EIF5A1 Promotes Proliferation,Migration and Invasion of Intrahepatic Cholangiocarcinoma Cells Through Wnt Signaling Pathway
-
摘要:
目的 研究EIF5A1在肝内胆管癌细胞株和人肝内胆管上皮中的表达及其对HUCCT1细胞增殖、迁移侵袭和Wnt/β-Catenin信号通路的影响。 方法 使用Western blot方法检测EIF5A1在肝内胆管癌细胞株和人肝内胆管上皮细胞中的基础表达量,采用瞬时转染siRNA的方法沉默肝内胆管癌细胞HUCCT1中EIF5A1的表达,实验分组为空白对照组(Con)、siRNA1组、siRNA2组。通过Western blot方法筛选沉默效果最佳的siRNA,CCK-8、EdU细胞增殖实验和Transwell实验检测沉默EIF5A1后对HUCCT1细胞增殖和迁移侵袭能力的影响,Western blot检测HUCCT1细胞中沉默EIF5A1后对Wnt/β-Catenin信号通路的影响。 结果 CCK-8、EdU细胞增殖实验结果显示沉默EIF5A1后,细胞增殖能力下降(P < 0.05),Transwell迁移侵袭实验结果显示沉默EIF5A1后抑制了HUCCT1细胞迁移及侵袭(P < 0.05),沉默EIF5A1后Wnt/β-Catenin信号通路中的β-Catenin、Cyclin D1、MMP-2和Survivin蛋白表达明显下降(P < 0.05)。 结论 EIF5A1可能通过Wnt/β-Catenin信号通路促进肝内胆管癌细胞增殖和迁移侵袭。 -
关键词:
- 肝内胆管癌 /
- EIF5A1 /
- Wnt/β-Catenin信号通路 /
- 增殖 /
- 迁移侵袭
Abstract:Objective To investigate the expression of EIF5A1 in intrahepatic cholangiocarcinoma cell lines and human hepatobiliary duct epithelia, and its effect on the proliferation, migration and invasion ability and Wnt/β-Catenin signaling pathway in HUCCT1 cells . Methods Western blot was used to detect the basal expression level of EIF5A1 in intrahepatic cholangiocarcinoma cell lines and human intrahepatic cholangiocarcinoma epithelial cells. Transient transfection of siRNA was used to silence the expression of EIF5A1 in intrahepatic cholangiocarcinoma cell HUCCT1. The experimental groups were divided into blank control group (Con), siRNA1 group, and siRNA2 group. The most effective siRNA was screened by Western blot. The effects of EIF5A1 silencing on the proliferation, migration and invasion ability of HUCCT1 cells were detected by CCK-8, EdU cell proliferation assay and Transwell assay. The effect of EIF5A1 silencing on the Wnt/β-Catenin signaling pathway in HUCCT1 cells was detected by Western blot. Results The results of CCK-8 and EdU cell proliferation experiments showed that the proliferation ability of HUCCT1 cells decreased after EIF5A1 silencing (P < 0.05), and Transwell migration and invasion experiments showed that the migration and invasion ability of Hucct1 cells decreased after EIF5A1 silencing (P < 0.05). Western blot analysis revealed decreased expression of β-Catenin, Cyclin D1, MMP-2 and Survivin in Wnt/β-Catenin signaling pathway after EIF5A1 silencing (P < 0.05). Conclusion EIF5A1 may promote the proliferation, migration and invasion of intrahepatic bile duct cancer cells through Wnt/β-Catenin signaling pathway. -
图 1 EIF5A1在肝内胆管癌细胞株及肝内胆管上皮细胞中的基础表达量($ \bar x \pm s $,n = 3)
A:EIF5A1在肝内胆管癌细胞株及肝内胆管上皮细胞中的免疫印迹图;B:EIF5A1蛋白相对表达量柱状图。*P < 0.05,**P < 0.001,***P < 0.0001。
Figure 1. The basal expression levels of EIF5A1 in intrahepatic cholangiocarcinoma cell lines and intrahepatic bile duct epithelial cells ($ \bar x \pm s $,n = 3)
表 1 siRNA序列信息
Table 1. siRNA sequence information
siRNA 名称 序列(5'→3') siRNA1 EIF5A1-si-F GUCGAGAUGUCUACUUCGATT EIF5A1-si-R UCGAAGUAGACAUCUCGACTT siRNA2 EIF5A1-si-F CACGUGAGUUGGAAUCGAATT EIF5A1-si-R UUCGAUUCCAACUCACGUGTT -
