Exploring the Molecular Mechanism of Ligustrazine in Spinal Cord Injury Repair Based on Macrophage Autophagy
-
摘要:
目的 研究川芎嗪在脊髓损伤大鼠模型中的脊髓修复效果及其分子作用机制。 方法 Allen's法构建脊髓损伤模型大鼠,大鼠后肢痉挛、尾巴扭动且BBB评分为0分,表明造模成功。大鼠分为假手术组、模型组、川芎嗪低、高剂量组,每组10只。川芎嗪低、高剂量组分别腹腔注射川芎嗪(150、200 mg/kg),正常组和模型组等剂量生理盐水,每日1次,持续28 d。于术后不同时间点观察大鼠后肢运动功能并进行BBB评分;HE和Nissl染色观察脊髓组织病理学变化及神经元形态;ELISA检测脊髓组织超氧化物歧化酶(SOD)、丙二醛(MDA)表达水平;TUNEL染色评估脊髓神经元凋亡状态;Western Blot检测脊髓组织LC3 Ⅰ、LC3 Ⅱ、Bax、Bcl-2蛋白表达水平;电镜观察脊髓巨噬细胞中自噬体形成;免疫荧光法检测脊髓巨噬细胞中LC3 Ⅱ的蛋白表达。 结果 与假手术组比较,模型组大鼠后肢功能、脊髓组织形态学受损(P < 0.05),脊髓组织SOD、细胞凋亡、LC3 Ⅱ/Ⅰ、Bcl-2蛋白表达、巨噬细胞中自噬体数量及LC3 Ⅱ蛋白表达水平降低,MDA、Bax、Bax/Bcl-2蛋白表达水平升高(P < 0.05)。与模型组比较,川芎嗪低、高剂量组大鼠后肢功能、脊髓组织形态学均有改善(P < 0.05),脊髓组织SOD、细胞凋亡、LC3 Ⅱ/Ⅰ、Bcl-2蛋白表达、巨噬细胞中自噬体数量及LC3 Ⅱ蛋白表达水平升高,MDA、Bax、Bax/Bcl-2蛋白表达水平降低(P < 0.05);且川芎嗪的干预效果呈剂量依赖性。 结论 川芎嗪可以有效修复大鼠脊髓损伤,其分子机制可能与激活脊髓巨噬细胞自噬,抑制神经元凋亡相关。 Abstract:Objective To investigate the effect of ligustrazine on spinal cord repair from the perspective of macrophage autophagy and its molecular mechanism in a rat model. Methods A rat model of spinal cord injury was established using Allen's method. Successful modeling was indicated by hindlimb spasm, tail twisting, and Basso, Beattie, and Bresnahan (BBB) score of 0. The rats were divided into 4 groups: sham-operation group, model group, low-dose ligustrazine group, and high-dose ligustrazine group, with 10 rats in each group. The low-dose and high-dose ligustrazine groups were administered ligustrazine (150 mg/kg and 200 mg/kg, respectively) via intraperitoneal injection, while the normal and model groups received an equal volume of normal saline once daily for 28 days. At different time points after surgery, the hindlimb motor function of the rats was assessed using the BBB scale. Hematoxylin-eosin (HE) and Nissl staining were used to observe the histopathological changes in the spinal cord tissue and the morphology of neurons. Enzyme-linked immunosorbent assay (ELISA) was employed to detect the expression levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in the spinal cord tissue. TUNEL staining was used to evaluate the apoptosis status of spinal cord neurons. Protein levels of LC3 I, LC3 II, Bax, and Bcl-2 in the spinal cord tissue were detected by Western Blot. Electron microscopy was used to observe the formation of autophagosomes in spinal cord macrophages, and immunofluorescence was used to detect the protein expression of LC3 II in spinal cord macrophages. Results Compared with the sham-operation group, the model group exhibited impaired hindlimb function and spinal cord tissue morphology (P < 0.05), along with decreased levels of SOD, apoptosis, LC3 II/Ⅰ, Bcl-2 protein expression, autophagosome number in macrophages, and LC3 II protein expression, as well as increased levels of MDA, Bax, and Bax/Bcl-2 protein expression (P < 0.05). Compared with the model group, both the low-dose and high-dose ligustrazine groups showed improved hindlimb function and spinal cord tissue morphology (P < 0.05), with increased levels of SOD, apoptosis, LC3 II/Ⅰ, Bcl-2 protein expression, autophagosome number in macrophages, and LC3 II protein expression, as well as decreased levels of MDA, Bax, and Bax/Bcl-2 protein expression (P < 0.05). The intervention effect of ligustrazine was dose-dependent. Conclusion Ligustrazine can effectively repair spinal cord injury in rats, and its molecular mechanism may be related to the activation of autophagy in spinal cord macrophages and the inhibition of neuronal apoptosis. -
Key words:
- Ligustrazine /
- Spinal cord injury /
- Macrophages /
- Autophagy /
- Apoptosis
-
表 1 各组大鼠BBB后肢运动功能评分比较(n = 10,$ \bar x \pm s$)
Table 1. Comparison of hindlimb motor function scores among groups after BBB (n = 10,$ \bar x \pm s$)
组别 第1天 第3天 第7天 第14天 第21天 第28天 假手术组 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00 模型组 0.00 ± 0.00 2.50 ± 0.53 5.10 ± 0.57∆ 5.20 ± 0.63∆ 7.50 ± 1.08∆ 8.80 ± 0.92∆ 川芎嗪低剂量组 0.00 ± 0.00 2.20 ± 0.42 4.70 ± 0.82# 7.30 ± 0.95# 9.80 ± 1.03# 13.70 ± 1.25# 川芎嗪高剂量组 0.00 ± 0.00 2.30 ± 0.48 4.90 ± 0.32# 8.90 ± 0.88# 13.10 ± 1.45# 16.50 ± 1.08# F 5059 2357 1020 321.3 292.1 P < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* *P < 0.05,与假手术组比较,∆P < 0.05;与模型组比较,#P < 0.05。 表 2 各组大鼠脊髓组织学评分及尼氏小体数量比较(n = 5,$ \bar x \pm s $)
Table 2. Comparison of histological scores of spinal cord tissues and Nissl body counts among groups (n = 5,$ \bar x \pm s $)
组别 组织学评分(分) 尼氏小体(个) 假手术组 0.00 ± 0.00 46.20 ± 3.56 模型组 5.60 ± 0.55∆ 8.20 ± 0.84∆ 川芎嗪低剂量组 3.20 ± 0.84# 23.20 ± 0.84# 川芎嗪高剂量组 2.00 ± 0.71#^ 34.00 ± 4.00#^ F 73.07 173.3 P < 0.001* < 0.001* *P < 0.05;与假手术组比较,∆P < 0.05;与模型组比较,#P < 0.05;与低剂量组比较,^P < 0.05。 表 3 各组大鼠脊髓组织MDA、SOD水平比较(n = 5,$ \bar x \pm s $)
Table 3. Comparison of MDA and SOD levels in spinal cord tissue among groups (n = 5,$ \bar x \pm s $)
组别 MDA(ng/mL) SOD(ng/mL) 假手术组 3.67 ± 0.24 3.85 ± 0.59 模型组 13.24 ± 0.94∆ 1.86 ± 0.22∆ 川芎嗪低剂量组 9.65 ± 0.50# 2.55 ± 0.27# 川芎嗪高剂量组 6.44 ± 0.53#^ 3.43 ± 0.24#^ F 232.5 30.18 P < 0.001* < 0.001* *P < 0.05;与假手术组比较,∆P < 0.05;与模型组比较,#P < 0.05;与低剂量组比较,^P < 0.05。 表 4 各组大鼠脊髓组织中细胞凋亡水平比较(n = 5,$ \bar x \pm s $)
Table 4. Comparison of apoptosis levels in spinal cord tissue among groups (n = 5,$ \bar x \pm s $)
组别 凋亡率(%) 假手术组 2.67 ± 0.24 模型组 16.25 ± 1.15∆ 川芎嗪低剂量组 7.54 ± 0.39# 川芎嗪高剂量组 5.42 ± 0.44#^ F 397.6 P < 0.001* *P < 0.05;与假手术组比较,∆P < 0.05;与模型组比较,#P < 0.05;与低剂量组比较,^P < 0.05。 表 5 各组大鼠脊髓组织LC3 Ⅱ/Ⅰ、Bax、Bcl-2蛋白表达水平比较(n = 5,$ \bar x \pm s $)
Table 5. Comparison of protein expression levels of LC3 II/I,Bax,and Bcl-2 in spinal cord tissue among groups (n = 5,$ \bar x \pm s $)
组别 LC3 Ⅱ/Ⅰ(/GAPDH) Bax(/GAPDH) Bcl-2(/GAPDH) Bax/Bcl-2(/GAPDH) 假手术组 1.11 ± 0.15 0.95 ± 0.12 0.87 ± 0.11 1.11 ± 0.25 模型组 0.32 ± 0.03∆ 1.44 ± 0.18∆ 0.30 ± 0.03∆ 4.83 ± 1.18∆ 川芎嗪低剂量组 0.52 ± 0.03# 0.53 ± 0.05# 0.45 ± 0.03# 1.17 ± 0.07# 川芎嗪高剂量组 1.10 ± 0.10#^ 0.52 ± 0.05# 0.94 ± 0.08#^ 0.55 ± 0.05# F 92.65 74.82 97.94 53.01 P < 0.001* < 0.001* < 0.001* < 0.001* *P < 0.05;与假手术组比较,∆P < 0.05;与模型组比较,#P < 0.05;与低剂量组比较,^P < 0.05。 表 6 各组大鼠脊髓组织巨噬细胞LC3 Ⅱ蛋白表达水平比较(n = 5,$ \bar x \pm s $)
Table 6. Comparison of protein expression levels of LC3 II in macrophages of spinal cord tissues in rats among groups (n = 5,$ \bar x \pm s $)
组别 LC3 Ⅱ(%) 假手术组 41.44 ± 2.69 模型组 6.22 ± 0.45∆ 川芎嗪低剂量组 29.91 ± 1.60# 川芎嗪高剂量组 39.48 ± 3.33#^ F 247.2 P < 0.001* *P < 0.05;与假手术组比较,∆P < 0.05;与模型组比较,#P < 0.05;与低剂量组比较,^P < 0.05。 -
[1] 阳庆林,王勇平. 急性脊髓损伤发病机制及临床治疗研究进展[J]. 甘肃医药,2024,43(1):1-3+8. [2] 张晨,蒲翔,苏进,等. 肺泡巨噬细胞诱导免疫应答对肺组织炎性损伤作用机制的研究进展[J]. 基础医学与临床,2023,43(10):1585-1589. [3] 赵璐. 细胞自噬在神经管畸形中的作用研究进展[J]. 中国生育健康杂志,2025,36(1):99-100. doi: 10.3969/j.issn.1671-878X.2025.01.019 [4] 毛亮,尚茹茹,刘晓红. 巨噬细胞自噬与动脉粥样硬化关系的研究进展[J]. 中西医结合心脑血管病杂志,2024,22(9):1615-1618. [5] 刘方煜,范一呜,张洪宇,等. 脊髓损伤中自噬的研究进展[J]. 中国脊柱脊髓杂志,2021,31(4):360-364+369. doi: 10.3969/j.issn.1004-406X.2021.04.12 [6] 赵君利,程菊,陈建军,等. 川芎嗪类衍生物药理活性的研究进展[J]. 华西药学杂志,2023,38(3):340-344. [7] 张超,冯世庆,刘燊,等. 改良ALLEN法胸椎开窗制备大鼠脊髓损伤模型[J]. 中华实验外科杂志,2013,30(7):1529-1531. doi: 10.3760/cma.j.issn.1001-9030.2013.07.069 [8] 陶经纬,周婧雅,刘奕扬,等. 川芎嗪对脊髓损伤大鼠Nrf2/HO-1通路及氧化应激的调控作用[J]. 中华中医药杂志,2024,39(5):2575-2581. [9] 陈太邦,王文婷,崔蕾,等. rhMANF通过激活ReIB/p52磷酸化诱导A2型反应性星形胶质细胞极化以促进脊髓损伤恢复[J]. 中华神经医学杂志,2025,24(1):44-53. doi: 10.3760/cma.j.cn115354-20240819-00495 [10] 翁家贤,梁超伦,肖方骏,等. 补肾活血方对脊髓损伤大鼠脊髓的修复作用及其机制研究[J]. 中成药,2023,45(8):2518-2524. doi: 10.3969/j.issn.1001-1528.2023.08.011 [11] 陈慧泽,邓楚珺,孟泽宇,等. 梓醇-川芎嗪方调控STAT3改善阿尔茨海默病神经可塑性的机制研究[J]. 中西医结合心脑血管病杂志,2024,22(21):3899-3906. [12] Nie L,He K,Qiu C,et al. Tetramethylpyrazine Nitrone alleviates D-galactose-induced murine skeletal muscle aging and motor deficits by activating the AMPK signaling pathway[J]. Biomed Pharmacother,2024,173:116415. [13] 王霆,吴穹,季帅. 川芎嗪对帕金森病炎症细胞模型增殖和凋亡的影响及机制[J]. 新乡医学院学报,2024,41(12):1114-1124. [14] Ren J,Zhu B,Gu G,et al. Schwann cell-derived exosomes containing MFG-E8 modify macrophage/microglial polarization for attenuating inflammation via the SOCS3/STAT3 pathway after spinal cord injury[J]. Cell Death Dis,2023,14(1):70. doi: 10.1038/s41419-023-05607-4 [15] 徐振华,李彦杰,秦合伟,等. 中药单体治疗脊髓损伤后神经炎症: 核转录因子 ${{\text{κ}}} $B信号通路的作用[J]. 中国组织工程研究,2025,29(3):590-598. doi: 10.12307/2025.125 [16] Wen J H,Li D Y,Liang S,et al. Macrophage autophagy in macrophage polarization,chronic inflammation and organ fibrosis[J]. Front Immunol,2022,13:946832. doi: 10.3389/fimmu.2022.946832 [17] 程瑶,王远迎,姚飞扬,等. 黄芩苷通过调控PI3K/AKT信号通路抑制登革病毒感染诱导的人静脉内皮细胞的自噬[J]. 南方医科大学学报,2024,44(7):1272-1283. doi: 10.12122/j.issn.1673-4254.2024.07.07 [18] 杨文洁,王珺楠,孙涛. 巨噬细胞/小胶质细胞极化在脊髓损伤后神经病理性疼痛中的作用机制: 文献综述[J]. 中华疼痛学杂志,2023,19(2):342-347. doi: 10.3760/cma.j.cn101658-20220309-00034 [19] 毛腾飞,杨晓慧,杨旭,等. 氟诱导大鼠脊髓神经细胞凋亡及氧化应激的研究[J]. 中华地方病学杂志,2024,43(1):21-28. doi: 10.3760/cma.j.cn231583-20230424-00100 [20] Tao F,Cai Y,Deng C,et al. A narrative review on traditional Chinese medicine prescriptions and bioactive components in epilepsy treatment[J]. Ann Transl Med,2023,11(2):129. doi: 10.21037/atm-22-3306 [21] 李连标,郭琼. 注射用盐酸川芎嗪的不良反应分析[J]. 当代医学,2021,27(18):127-128. doi: 10.3969/j.issn.1009-4393.2021.18.049 -
下载: