谢障碍的多因素机制示意图

    Figure  3.  Schematic illustration of the multifactorial mechanisms of mitochondrial metabolic dysfunction

    图  4  mtDNA突变对线粒体ETC及ATP合成影响的机制示意图

    Figure  4.  Schematic diagram of the Mechanism of mtDNA Mutations on Mitochondrial ETC and ATP Synthesis

    图  5  靶向线粒体功能障碍治疗机制示意图

    Figure  5.  Schematic diagram of the mechanism of therapeutic strategies targeting mitochondrial dysfunction

  • [1] GBD 2021 Adult BMI Collaborators. Global,regional,and national prevalence of adult overweight and obesity,1990-2021,with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021[J]. Lancet,2025,405(10481):813-838. doi: 10.1016/S0140-6736(25)00355-1
    [2] Pan X F,Wang L,Pan A. Epidemiology and determinants of obesity in China[J]. Lancet Diabetes Endocrinol,2021,9(6):373-392. doi: 10.1016/S2213-8587(21)00045-0
    [3] Forner F,Kumar C,Luber C A,et al. Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions[J]. Cell Metab,2009,10(4):324-335. doi: 10.1016/j.cmet.2009.08.014
    [4] Scheja L,Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease[J]. Nat Rev Endocrinol,2019,15(9):507-524. doi: 10.1038/s41574-019-0230-6
    [5] Kajimura S,Spiegelman B M,Seale P. Brown and beige fat: Physiological roles beyond heat generation[J]. Cell Metab,2015,22(4):546-559. doi: 10.1016/j.cmet.2015.09.007
    [6] Crewe C,An Y A,Scherer P E. The ominous triad of adipose tissue dysfunction: Inflammation,fibrosis,and impaired angiogenesis[J]. J Clin Invest,2017,127(1):74-82. doi: 10.1172/JCI88883
    [7] Choe S S,Huh J Y,Hwang I J,et al. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders[J]. Front Endocrinol (Lausanne),2016,7:30.
    [8] Nunnari J,Suomalainen A. Mitochondria: In sickness and in health[J]. Cell,2012,148(6):1145-1159. doi: 10.1016/j.cell.2012.02.035
    [9] Kusminski C M,Scherer P E. Mitochondrial dysfunction in white adipose tissue[J]. Trends Endocrinol Metab,2012,23(9):435-443. doi: 10.1016/j.tem.2012.06.004
    [10] Fedorenko A,Lishko P V,Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria[J]. Cell,2012,151(2):400-413. doi: 10.1016/j.cell.2012.09.010
    [11] Wang R,Li X N. Different adipose tissue depots and metabolic syndrome in human[J]. Sheng Li Xue Bao,2017,69(3):357-365.
    [12] Cohen P,Spiegelman B M. Brown and beige fat: Molecular parts of a thermogenic machine[J]. Diabetes,2015,64(7):2346-2351. doi: 10.2337/db15-0318
    [13] Zong Y,Li H,Liao P,et al. Mitochondrial dysfunction: Mechanisms and advances in therapy[J]. Signal Transduct Target Ther,2024,9(1):124. doi: 10.1038/s41392-024-01839-8
    [14] Cogliati S,Enriquez J A,Scorrano L. Mitochondrial cristae: Where beauty meets functionality[J]. Trends Biochem Sci,2016,41(3):261-273. doi: 10.1016/j.tibs.2016.01.001
    [15] Baker N,Patel J,Khacho M. Linking mitochondrial dynamics,cristae remodeling and super complex formation: How mitochondrial structure can regulate bioenergetics[J]. Mitochondrion,2019,49:259-268. doi: 10.1016/j.mito.2019.06.003
    [16] Van Laar V S,Berman S B. The interplay of neuronal mitochondrial dynamics and bioenergetics: Implications for Parkinson's disease[J]. Neurobiol Dis,2013,51:43-55. doi: 10.1016/j.nbd.2012.05.015
    [17] Masenga S K,Kabwe L S,Chakulya M,et al. Mechanisms of oxidative stress in metabolic syndrome[J]. Int J Mol Sci,2023,24(9):7898. doi: 10.3390/ijms24097898
    [18] De Fano M,Bartolini D,Tortoioli C,et al. Adipose tissue plasticity in response to pathophysiological cues: A connecting link between obesity and its associated comorbidities[J]. Int J Mol Sci,2022,23(10):5511. doi: 10.3390/ijms23105511
    [19] Boutant M,Kulkarni S S,Joffraud M,et al. Mfn2 is critical for brown adipose tissue thermogenic function[J]. EMBO J,2017,36(11):1543-1558. doi: 10.15252/embj.201694914
    [20] Ding J,Zhang Z,Li S,et al. Mdivi-1 alleviates cardiac fibrosis post myocardial infarction at infarcted border zone,possibly via inhibition of Drp1-Activated mitochondrial fission and oxidative stress[J]. Arch Biochem Biophys,2022,718:109147. doi: 10.1016/j.abb.2022.109147
    [21] Pafili K,Kahl S,Mastrototaro L,et al. Mitochondrial respiration is decreased in visceral but not subcutaneous adipose tissue in obese individuals with fatty liver disease[J]. J Hepatol,2022,77(6):1504-1514. doi: 10.1016/j.jhep.2022.08.010
    [22] Eirin A,Thaler R,Glasstetter L M,et al. Obesity-driven mitochondrial dysfunction in human adipose tissue-derived mesenchymal stem/stromal cells involves epigenetic changes[J]. Cell Death Dis,2024,15(6):387. doi: 10.1038/s41419-024-06774-8
    [23] Lee Y H,Kuk M U,So M K,et al. Targeting mitochondrial oxidative stress as a strategy to treat aging and age-related diseases[J]. Antioxidants (Basel),2023,12(4):934. doi: 10.3390/antiox12040934
    [24] Anderson E J,Lustig M E,Boyle K E,et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans[J]. J Clin Invest,2009,119(3):573-581. doi: 10.1172/JCI37048
    [25] D'Autréaux B,Toledano M B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis[J]. Nat Rev Mol Cell Biol,2007,8(10):813-824. doi: 10.1038/nrm2256
    [26] Brand M D,Goncalves R L S,Orr A L,et al. Suppressors of superoxide-H2O2 production at site I(Q) of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury[J]. Cell Metab,2016,24(4):582-592. doi: 10.1016/j.cmet.2016.08.012
    [27] Chouchani E T,Pell V R,James A M,et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury[J]. Cell Metab,2016,23(2):254-263. doi: 10.1016/j.cmet.2015.12.009
    [28] Liu Q,Zhang D,Hu D,et al. The role of mitochondria in NLRP3 inflammasome activation[J]. Mol Immunol,2018,103:115-124. doi: 10.1016/j.molimm.2018.09.010
    [29] Houstis N,Rosen E D,Lander E S. Reactive oxygen species have a causal role in multiple forms of insulin resistance[J]. Nature,2006,440(7086):944-948. doi: 10.1038/nature04634
    [30] Li H S,Zhou Y N,Li L,et al. HIF-1α protects against oxidative stress by directly targeting mitochondria[J]. Redox Biol,2019,25:101109. doi: 10.1016/j.redox.2019.101109
    [31] Cannon B,Nedergaard J. Brown adipose tissue: Function and physiological significance[J]. Physiol Rev,2004,84(1):277-359. doi: 10.1152/physrev.00015.2003
    [32] Koves T R,Ussher J R,Noland R C,et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance[J]. Cell Metab,2008,7(1):45-56. doi: 10.1016/j.cmet.2007.10.013
    [33] Petersen K F,Befroy D,Dufour S,et al. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance[J]. Science,2003,300(5622):1140-1142. doi: 10.1126/science.1082889
    [34] Bueno M,Calyeca J,Rojas M,et al. Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis[J]. Redox Biol,2020,33:101509. doi: 10.1016/j.redox.2020.101509
    [35] Bennett C F,Latorre-Muro P,Puigserver P. Mechanisms of mitochondrial respiratory adaptation[J]. Nat Rev Mol Cell Biol,2022,23(12):817-835. doi: 10.1038/s41580-022-00506-6
    [36] Heikkinen A,Esser V F C,Lee S H T,et al. Twin pair analysis uncovers links between DNA methylation,mitochondrial DNA quantity and obesity[J]. Nat Commun,2025,16(1):4374. doi: 10.1038/s41467-025-59576-7
    [37] Rossetti G,Ermer J A,Stentenbach M,et al. A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance[J]. Sci Adv,2021,7(39):eabi7514. doi: 10.1126/sciadv.abi7514
    [38] Kist M,Vucic D. Cell death pathways: Intricate connections and disease implications[J]. EMBO J,2021,40(5):e106700. doi: 10.15252/embj.2020106700
    [39] Guerra I M S,Ferreira H B,Melo T,et al. Mitochondrial fatty acid β-oxidation disorders: From disease to lipidomic studies-a critical review[J]. Int J Mol Sci,2022,23(22):13933. doi: 10.3390/ijms232213933
    [40] Chen B,Lyssiotis C A,Shah Y M. Mitochondria-organelle crosstalk in establishing compartmentalized metabolic homeostasis[J]. Mol Cell,2025,85(8):1487-1508. doi: 10.1016/j.molcel.2025.03.003
    [41] Li X,Zhao X,Qin Z,et al. Regulation of calcium homeostasis in endoplasmic reticulum-mitochondria crosstalk: Implications for skeletal muscle atrophy[J]. Cell Commun Signal,2025,23(1):17. doi: 10.1186/s12964-024-02014-w
    [42] Walkon L L,Strubbe-Rivera J O,Bazil J N. Calcium overload and mitochondrial metabolism[J]. Biomolecules,2022,12(12):1891. doi: 10.3390/biom12121891
    [43] Mahmoud A M. An overview of epigenetics in obesity: The role of lifestyle and therapeutic interventions[J]. Int J Mol Sci,2022,23(3):1341. doi: 10.3390/ijms23031341
    [44] Sun Y,Ge X,Li X,et al. High-fat diet promotes renal injury by inducing oxidative stress and mitochondrial dysfunction[J]. Cell Death Dis,2020,11(10):914. doi: 10.1038/s41419-020-03122-4
    [45] Lolescu B M,Furdui-Lința A V,Ilie C A,et al. Adipose tissue as target of environmental toxicants: Focus on mitochondrial dysfunction and oxidative inflammation in metabolic dysfunction-associated steatotic liver disease[J]. Mol Cell Biochem,2025,480(5):2863-2879. doi: 10.1007/s11010-024-05165-z
    [46] Bajpeyi S,Covington J D,Taylor E M,et al. Skeletal muscle PGC1α-1 nucleosome position and -260 nt DNA methylation determine exercise response and prevent ectopic lipid accumulation in Men[J]. Endocrinology,2017,158(7):2190-2199. doi: 10.1210/en.2017-00051
    [47] Rossman M J,Santos-Parker J R,Steward C A C,et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults[J]. Hypertension,2018,71(6):1056-1063. doi: 10.1161/HYPERTENSIONAHA.117.10787
    [48] Xu X,Pang Y,Fan X. Mitochondria in oxidative stress,inflammation and aging: From mechanisms to therapeutic advances[J]. Signal Transduct Target Ther,2025,10(1):190. doi: 10.1038/s41392-025-02253-4
    [49] Jiang S,Nong T,Yu T,et al. Long term exposure to multiple environmental stressors induces mitochondrial dynamics imbalance in testis: Insights from metabolomics and transcriptomics[J]. Environ Int,2025,198:109390. doi: 10.1016/j.envint.2025.109390
    [50] Chen L,Hong M,Luan C,et al. Efficient mitochondrial A-to-G base editors for the generation of mitochondrial disease models[J]. Nat Biotechnol,2025. doi: 10.1038/s41587-025-02685-x. doi: 10.1038/s41587-025-02685-x
    [51] Silva-Pinheiro P,Minczuk M. The potential of mitochondrial genome engineering[J]. Nat Rev Genet,2022,23(4):199-214. doi: 10.1038/s41576-021-00432-x
    [52] Lin X,Li L,Li S,et al. Targeting the opening of mitochondrial permeability transition pores potentiates nanoparticle drug delivery and mitigates cancer metastasis[J]. Adv Sci,2021,8(4):2002834. doi: 10.1002/advs.202002834
    [53] Joaquim M,Altin S,Bulimaga M B,et al. Mitofusin 2 displays fusion-independent roles in proteostasis surveillance[J]. Nat Commun,2025,16(1):1501. doi: 10.1038/s41467-025-56673-5
    [54] Zhang Y,Zhang H,Zhao F,et al. Mitochondrial-targeted and ROS-responsive nanocarrier via nose-to-brain pathway for ischemic stroke treatment[J]. Acta Pharm Sin B,2023,13(12):5107-5120. doi: 10.1016/j.apsb.2023.06.011
    [55] Wang S,Wang Z,Zang Z,et al. A mitochondrion-targeting piezoelectric nanosystem for the treatment of erectile dysfunction via autophagy regulation[J]. Adv Mater,2025,37(5):e2413287. doi: 10.1002/adma.202413287
    [56] Zhang K,Du Y,Yang S,et al. Irisin suppressed the progression of TBI via modulating AMPK/MerTK/autophagy and SYK/ROS/inflammatory signaling[J]. Sci Rep,2025,15(1):15583. doi: 10.1038/s41598-025-00066-7
    [57] de Vos W M,Tilg H,Van Hul M,et al. Gut microbiome and health: Mechanistic insights[J]. Gut,2022,71(5):1020-1032. doi: 10.1136/gutjnl-2021-326789
  • [1] 苏蓉, 林玲, 赵渊, 杨爱玲, 张明国, 张浒, 马国玉.  慢性心力衰竭合并NAFLD的临床特征及影响因素, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250809
    [2] 牛玲, 李博一, 苗翠娟, 张程, 唐艳, 刘方, 马蓉.  瘦素、尿酸与2型糖尿病合并肥胖的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231121
    [3] 杜士刚, 陈佩琪, 赵玲, 周湘明, 缪园园, 时俪满, 柯亭羽.  GLP-1RAs治疗超重/肥胖的效果, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230702
    [4] 刘聪, 吴贵帅, 普瑞, 李树德, 陶建平, 张忍发.  EGCG通过抑制TGF-β1/Smads信号通路改善高脂高糖饮食诱导的肥胖大鼠心肌纤维化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220506
    [5] 郭艳东, 洪汝丹, 汪艳蛟, 张腾, 冯月梅, 张霓裳, 钱映, 杨早改, 米飞, 殷建忠.  培哚普利对肥胖大鼠肠道微生态的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221101
    [6] 唐嘉黛, 谢琳, 宋红莉, 陈娇娇.  代谢综合征与胃癌发生发展的相关性研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211130
    [7] 杨学芳, 肖蓉, 廖顺杉, 蔡德洪, 张志毕, 刘建昆.  辣木叶水提取物减缓奥氮平诱导的小鼠糖脂代谢紊乱, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210404
    [8] 杨璐, 施文军, 赵玲, 杜士刚, 陈珮琪, 柯亭羽.  2型糖尿病患者内脏脂肪面积与肥胖及糖脂代谢指标的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210932
    [9] 周耘, 杨柳, 纳学晴.  肥胖与全麻诱导期氧储备的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201130
    [10] 唐娟, 念馨.  肠道微生态与肥胖相关性研究进展, 昆明医科大学学报.
    [11] 王雅楠, 李治纲, 张超, 李树德, 李涛, 彭建志.  同型半胱氨酸通过促进脂肪组织TRB3表达抑制PI3K/Akt信号通路, 昆明医科大学学报.
    [12] 李晓红, 马润玫, 陈卓.  肥胖、胰岛素抵抗对妊娠期糖尿病患者血清网膜素-1水平的影响, 昆明医科大学学报.
    [13] 蒋婷婷.  脂肪因子Vaspin、Apelin及瘦素与多囊卵巢综合征的相关性, 昆明医科大学学报.
    [14] 桂琦.  血清中脂肪因子Apelin、Vaspin、瘦素与子宫内膜癌的相关性, 昆明医科大学学报.
    [15] 李桂萍.  玉溪市某企业职工体重现状调查及管理策略, 昆明医科大学学报.
    [16] 陈永生.  脱套式阴茎固定术治疗肥胖引起的阴茎外观不满意80例疗效观察, 昆明医科大学学报.
    [17] 苏梅惠.  应用半定量食物频率法评价傣族居民膳食脂肪酸摄入与肥胖的关系, 昆明医科大学学报.
    [18] 李显丽.  艾塞那肽治疗肥胖2型糖尿病的临床疗效观察, 昆明医科大学学报.
    [19] 血浆内脂素水平与成人肥胖及其代谢指标的相关性研究, 昆明医科大学学报.
    [20] 杨敏丽.  肥胖女大学生综合减肥方法探索及效果评价, 昆明医科大学学报.
  • 加载中
图(5)
计量
  • 文章访问数:  709
  • HTML全文浏览量:  264
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-04
  • 刊出日期:  2025-07-21

目录

    /

    返回文章
    返回