Scutellaria barbata D.Don Water Extract Inhibits Breast Cancer Lung Metastasis by Modulating the Immune Microenvironment
-
摘要:
目的 探讨半枝莲水提物(Scutellaria barbata D.Don water extract,SBW)通过调节免疫微环境抑制乳腺癌肺转移的作用机制。 方法 利用4T1乳腺癌细胞建立小鼠肺转移模型,将小鼠分为对照组(n = 6)和SBW治疗组(n = 6)。通过测量原位瘤体积评估SBW对肿瘤生长的影响,并采用H&E染色观察肺组织中转移结节的数量和面积,以检测其对肺转移的抑制作用。使用流式细胞术分析肿瘤、外周血和肺组织中免疫细胞的组成变化。 结果 与对照组相比,SBW治疗组抑制了原位瘤的生长(P < 0.01),并减少了肺转移结节的数量和面积(P < 0.01)。流式细胞术分析显示,SBW治疗后,肿瘤组织中CD86+巨噬细胞(P < 0.001)和粒细胞样髓系抑制细胞(polymorphonuclear myeloid-derived suppressor cells,PMN-MDSCs)数量增加(P < 0.05);肺组织中CD86+巨噬细胞、自然杀伤T细胞(natural killer T cells,NKT)、自然杀伤细胞(natural killer cells,NK)和PMN-MDSCs数量均增加(P < 0.05)。同时,肿瘤和肺组织中的调节性T细胞(regulatory T cells,Tregs)(P < 0.05)、CD206+巨噬细胞(P < 0.01)和单核样髓系抑制细胞(monocytic myeloid-derived suppressor cells,M-MDSCs)(P < 0.05)数量降低。 结论 半枝莲水提物(SBW)通过调节肿瘤、肺组织和外周血中的免疫细胞募集与分布,增强抗肿瘤免疫反应并减弱免疫抑制,从而抑制乳腺癌的生长和肺转移。 Abstract:Objective To investigate the mechanism by which Scutellaria barbata D. Don water extract (SBW) inhibits lung metastasis of breast cancer by regulating the immune microenvironment. Methods A mouse model of lung metastasis was established using 4T1 breast cancer cells. Mice were divided into a control group (n = 6) and an SBW treatment group (n = 6). The effect of SBW on tumor growth was assessed by measuring the volume of the primary tumor, and the inhibitory effect on lung metastasis was evaluated by observing the number and area of metastatic nodules in lung tissue using H&E staining. Flow cytometry was used to analyze changes in the composition of immune cells in the tumor, peripheral blood, and lung tissue. Results Compared with the control group, the SBW treatment group inhibited the growth of the primary tumor (P < 0.01) and reduced the number and area of lung metastatic nodules (P < 0.01). Flow cytometry analysis showed that after SBW treatment, the numbers of CD86+ macrophages (P < 0.001) and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) (P < 0.05) in the tumor tissue were increased. In lung tissue, the numbers of CD86+ macrophages, natural killer T (NKT) cells, natural killer (NK) cells, and PMN-MDSCs were also elevated (P < 0.05). Meanwhile, the numbers of regulatory T cells (Tregs) (P < 0.05), CD206+ macrophages (P < 0.01), and monocytic myeloid-derived suppressor cells (M-MDSCs) (P < 0.05) in both tumor and lung tissues were decreased. Conclusion SBW inhibits the breast cancer growth and lung metastasis by regulating the recruitment and distribution of immune cells in the tumor, peripheral blood, and lung tissue, thereby enhancing anti-tumor immune responses and reducing immune suppression. -
Key words:
- Scutellaria barbata D. Don /
- Breast cancer /
- Lung metastasis /
- Immune microenvironment.
-
图 1 SBW对4T1荷瘤小鼠原位瘤生长和乳腺癌肺转移的抑制作用($\bar x \pm s $,n = 6)
A:半枝莲治疗期间4T1荷瘤小鼠肿瘤体积的变化。B,C:实验结束时切除的肿瘤及其相应重量的统计图。D:实验结束时小鼠肺组织的H&E染色图像(原始放大倍数×40;比例尺 = 50 μm)。E,F:肺转移结节的量化:乳腺癌肺转移面积和肺结节数量的统计结果。G:小鼠最终肺重量的统计图。H:半枝莲治疗过程中4T1荷瘤小鼠的体重变化情况。I,J:心脏、肝脏、脾脏和肾脏的器官重量及其H&E染色图像(原始放大倍数×40;比例尺 = 50 μm)。与Control组相比:ns:P > 0.05,**P < 0.01,***P < 0.001。
Figure 1. SBW inhibits the growth of in situ tumors and lung metastasis of breast cancer in 4T1 tumor-bearing mice ($\bar x \pm s $,n = 6)
图 2 SBW对小鼠肿瘤组织免疫微环境的影响($\bar x \pm s $,n = 6)
A-C:流式细胞术检测肿瘤组织中CD3+ T细胞、CD3+CD4+ T细胞、CD3+CD8+ T细胞、CD4+CD25+FoxP3+ Treg细胞、CD11b+CD11c+树突状细胞、F4/80+CD86+(M1)和F4/80+CD206+(M2)型巨噬细胞、CD3+CD49b+NKT细胞、CD3-CD49b+NK细胞以及Ly-6ClowLy-6G+多形核(PMN-MDSCs)和Ly-6C+Ly-6G-单核样MDSCs(M-MDSCs)。与对照组(Control)相比:ns:无显著性差异,*P < 0.05,**P < 0.01,***P < 0.001。
Figure 2. Effect of SBW on the immune microenvironment in mouse tumor tissue ($\bar x \pm s $,n = 6)
3 SBW对小鼠肺组织免疫微环境的影响(2)($\bar x \pm s $,n = 6)
A-C:流式细胞术检测肺组织中CD3+ T细胞、CD3+CD4+ T细胞、CD3+CD8+ T细胞、CD4+CD25+FoxP3+ Treg细胞、CD11b+CD11c+树突状细胞、F4/80+CD86+(M1)和F4/80+CD206+(M2)型巨噬细胞、CD3+CD49b+NKT细胞、CD3-CD49b+NK细胞以及Ly-6ClowLy-6G+多形核(PMN-MDSCs)和Ly-6C+Ly-6G-单核样MDSCs(M-MDSCs)。与对照组(Control)相比:ns:无显著性差异,*P < 0.05,**P < 0.01。
3. Effect of SBW on the immune microenvironment in mouse lung tissue (2)($\bar x \pm s $,n = 6)
图 4 SBW对小鼠外周血免疫细胞的影响($\bar x \pm s $,n = 6)
A-C:流式细胞术检测肿瘤组织中CD3+ T细胞、CD3+CD4+ T细胞、CD3+CD8+ T细胞、CD4+CD25+FoxP3+ Treg细胞、CD11b+CD11c+树突状细胞、F4/80+CD86+(M1)和F4/80+CD206+(M2)型巨噬细胞、CD3+CD49b+NKT细胞、CD3-CD49b+NK细胞以及Ly-6ClowLy-6G+多形核(PMN-MDSCs)和Ly-6C+Ly-6G-单核样MDSCs(M-MDSCs)。与对照组(Control)相比:ns:无显著性差异,*P < 0.05,**P < 0.01,***P < 0.001。
Figure 4. Effect of SBW on the immune microenvironment in mouse blood ($\bar x \pm s $,n = 6)
-
[1] Sung H,Ferlay J,Siegel R L,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660 [2] Harbeck N,Gnant M. Breast cancer[J]. Lancet,2017,389(10074):1134-1150. doi: 10.1016/S0140-6736(16)31891-8 [3] Valastyan S,Weinberg R A. Tumor metastasis:Molecular insights and evolving paradigms[J]. Cell,2011,147(2):275-292. doi: 10.1016/j.cell.2011.09.024 [4] Shepherd J H,Ballman K,Polley M C,et al. CALGB 40603 (alliance):Long-term outcomes and genomic correlates of response and survival after neoadjuvant chemotherapy with or without carboplatin and bevacizumab in triple-negative breast cancer[J]. J Clin Oncol,2022,40(12):1323-1334. doi: 10.1200/JCO.21.01506 [5] Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours[J]. Nature,2012,490(7418):61-70. doi: 10.1038/nature11412 [6] Liang Y,Zhang H,Song X,et al. Metastatic heterogeneity of breast cancer:Molecular mechanism and potential therapeutic targets[J]. Semin Cancer Biol,2020,60:14-27. doi: 10.1016/j.semcancer.2019.08.012 [7] Zhao X,Liu J,Feng L,et al. Anti-angiogenic effects of Qingdu granule on breast cancer through inhibiting NFAT signaling pathway[J]. J Ethnopharmacol,2018,222:261-269. doi: 10.1016/j.jep.2018.01.013 [8] Nourmohammadi S,Aung T N,Cui J,et al. Effect of compound Kushen injection,a natural compound mixture,and its identified chemical components on migration and invasion of colon,brain,and breast cancer cell lines[J]. Front Oncol,2019,9:314. doi: 10.3389/fonc.2019.00314 [9] Wang J,Yang X,Han H,et al. Inhibition of growth and metastasis of triple-negative breast cancer targeted by Traditional Chinese Medicine Tubeimu in orthotopic mice models[J]. Chin J Cancer Res,2018,30(1):112-121. doi: 10.21147/j.issn.1000-9604.2018.01.12 [10] Fu H,Wu R,Li Y,et al. Safflower yellow prevents pulmonary metastasis of breast cancer by inhibiting tumor cell invadopodia[J]. Am J Chin Med,2016,44(7):1491-1506. doi: 10.1142/S0192415X1650083X [11] Wang K,Chen Q,Shao Y,et al. Anticancer activities of TCM and their active components against tumor metastasis[J]. Biomed Pharmacother,2021,133:111044. doi: 10.1016/j.biopha.2020.111044 [12] Wang Q,Acharya N,Liu Z,et al. Enhanced anticancer effects of Scutellaria barbata D. Don in combination with traditional Chinese medicine components on non-small cell lung cancer cells[J]. J Ethnopharmacol,2018,217:140-151. doi: 10.1016/j.jep.2018.02.020 [13] Su W,Wu L,Liang Q,et al. Extraction optimization,structural characterization,and anti-hepatoma activity of acidic polysaccharides from Scutellaria barbata D. don[J]. Front Pharmacol,2022,13:827782. doi: 10.3389/fphar.2022.827782 [14] Ma H,Yue G G,Lee J K,et al. Scutellarin,a flavonoid compound from Scutellaria barbata,suppresses growth of breast cancer stem cells in vitro and in tumor-bearing mice[J]. Phytomedicine,2024,128:155418. doi: 10.1016/j.phymed.2024.155418 [15] Xu X,Chen F,Zhang L,et al. Exploring the mechanisms of anti-ovarian cancer of Hedyotis diffusa Willd and Scutellaria barbata D. Don through focal adhesion pathway[J]. J Ethnopharmacol,2021,279:114343. doi: 10.1016/j.jep.2021.114343 [16] Yue G G,Chan Y Y,Liu W,et al. Effectiveness of Scutellaria barbata water extract on inhibiting colon tumor growth and metastasis in tumor-bearing mice[J]. Phytother Res,2021,35(1):361-373. doi: 10.1002/ptr.6808 [17] Wei L,Lin J,Xu W,et al. Scutellaria barbata D. Don inhibits tumor angiogenesis via suppression of Hedgehog pathway in a mouse model of colorectal cancer[J]. Int J Mol Sci,2012,13(8):9419-9430. doi: 10.3390/ijms13089419 [18] Bader J E,Voss K,Rathmell J C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy[J]. Mol Cell,2020,78(6):1019-1033. doi: 10.1016/j.molcel.2020.05.034 [19] Moretti M,La Rocca R,Perrone Donnorso M,et al. Clustering of major histocompatibility complex-class I molecules in healthy and cancer colon cells revealed from their nanomechanical properties[J]. ACS Nano,2021,15(4):7500-7512. doi: 10.1021/acsnano.1c00897 [20] Laumont C M,Banville A C,Gilardi M,et al. Tumour-infiltrating B cells:Immunological mechanisms,clinical impact and therapeutic opportunities[J]. Nat Rev Cancer,2022,22(7):414-430. doi: 10.1038/s41568-022-00466-1 [21] Yan W,Li Y,Zou Y,et al. Breaking tumor immunosuppressive network by regulating multiple nodes with triadic drug delivery nanoparticles[J]. ACS Nano,2023,17(18):17826-17844. doi: 10.1021/acsnano.3c03387 [22] Wang H,Liu S,Zhan J,et al. Shaping the immune-suppressive microenvironment on tumor-associated myeloid cells through tumor-derived exosomes[J]. Int J Cancer,2024,154(12):2031-2042. doi: 10.1002/ijc.34921 [23] Zhang Y,Lou Y,Wang J,et al. Research status and molecular mechanism of the traditional Chinese medicine and antitumor therapy combined strategy based on tumor microenvironment[J]. Front Immunol,2020,11:609705. [24] Chen Q,Rahman K,Wang S J,et al. Scutellaria barbata:A review on chemical constituents,pharmacological activities and clinical applications[J]. Curr Pharm Des,2020,26(1):160-175. doi: 10.2174/1381612825666191216124310 [25] 杨培伟,刘光伟,赵文霞. 近十年半枝莲抗肿瘤作用机制研究概况[J]. 环球中医药,2023,16(5):1051-1056. doi: 10.3969/j.issn.1674-1749.2023.05.044 [26] Gerstberger S,Jiang Q,Ganesh K. Metastasis[J]. Cell,2023,186(8):1564-1579. doi: 10.1016/j.cell.2023.03.003 [27] Liu Y,Cao X. Characteristics and significance of the pre-metastatic niche[J]. Cancer Cell,2016,30(5):668-681. doi: 10.1016/j.ccell.2016.09.011 [28] 王萍,杨海燕. 中医药调控恶性肿瘤转移微环境的研究进展[J]. 江西中医药,2020,51(10):69-73. [29] 叶依依,刘胜. 乳移平含药血清对乳腺癌4T1细胞增殖和侵袭影响的实验研究[J]. 上海中医药杂志,2017,51(10):79-84. -
下载: