留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半枝莲水提物通过调节免疫微环境抑制乳腺癌肺转移

廖泉炀 任安吕 左晨蓉 李菊 孙瑞芬 苏晓三

廖泉炀, 任安吕, 左晨蓉, 李菊, 孙瑞芬, 苏晓三. 半枝莲水提物通过调节免疫微环境抑制乳腺癌肺转移[J]. 昆明医科大学学报, 2025, 46(7): 18-25. doi: 10.12259/j.issn.2095-610X.S20250703
引用本文: 廖泉炀, 任安吕, 左晨蓉, 李菊, 孙瑞芬, 苏晓三. 半枝莲水提物通过调节免疫微环境抑制乳腺癌肺转移[J]. 昆明医科大学学报, 2025, 46(7): 18-25. doi: 10.12259/j.issn.2095-610X.S20250703
Quanyang LIAO, Anlv REN, Chenrong ZUO, Jv LI, Ruifen SUN, Xiaosan SU. Scutellaria barbata D.Don Water Extract Inhibits Breast Cancer Lung Metastasis by Modulating the Immune Microenvironment[J]. Journal of Kunming Medical University, 2025, 46(7): 18-25. doi: 10.12259/j.issn.2095-610X.S20250703
Citation: Quanyang LIAO, Anlv REN, Chenrong ZUO, Jv LI, Ruifen SUN, Xiaosan SU. Scutellaria barbata D.Don Water Extract Inhibits Breast Cancer Lung Metastasis by Modulating the Immune Microenvironment[J]. Journal of Kunming Medical University, 2025, 46(7): 18-25. doi: 10.12259/j.issn.2095-610X.S20250703

半枝莲水提物通过调节免疫微环境抑制乳腺癌肺转移

doi: 10.12259/j.issn.2095-610X.S20250703
基金项目: 国家自然科学基金地区科学基金(82060519);云南省中医药基础研究联合专项基金(202301AZ070001-062);云南省应用基础研究中医联合专项基金(2019FF002(-011));云南省教育厅科学研究基金(2024Y355)
详细信息
    作者简介:

    廖泉炀(1995 ~),男,贵州遵义人,在读硕士研究生,主要从事乳腺癌的发病机制研究工作

    通讯作者:

    孙瑞芬,E-mail:sunruifen@ynucm.edu.cn

    苏晓三,E-mail:suxs163@163.com

  • 中图分类号: R73-37

Scutellaria barbata D.Don Water Extract Inhibits Breast Cancer Lung Metastasis by Modulating the Immune Microenvironment

  • 摘要:   目的  探讨半枝莲水提物(Scutellaria barbata D.Don water extract,SBW)通过调节免疫微环境抑制乳腺癌肺转移的作用机制。  方法  利用4T1乳腺癌细胞建立小鼠肺转移模型,将小鼠分为对照组(n = 6)和SBW治疗组(n = 6)。通过测量原位瘤体积评估SBW对肿瘤生长的影响,并采用H&E染色观察肺组织中转移结节的数量和面积,以检测其对肺转移的抑制作用。使用流式细胞术分析肿瘤、外周血和肺组织中免疫细胞的组成变化。  结果  与对照组相比,SBW治疗组抑制了原位瘤的生长(P < 0.01),并减少了肺转移结节的数量和面积(P < 0.01)。流式细胞术分析显示,SBW治疗后,肿瘤组织中CD86+巨噬细胞(P < 0.001)和粒细胞样髓系抑制细胞(polymorphonuclear myeloid-derived suppressor cells,PMN-MDSCs)数量增加(P < 0.05);肺组织中CD86+巨噬细胞、自然杀伤T细胞(natural killer T cells,NKT)、自然杀伤细胞(natural killer cells,NK)和PMN-MDSCs数量均增加(P < 0.05)。同时,肿瘤和肺组织中的调节性T细胞(regulatory T cells,Tregs)(P < 0.05)、CD206+巨噬细胞(P < 0.01)和单核样髓系抑制细胞(monocytic myeloid-derived suppressor cells,M-MDSCs)(P < 0.05)数量降低。  结论  半枝莲水提物(SBW)通过调节肿瘤、肺组织和外周血中的免疫细胞募集与分布,增强抗肿瘤免疫反应并减弱免疫抑制,从而抑制乳腺癌的生长和肺转移。
  • 图  1  SBW对4T1荷瘤小鼠原位瘤生长和乳腺癌肺转移的抑制作用($\bar x \pm s $,n = 6)

    A:半枝莲治疗期间4T1荷瘤小鼠肿瘤体积的变化。B,C:实验结束时切除的肿瘤及其相应重量的统计图。D:实验结束时小鼠肺组织的H&E染色图像(原始放大倍数×40;比例尺 = 50 μm)。E,F:肺转移结节的量化:乳腺癌肺转移面积和肺结节数量的统计结果。G:小鼠最终肺重量的统计图。H:半枝莲治疗过程中4T1荷瘤小鼠的体重变化情况。I,J:心脏、肝脏、脾脏和肾脏的器官重量及其H&E染色图像(原始放大倍数×40;比例尺 = 50 μm)。与Control组相比:ns:P > 0.05,**P < 0.01,***P < 0.001。

    Figure  1.  SBW inhibits the growth of in situ tumors and lung metastasis of breast cancer in 4T1 tumor-bearing mice ($\bar x \pm s $,n = 6)

    图  2  SBW对小鼠肿瘤组织免疫微环境的影响($\bar x \pm s $,n = 6)

    A-C:流式细胞术检测肿瘤组织中CD3+ T细胞、CD3+CD4+ T细胞、CD3+CD8+ T细胞、CD4+CD25+FoxP3+ Treg细胞、CD11b+CD11c+树突状细胞、F4/80+CD86+(M1)和F4/80+CD206+(M2)型巨噬细胞、CD3+CD49b+NKT细胞、CD3-CD49b+NK细胞以及Ly-6ClowLy-6G+多形核(PMN-MDSCs)和Ly-6C+Ly-6G-单核样MDSCs(M-MDSCs)。与对照组(Control)相比:ns:无显著性差异,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  2.  Effect of SBW on the immune microenvironment in mouse tumor tissue ($\bar x \pm s $,n = 6)

    3  SBW对小鼠肺组织免疫微环境的影响(1)($\bar x \pm s $,n = 6)

    3.  Effect of SBW on the immune microenvironment in mouse lung tissue (1)($\bar x \pm s $,n = 6)

    3  SBW对小鼠肺组织免疫微环境的影响(2)($\bar x \pm s $,n = 6)

    A-C:流式细胞术检测肺组织中CD3+ T细胞、CD3+CD4+ T细胞、CD3+CD8+ T细胞、CD4+CD25+FoxP3+ Treg细胞、CD11b+CD11c+树突状细胞、F4/80+CD86+(M1)和F4/80+CD206+(M2)型巨噬细胞、CD3+CD49b+NKT细胞、CD3-CD49b+NK细胞以及Ly-6ClowLy-6G+多形核(PMN-MDSCs)和Ly-6C+Ly-6G-单核样MDSCs(M-MDSCs)。与对照组(Control)相比:ns:无显著性差异,*P < 0.05,**P < 0.01。

    3.  Effect of SBW on the immune microenvironment in mouse lung tissue (2)($\bar x \pm s $,n = 6)

    图  4  SBW对小鼠外周血免疫细胞的影响($\bar x \pm s $,n = 6)

    A-C:流式细胞术检测肿瘤组织中CD3+ T细胞、CD3+CD4+ T细胞、CD3+CD8+ T细胞、CD4+CD25+FoxP3+ Treg细胞、CD11b+CD11c+树突状细胞、F4/80+CD86+(M1)和F4/80+CD206+(M2)型巨噬细胞、CD3+CD49b+NKT细胞、CD3-CD49b+NK细胞以及Ly-6ClowLy-6G+多形核(PMN-MDSCs)和Ly-6C+Ly-6G-单核样MDSCs(M-MDSCs)。与对照组(Control)相比:ns:无显著性差异,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  4.  Effect of SBW on the immune microenvironment in mouse blood ($\bar x \pm s $,n = 6)

  • [1] Sung H,Ferlay J,Siegel R L,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660
    [2] Harbeck N,Gnant M. Breast cancer[J]. Lancet,2017,389(10074):1134-1150. doi: 10.1016/S0140-6736(16)31891-8
    [3] Valastyan S,Weinberg R A. Tumor metastasis:Molecular insights and evolving paradigms[J]. Cell,2011,147(2):275-292. doi: 10.1016/j.cell.2011.09.024
    [4] Shepherd J H,Ballman K,Polley M C,et al. CALGB 40603 (alliance):Long-term outcomes and genomic correlates of response and survival after neoadjuvant chemotherapy with or without carboplatin and bevacizumab in triple-negative breast cancer[J]. J Clin Oncol,2022,40(12):1323-1334. doi: 10.1200/JCO.21.01506
    [5] Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours[J]. Nature,2012,490(7418):61-70. doi: 10.1038/nature11412
    [6] Liang Y,Zhang H,Song X,et al. Metastatic heterogeneity of breast cancer:Molecular mechanism and potential therapeutic targets[J]. Semin Cancer Biol,2020,60:14-27. doi: 10.1016/j.semcancer.2019.08.012
    [7] Zhao X,Liu J,Feng L,et al. Anti-angiogenic effects of Qingdu granule on breast cancer through inhibiting NFAT signaling pathway[J]. J Ethnopharmacol,2018,222:261-269. doi: 10.1016/j.jep.2018.01.013
    [8] Nourmohammadi S,Aung T N,Cui J,et al. Effect of compound Kushen injection,a natural compound mixture,and its identified chemical components on migration and invasion of colon,brain,and breast cancer cell lines[J]. Front Oncol,2019,9:314. doi: 10.3389/fonc.2019.00314
    [9] Wang J,Yang X,Han H,et al. Inhibition of growth and metastasis of triple-negative breast cancer targeted by Traditional Chinese Medicine Tubeimu in orthotopic mice models[J]. Chin J Cancer Res,2018,30(1):112-121. doi: 10.21147/j.issn.1000-9604.2018.01.12
    [10] Fu H,Wu R,Li Y,et al. Safflower yellow prevents pulmonary metastasis of breast cancer by inhibiting tumor cell invadopodia[J]. Am J Chin Med,2016,44(7):1491-1506. doi: 10.1142/S0192415X1650083X
    [11] Wang K,Chen Q,Shao Y,et al. Anticancer activities of TCM and their active components against tumor metastasis[J]. Biomed Pharmacother,2021,133:111044. doi: 10.1016/j.biopha.2020.111044
    [12] Wang Q,Acharya N,Liu Z,et al. Enhanced anticancer effects of Scutellaria barbata D. Don in combination with traditional Chinese medicine components on non-small cell lung cancer cells[J]. J Ethnopharmacol,2018,217:140-151. doi: 10.1016/j.jep.2018.02.020
    [13] Su W,Wu L,Liang Q,et al. Extraction optimization,structural characterization,and anti-hepatoma activity of acidic polysaccharides from Scutellaria barbata D. don[J]. Front Pharmacol,2022,13:827782. doi: 10.3389/fphar.2022.827782
    [14] Ma H,Yue G G,Lee J K,et al. Scutellarin,a flavonoid compound from Scutellaria barbata,suppresses growth of breast cancer stem cells in vitro and in tumor-bearing mice[J]. Phytomedicine,2024,128:155418. doi: 10.1016/j.phymed.2024.155418
    [15] Xu X,Chen F,Zhang L,et al. Exploring the mechanisms of anti-ovarian cancer of Hedyotis diffusa Willd and Scutellaria barbata D. Don through focal adhesion pathway[J]. J Ethnopharmacol,2021,279:114343. doi: 10.1016/j.jep.2021.114343
    [16] Yue G G,Chan Y Y,Liu W,et al. Effectiveness of Scutellaria barbata water extract on inhibiting colon tumor growth and metastasis in tumor-bearing mice[J]. Phytother Res,2021,35(1):361-373. doi: 10.1002/ptr.6808
    [17] Wei L,Lin J,Xu W,et al. Scutellaria barbata D. Don inhibits tumor angiogenesis via suppression of Hedgehog pathway in a mouse model of colorectal cancer[J]. Int J Mol Sci,2012,13(8):9419-9430. doi: 10.3390/ijms13089419
    [18] Bader J E,Voss K,Rathmell J C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy[J]. Mol Cell,2020,78(6):1019-1033. doi: 10.1016/j.molcel.2020.05.034
    [19] Moretti M,La Rocca R,Perrone Donnorso M,et al. Clustering of major histocompatibility complex-class I molecules in healthy and cancer colon cells revealed from their nanomechanical properties[J]. ACS Nano,2021,15(4):7500-7512. doi: 10.1021/acsnano.1c00897
    [20] Laumont C M,Banville A C,Gilardi M,et al. Tumour-infiltrating B cells:Immunological mechanisms,clinical impact and therapeutic opportunities[J]. Nat Rev Cancer,2022,22(7):414-430. doi: 10.1038/s41568-022-00466-1
    [21] Yan W,Li Y,Zou Y,et al. Breaking tumor immunosuppressive network by regulating multiple nodes with triadic drug delivery nanoparticles[J]. ACS Nano,2023,17(18):17826-17844. doi: 10.1021/acsnano.3c03387
    [22] Wang H,Liu S,Zhan J,et al. Shaping the immune-suppressive microenvironment on tumor-associated myeloid cells through tumor-derived exosomes[J]. Int J Cancer,2024,154(12):2031-2042. doi: 10.1002/ijc.34921
    [23] Zhang Y,Lou Y,Wang J,et al. Research status and molecular mechanism of the traditional Chinese medicine and antitumor therapy combined strategy based on tumor microenvironment[J]. Front Immunol,2020,11:609705.
    [24] Chen Q,Rahman K,Wang S J,et al. Scutellaria barbata:A review on chemical constituents,pharmacological activities and clinical applications[J]. Curr Pharm Des,2020,26(1):160-175. doi: 10.2174/1381612825666191216124310
    [25] 杨培伟,刘光伟,赵文霞. 近十年半枝莲抗肿瘤作用机制研究概况[J]. 环球中医药,2023,16(5):1051-1056. doi: 10.3969/j.issn.1674-1749.2023.05.044
    [26] Gerstberger S,Jiang Q,Ganesh K. Metastasis[J]. Cell,2023,186(8):1564-1579. doi: 10.1016/j.cell.2023.03.003
    [27] Liu Y,Cao X. Characteristics and significance of the pre-metastatic niche[J]. Cancer Cell,2016,30(5):668-681. doi: 10.1016/j.ccell.2016.09.011
    [28] 王萍,杨海燕. 中医药调控恶性肿瘤转移微环境的研究进展[J]. 江西中医药,2020,51(10):69-73.
    [29] 叶依依,刘胜. 乳移平含药血清对乳腺癌4T1细胞增殖和侵袭影响的实验研究[J]. 上海中医药杂志,2017,51(10):79-84.
  • [1] 廉晓晓, 韩涛, 崔坤萌, 王艳, 刘永芳, 郭天, 杨瑞雪, 王亚.  白花蛇舌草醇提物通过 Cyt-c/Caspase-9 介导的线粒体凋亡抑制乳腺癌进展, 昆明医科大学学报.
    [2] 杨海银, 董勇, 杨诗瑶, 朱悦熙, 沈昱含, 苗金虎, 关琼瑶.  心理复原力在乳腺癌患者配偶支持感知与尊严受损之间的中介作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250324
    [3] 李杨, 江文, 刘容, 刘朝敏, 徐龙玉, 张文静.  基于生物信息学识别与肺癌患者预后和免疫微环境相关的铜死亡基因, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250405
    [4] 张正, 杨艳红, 冯再辉, 詹路江, 普金仙, 段茜婷.  高场强MRIT1灌注成像联合DWI成像在评估乳腺癌新辅助化疗疗效中的价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240722
    [5] 胡滔, 吴怡, 耿文达, 章意坚, 贺瑄, 李珊珊, 习杨彦彬, 邓丽玲.  自主运动训练通过调节Caspase-3的活性抑制人BRCA1突变乳腺癌的增殖与生长, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230419
    [6] 严梅, 关琼瑶, 王垣晓, 顾丽琪, 柘磊, 刘莉娟, 郝润珍, 苏艳, 黄思思.  乳腺癌根治性手术后患者及配偶未满足需求与二元应对水平的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230410
    [7] 宋文娟, 马雪娟, 孙钺, 谷颖, 叶雨佳, 李姝墨, 葛菲, 刘利萍, 赵月, 王钰.  超声心动图三维斑点追踪技术对乳腺癌曲妥珠单抗治疗中心脏毒性评估的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230217
    [8] 刘婧, 严梅, 陈亚爽, 杜丽钰, 黄思思.  基于Kano模型的乳腺癌根治性手术后患者支持性照护需求调查, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231129
    [9] 解思琦, 张恒瑀, 李红万, 谭明建, 王青, 李思嘉, 郑凯, 刘德权, 唐诗聪.  血清缬氨酸、甲硫氨酸浓度水平与乳腺癌临床特征及风险的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220807
    [10] 孙文婧, 胡曼婷, 李娜, 葛菲, 陈文林, 刘洋.  乳腺癌内分泌治疗耐药及其逆转的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210724
    [11] 张江, 刘燕, 李文辉, 赵喜娟, 陈正庭, 关琼瑶, 吴江.  睡前音乐疗法对乳腺癌放疗患者睡眠质量和癌因性疲乏的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201248
    [12] 段佳君, 刘德权, 张勇.  影响女性育龄期乳腺癌患者对生育能力受损风险认识及保留生育能力决策的因素, 昆明医科大学学报.
    [13] 李宁, 徐妙, 张维, 张倩, 孔鹰.  乳腺癌患者放化疗前后维生素D水平的变化, 昆明医科大学学报.
    [14] 胡凤娣, 张建强, 汪矗, 罗春香, 李科.  干扰CD151基因表达对裸鼠肺腺癌A549细胞肺转移的实验, 昆明医科大学学报.
    [15] 赵云红, 傅大干, 唐一吟, 郝芳, 史峭铭, 张丽娟.  昆明市2015年至2016年城市乳腺癌高风险人群筛查结果分析, 昆明医科大学学报.
    [16] 王怡茗, 杨越.  乳腺钼靶和超声检查对于诊断乳腺癌的价值对比, 昆明医科大学学报.
    [17] 李云芬.  CCDC8基因表达与乳腺癌分子分型的相关性研究, 昆明医科大学学报.
    [18] 李晓勇.  Th17/Treg平衡失调及其相关因子在乳腺癌浸润转移的相关性研究, 昆明医科大学学报.
    [19] 赵春芳.  干扰RNA抑制EGFR对乳腺癌细胞放射敏感性的影响, 昆明医科大学学报.
    [20] 李昆仑.  RNAi抑制Survivin基因的表达对乳腺癌SKBr-3细胞的影响, 昆明医科大学学报.
  • 加载中
图(5)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  262
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-21
  • 刊出日期:  2025-07-21

目录

    /

    返回文章
    返回