[1] El Homsi M,Alkhasawneh A,Arif-Tiwari H,et al. Classification of intrahepatic cholangiocarcinoma[J]. Abdom Radiol (NY),2025,50(6):2522-2532. doi: 10.1007/s00261-024-04732-8 [2] Qurashi M,Vithayathil M,Khan S A. Epidemiology of cholangiocarcinoma[J]. Eur J Surg Oncol,2025,51(2): 107064. [3] Dong L,Lu D,Chen R,et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma[J]. Cancer Cell,2022,40(1):70-87.e15. doi: 10.1016/j.ccell.2021.12.006 [4] Taylor C A,Zheng Q,Liu Z,et al. Role of p38 and JNK MAPK signaling pathways and tumor suppressor p53 on induction of apoptosis in response to Ad-eIF5A1 in A549 lung cancer cells[J]. Mol Cancer,2013,12(1):35. [5] Schultz C R,Sheldon R D,Xie H,et al. New K50R mutant mouse models reveal impaired hypusination of eif5a2 with alterations in cell metabolite landscape[J]. Biol Open,2023,12(3):bio059647. [6] Seoane R,Llamas-González Y Y,Vidal S,et al. eIF5A is activated by virus infection or dsRNA and facilitates virus replication through modulation of interferon production[J]. Front Cell Infect Microbiol,2022,12:960138. [7] Ning L,Wang L,Zhang H,et al. Eukaryotic translation initiation factor 5A in the pathogenesis of cancers[J]. Oncol Lett,2020,20(4):81. [8] Zhang J,Li X,Liu X,et al. EIF5A1 promotes epithelial ovarian cancer proliferation and progression[J]. Biomed Pharmacother,2018,100(4):168-175. [9] Strnadel J,Choi S,Fujimura K,et al. eIF5A-PEAK1 signaling regulates YAP1/TAZ protein expression and pancreatic cancer cell growth[J]. Cancer Res,2017,77(8):1997-2007. doi: 10.1158/0008-5472.CAN-16-2594 [10] Wu Y Y,Wu G Q,Cai N L,et al. Comparison of human eukaryotic translation initiation factors 5A1 and 5AL1: Identification of amino acid residues important for EIF5A1 lysine 50 hypusination and its protein stability[J]. Int J Mol Sci,2023,24(7):6067. doi: 10.3390/ijms24076067 [11] Tunca B,Tezcan G,Cecener G,et al. Overexpression of CK20,MAP3K8 and EIF5A correlates with poor prognosis in early-onset colorectal cancer patients[J]. J Cancer Res Clin Oncol,2013,139(4):691-702. doi: 10.1007/s00432-013-1372-x [12] Li K P,Wan S,Wang C Y,et al. Multi-omics analysis reveals the impact of YAP/TEAD4-mediated EIF5A1 expression on mitochondrial apoptosis and bladder cancer progression[J]. BMC Cancer,2025,25(1):234. doi: 10.1186/s12885-025-13522-4 [13] Fostea R M,Fontana E,Torga G,et al. Recent progress in the systemic treatment of advanced/metastatic cholangiocarcinoma[J]. Cancers (Basel),2020,12(9):2599. doi: 10.3390/cancers12092599 [14] Abou-Alfa G K,Sahai V,Hollebecque A,et al. Pemigatinib for previously treated,locally advanced or metastatic cholangiocarcinoma: A multicentre,open-label,phase 2 study[J]. Lancet Oncol,2020,21(5):671-684. doi: 10.1016/S1470-2045(20)30109-1 [15] Lowery M A,Ptashkin R,Jordan E,et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: potential targets for intervention[J]. Clin Cancer Res,2018,24(17):4154-4161. doi: 10.1158/1078-0432.CCR-18-0078 [16] Lowery M A,Burris H A,Janku F,et al. Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: A phase 1 study[J]. Lancet Gastroenterol Hepatol,2019,4(9):711-720. doi: 10.1016/S2468-1253(19)30189-X [17] Schuller A P,Wu C C,Dever T E,et al. eIF5A functions globally in translation elongation and termination[J]. Mol Cell,2017,66(2):194-205.e5. doi: 10.1016/j.molcel.2017.03.003 [18] Maier B,Ogihara T,Trace A P,et al. The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice[J]. J Clin Invest,2010,120(6):2156-2170. doi: 10.1172/JCI38924 [19] Preukschas M,Hagel C,Schulte A,et al. Expression of eukaryotic initiation factor 5A and hypusine forming enzymes in glioblastoma patient samples: implications for new targeted therapies[J]. PLoS One,2012,7(8):e43468. doi: 10.1371/journal.pone.0043468 [20] Wu G Q,Xu Y M ,Lau A T Y. Recent insights into eukaryotic translation initiation factors 5A1 and 5A2 and their roles in human health and disease[J]. Cancer Cell Int,2020,20(1): 142. [21] Farache D,Liu L ,Lee A S Y. Eukaryotic initiation factor 5A2 regulates expression of antiviral genes[J]. J Mol Biol,2022,434(10): 167564. [22] Fujimura K,Wright T,Strnadel J,et al. A hypusine-eIF5A-PEAK1 switch regulates the pathogenesis of pancreatic cancer[J]. Cancer Res,2014,74(22):6671-6681. doi: 10.1158/0008-5472.CAN-14-1031 [23] Bristow J M,Reno T A,Jo M,et al. Dynamic phosphorylation of tyrosine 665 in pseudopodium-enriched atypical kinase 1 (PEAK1) is essential for the regulation of cell migration and focal adhesion turnover[J]. J Biol Chem,2013,288(1):123-131. doi: 10.1074/jbc.M112.410910 [24] Kelber J A,Reno T,Kaushal S,et al. KRas induces a Src/PEAK1/ErbB2 kinase amplification loop that drives metastatic growth and therapy resistance in pancreatic cancer[J]. Cancer Res,2012,72(10):2554-2564. doi: 10.1158/0008-5472.CAN-11-3552 [25] Fujimura K,Choi S,Wyse M,et al. Eukaryotic translation initiation factor 5A (EIF5A) regulates pancreatic cancer metastasis by modulating RhoA and rho-associated kinase (ROCK) protein expression levels[J]. J Biol Chem,2015,290(50):29907-29919. doi: 10.1074/jbc.M115.687418 [26] Mémin E,Hoque M,Jain M R,et al. Blocking eIF5A modification in cervical cancer cells alters the expression of cancer-related genes and suppresses cell proliferation[J]. Cancer Res,2014,74(2):552-562. doi: 10.1158/0008-5472.CAN-13-0474 [27] Geller C,Maddela J,Tuplano R,et al. Fibronectin,DHPS and SLC3A2 signaling cooperate to control tumor spheroid growth,subcellular eIF5A1/2 distribution and CDK4/6 inhibitor resistance[J]. bioRxiv,2024,84(9):536765. [28] Scuoppo C,Miething C,Lindqvist L,et al. A tumour suppressor network relying on the polyamine-hypusine axis[J]. Nature,2012,487(7406):244-248. doi: 10.1038/nature11126 [29] Taylor C A,Sun Z,Cliche D O,et al. Eukaryotic translation initiation factor 5A induces apoptosis in colon cancer cells and associates with the nucleus in response to tumour necrosis factor alpha signalling[J]. Exp Cell Res,2007,313(3):437-449. doi: 10.1016/j.yexcr.2006.09.030 [30] Sun Z,Cheng Z,Taylor C A,et al. Apoptosis induction by eIF5A1 involves activation of the intrinsic mitochondrial pathway[J]. J Cell Physiol,2010,223(3):798-809. doi: 10.1002/jcp.22100 [31] Li A L,Li H Y,Jin B F,et al. A novel eIF5A complex functions as a regulator of p53 and p53-dependent apoptosis[J]. J Biol Chem,2004,279(47):49251-49258. doi: 10.1074/jbc.M407165200 [32] Caraglia M,Park M H,Wolff E C,et al. eIF5A isoforms and cancer: Two brothers for two functions?[J]. Amino Acids,2013,44(1):103-109. doi: 10.1007/s00726-011-1182-x -
下载: