留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EIF5A1通过Wnt/β-Catenin信号通路促进肝内胆管癌细胞增殖和迁移侵袭

杨少华 许永平 赵棁预 方兴保 阮振兴

杨少华, 许永平, 赵棁预, 方兴保, 阮振兴. EIF5A1通过Wnt/β-Catenin信号通路促进肝内胆管癌细胞增殖和迁移侵袭[J]. 昆明医科大学学报, 2025, 46(7): 46-53. doi: 10.12259/j.issn.2095-610X.S20250706
引用本文: 杨少华, 许永平, 赵棁预, 方兴保, 阮振兴. EIF5A1通过Wnt/β-Catenin信号通路促进肝内胆管癌细胞增殖和迁移侵袭[J]. 昆明医科大学学报, 2025, 46(7): 46-53. doi: 10.12259/j.issn.2095-610X.S20250706
Shaohua YANG, Yongping XU, Zhuoyu ZHAO, Xingbao FANG, Zhenxing RUAN. EIF5A1 Promotes Proliferation,Migration and Invasion of Intrahepatic Cholangiocarcinoma Cells Through Wnt Signaling Pathway[J]. Journal of Kunming Medical University, 2025, 46(7): 46-53. doi: 10.12259/j.issn.2095-610X.S20250706
Citation: Shaohua YANG, Yongping XU, Zhuoyu ZHAO, Xingbao FANG, Zhenxing RUAN. EIF5A1 Promotes Proliferation,Migration and Invasion of Intrahepatic Cholangiocarcinoma Cells Through Wnt Signaling Pathway[J]. Journal of Kunming Medical University, 2025, 46(7): 46-53. doi: 10.12259/j.issn.2095-610X.S20250706

EIF5A1通过Wnt/β-Catenin信号通路促进肝内胆管癌细胞增殖和迁移侵袭

doi: 10.12259/j.issn.2095-610X.S20250706
基金项目: 云南省教育厅科学研究基金(2024J0320)
详细信息
    作者简介:

    杨少华(1988~),男,陕西渭南人,医学博士,主治医师,主要从事肝内胆管癌、胰腺导管腺癌转移侵袭分子机制研究工作

    通讯作者:

    阮振兴,E-mail:ruanzhenxing@126.com

  • 中图分类号: R735.8

EIF5A1 Promotes Proliferation,Migration and Invasion of Intrahepatic Cholangiocarcinoma Cells Through Wnt Signaling Pathway

  • 摘要:   目的  研究EIF5A1在肝内胆管癌细胞株和人肝内胆管上皮中的表达及其对HUCCT1细胞增殖、迁移侵袭和Wnt/β-Catenin信号通路的影响。  方法  使用Western blot方法检测EIF5A1在肝内胆管癌细胞株和人肝内胆管上皮细胞中的基础表达量,采用瞬时转染siRNA的方法沉默肝内胆管癌细胞HUCCT1中EIF5A1的表达,实验分组为空白对照组(Con)、siRNA1组、siRNA2组。通过Western blot方法筛选沉默效果最佳的siRNA,CCK-8、EdU细胞增殖实验和Transwell实验检测沉默EIF5A1后对HUCCT1细胞增殖和迁移侵袭能力的影响,Western blot检测HUCCT1细胞中沉默EIF5A1后对Wnt/β-Catenin信号通路的影响。  结果  CCK-8、EdU细胞增殖实验结果显示沉默EIF5A1后,细胞增殖能力下降(P < 0.05),Transwell迁移侵袭实验结果显示沉默EIF5A1后抑制了HUCCT1细胞迁移及侵袭(P < 0.05),沉默EIF5A1后Wnt/β-Catenin信号通路中的β-Catenin、Cyclin D1、MMP-2和Survivin蛋白表达明显下降(P < 0.05)。  结论  EIF5A1可能通过Wnt/β-Catenin信号通路促进肝内胆管癌细胞增殖和迁移侵袭。
  • 图  1  EIF5A1在肝内胆管癌细胞株及肝内胆管上皮细胞中的基础表达量($ \bar x \pm s $,n = 3)

    A:EIF5A1在肝内胆管癌细胞株及肝内胆管上皮细胞中的免疫印迹图;B:EIF5A1蛋白相对表达量柱状图。*P < 0.05,**P < 0.001,***P < 0.0001。

    Figure  1.  The basal expression levels of EIF5A1 in intrahepatic cholangiocarcinoma cell lines and intrahepatic bile duct epithelial cells ($ \bar x \pm s $,n = 3)

    图  2  不同siRNA 对HUCCT1细胞中EIF5A1的沉默效果($ \bar x \pm s $,n = 3)

    A:不同siRNA沉默HUCCT1细胞中EIF5A1表达的免疫印迹图;B:EIF5A1蛋白相对表达量柱状图;**P < 0.001。

    Figure  2.  Silencing effects of different siRNA on EIF5A1 in HUCCT1 cells($ \bar x \pm s $,n = 3)

    图  3  CCK-8实验显示Con组和siRNA2组细胞的增殖情况($ \bar x \pm s $,n = 5)

    *P < 0.05。

    Figure  3.  CCK-8 assay showing proliferation of cells in Con group and siRNA2 groups ($ \bar x \pm s $,n = 5)

    图  4  EdU实验显示Con组和siRNA2组细胞的增殖率($ \bar x \pm s $,n = 3)

    A:siRNA2沉默EIF5A1后对HUCCT1细胞增殖的影响(×200);B:沉默EIF5A1后细胞增殖率柱状图;*P < 0.05。

    Figure  4.  EdU assay showing the proliferation rate of cells in Con and siRNA2 groups($ \bar x \pm s $,n = 3)

    图  5  siRNA2沉默HUCCT1细胞中EIF5A1后对其迁移、侵袭能力的影响($ \bar x \pm s $,n = 3)

    A:siRNA2沉默EIF5A1后对HUCCT1细胞迁移的影响(×200);B:迁移细胞柱状图;C:siRNA2沉默EIF5A1后对HUCCT1细胞侵袭的影响(×200);D:侵袭细胞柱状图;*P < 0.05。

    Figure  5.  Effects of siRNA2 silencing EIF5A1 on its migration and invasion ability in HUCCT1 cells($ \bar x \pm s $,n = 3)

    图  6  沉默HUCCT1细胞中EIF5A1的表达对Wnt/β-Catenin信号通路的影响($ \bar x \pm s $,n = 3)

    A:沉默EIF5A1后 Wnt/β-Catenin信号通路关键蛋白免疫印迹图;B:蛋白相对表达量柱状图;*P < 0.05,**P < 0.001。

    Figure  6.  Effects of silencing EIF5A1 expression in HUCCT1 cells on the Wnt/β - Catenin signaling pathway($ \bar x \pm s $,n = 3)

    表  1  siRNA序列信息

    Table  1.   siRNA sequence information

    siRNA 名称 序列(5'→3'
    siRNA1 EIF5A1-si-F GUCGAGAUGUCUACUUCGATT
    EIF5A1-si-R UCGAAGUAGACAUCUCGACTT
    siRNA2 EIF5A1-si-F CACGUGAGUUGGAAUCGAATT
    EIF5A1-si-R UUCGAUUCCAACUCACGUGTT
    下载: 导出CSV
  • [1] El Homsi M,Alkhasawneh A,Arif-Tiwari H,et al. Classification of intrahepatic cholangiocarcinoma[J]. Abdom Radiol (NY),2025,50(6):2522-2532. doi: 10.1007/s00261-024-04732-8
    [2] Qurashi M,Vithayathil M,Khan S A. Epidemiology of cholangiocarcinoma[J]. Eur J Surg Oncol,2025,51(2): 107064.
    [3] Dong L,Lu D,Chen R,et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma[J]. Cancer Cell,2022,40(1):70-87.e15. doi: 10.1016/j.ccell.2021.12.006
    [4] Taylor C A,Zheng Q,Liu Z,et al. Role of p38 and JNK MAPK signaling pathways and tumor suppressor p53 on induction of apoptosis in response to Ad-eIF5A1 in A549 lung cancer cells[J]. Mol Cancer,2013,12(1):35.
    [5] Schultz C R,Sheldon R D,Xie H,et al. New K50R mutant mouse models reveal impaired hypusination of eif5a2 with alterations in cell metabolite landscape[J]. Biol Open,2023,12(3):bio059647.
    [6] Seoane R,Llamas-González Y Y,Vidal S,et al. eIF5A is activated by virus infection or dsRNA and facilitates virus replication through modulation of interferon production[J]. Front Cell Infect Microbiol,2022,12:960138.
    [7] Ning L,Wang L,Zhang H,et al. Eukaryotic translation initiation factor 5A in the pathogenesis of cancers[J]. Oncol Lett,2020,20(4):81.
    [8] Zhang J,Li X,Liu X,et al. EIF5A1 promotes epithelial ovarian cancer proliferation and progression[J]. Biomed Pharmacother,2018,100(4):168-175.
    [9] Strnadel J,Choi S,Fujimura K,et al. eIF5A-PEAK1 signaling regulates YAP1/TAZ protein expression and pancreatic cancer cell growth[J]. Cancer Res,2017,77(8):1997-2007. doi: 10.1158/0008-5472.CAN-16-2594
    [10] Wu Y Y,Wu G Q,Cai N L,et al. Comparison of human eukaryotic translation initiation factors 5A1 and 5AL1: Identification of amino acid residues important for EIF5A1 lysine 50 hypusination and its protein stability[J]. Int J Mol Sci,2023,24(7):6067. doi: 10.3390/ijms24076067
    [11] Tunca B,Tezcan G,Cecener G,et al. Overexpression of CK20,MAP3K8 and EIF5A correlates with poor prognosis in early-onset colorectal cancer patients[J]. J Cancer Res Clin Oncol,2013,139(4):691-702. doi: 10.1007/s00432-013-1372-x
    [12] Li K P,Wan S,Wang C Y,et al. Multi-omics analysis reveals the impact of YAP/TEAD4-mediated EIF5A1 expression on mitochondrial apoptosis and bladder cancer progression[J]. BMC Cancer,2025,25(1):234. doi: 10.1186/s12885-025-13522-4
    [13] Fostea R M,Fontana E,Torga G,et al. Recent progress in the systemic treatment of advanced/metastatic cholangiocarcinoma[J]. Cancers (Basel),2020,12(9):2599. doi: 10.3390/cancers12092599
    [14] Abou-Alfa G K,Sahai V,Hollebecque A,et al. Pemigatinib for previously treated,locally advanced or metastatic cholangiocarcinoma: A multicentre,open-label,phase 2 study[J]. Lancet Oncol,2020,21(5):671-684. doi: 10.1016/S1470-2045(20)30109-1
    [15] Lowery M A,Ptashkin R,Jordan E,et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: potential targets for intervention[J]. Clin Cancer Res,2018,24(17):4154-4161. doi: 10.1158/1078-0432.CCR-18-0078
    [16] Lowery M A,Burris H A,Janku F,et al. Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: A phase 1 study[J]. Lancet Gastroenterol Hepatol,2019,4(9):711-720. doi: 10.1016/S2468-1253(19)30189-X
    [17] Schuller A P,Wu C C,Dever T E,et al. eIF5A functions globally in translation elongation and termination[J]. Mol Cell,2017,66(2):194-205.e5. doi: 10.1016/j.molcel.2017.03.003
    [18] Maier B,Ogihara T,Trace A P,et al. The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice[J]. J Clin Invest,2010,120(6):2156-2170. doi: 10.1172/JCI38924
    [19] Preukschas M,Hagel C,Schulte A,et al. Expression of eukaryotic initiation factor 5A and hypusine forming enzymes in glioblastoma patient samples: implications for new targeted therapies[J]. PLoS One,2012,7(8):e43468. doi: 10.1371/journal.pone.0043468
    [20] Wu G Q,Xu Y M ,Lau A T Y. Recent insights into eukaryotic translation initiation factors 5A1 and 5A2 and their roles in human health and disease[J]. Cancer Cell Int,2020,20(1): 142.
    [21] Farache D,Liu L ,Lee A S Y. Eukaryotic initiation factor 5A2 regulates expression of antiviral genes[J]. J Mol Biol,2022,434(10): 167564.
    [22] Fujimura K,Wright T,Strnadel J,et al. A hypusine-eIF5A-PEAK1 switch regulates the pathogenesis of pancreatic cancer[J]. Cancer Res,2014,74(22):6671-6681. doi: 10.1158/0008-5472.CAN-14-1031
    [23] Bristow J M,Reno T A,Jo M,et al. Dynamic phosphorylation of tyrosine 665 in pseudopodium-enriched atypical kinase 1 (PEAK1) is essential for the regulation of cell migration and focal adhesion turnover[J]. J Biol Chem,2013,288(1):123-131. doi: 10.1074/jbc.M112.410910
    [24] Kelber J A,Reno T,Kaushal S,et al. KRas induces a Src/PEAK1/ErbB2 kinase amplification loop that drives metastatic growth and therapy resistance in pancreatic cancer[J]. Cancer Res,2012,72(10):2554-2564. doi: 10.1158/0008-5472.CAN-11-3552
    [25] Fujimura K,Choi S,Wyse M,et al. Eukaryotic translation initiation factor 5A (EIF5A) regulates pancreatic cancer metastasis by modulating RhoA and rho-associated kinase (ROCK) protein expression levels[J]. J Biol Chem,2015,290(50):29907-29919. doi: 10.1074/jbc.M115.687418
    [26] Mémin E,Hoque M,Jain M R,et al. Blocking eIF5A modification in cervical cancer cells alters the expression of cancer-related genes and suppresses cell proliferation[J]. Cancer Res,2014,74(2):552-562. doi: 10.1158/0008-5472.CAN-13-0474
    [27] Geller C,Maddela J,Tuplano R,et al. Fibronectin,DHPS and SLC3A2 signaling cooperate to control tumor spheroid growth,subcellular eIF5A1/2 distribution and CDK4/6 inhibitor resistance[J]. bioRxiv,2024,84(9):536765.
    [28] Scuoppo C,Miething C,Lindqvist L,et al. A tumour suppressor network relying on the polyamine-hypusine axis[J]. Nature,2012,487(7406):244-248. doi: 10.1038/nature11126
    [29] Taylor C A,Sun Z,Cliche D O,et al. Eukaryotic translation initiation factor 5A induces apoptosis in colon cancer cells and associates with the nucleus in response to tumour necrosis factor alpha signalling[J]. Exp Cell Res,2007,313(3):437-449. doi: 10.1016/j.yexcr.2006.09.030
    [30] Sun Z,Cheng Z,Taylor C A,et al. Apoptosis induction by eIF5A1 involves activation of the intrinsic mitochondrial pathway[J]. J Cell Physiol,2010,223(3):798-809. doi: 10.1002/jcp.22100
    [31] Li A L,Li H Y,Jin B F,et al. A novel eIF5A complex functions as a regulator of p53 and p53-dependent apoptosis[J]. J Biol Chem,2004,279(47):49251-49258. doi: 10.1074/jbc.M407165200
    [32] Caraglia M,Park M H,Wolff E C,et al. eIF5A isoforms and cancer: Two brothers for two functions?[J]. Amino Acids,2013,44(1):103-109. doi: 10.1007/s00726-011-1182-x
  • [1] 吴起杰, 李勇, 张瑜, 冉凤明, 丁荣, 张麒, 杨银山.  环指蛋白41调控胆管癌细胞增殖和转移的生物学作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250702
    [2] 翟瑜如, 白艳, 李云云.  FGF2通过PERK/EIF2α/ATF4信号通路调节缺氧诱导的巩膜成纤维细胞增殖和胶原代谢, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241004
    [3] 秦祥川, 李金秋, 黄晓婧, 忽吐比丁·库尔班, 阿仙姑·哈斯木.  HPV E6通过Rap1信号通路影响宫颈癌细胞增殖、侵袭及迁移的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240902
    [4] 张紫微, 郑甲林, 许晓宇, 王红.  二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231026
    [5] 张晔琳, 马丽娅, 彭旭晖, 杨禾丰, 佘睿.  hsa-let-7a-5p调控牙周膜干细胞增殖及凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231028
    [6] 刘邦卿, 李剑锋, 刘晓辉, 张劲男, 梁金屏.  miR-196b靶向ERG促进肺腺癌的增殖和迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231023
    [7] 冯毅, 王小峰, 白西民, 姚胜, 党俊涛, 赵云洁, 蔡冰.  miR-149-5p通过MSH5/Wnt信号通路调控胶质瘤细胞恶性生物学行为, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230823
    [8] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230926
    [9] 张玮, 王保全, 雷喜锋, 王旭, 张梁.  miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221206
    [10] 王保全, 张伟, 田园, 雷喜锋, 王旭.  miR-142-5p通过CCND1调控胆囊癌细胞的增殖和转移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220223
    [11] 赵斌, 段元鹏, 张国颖, 毕城伟, 杨李波, 施致裕, 杨勇, 张建朋, 高婷.  CircRNA EZH2通过调控miR-30c-5p促进前列腺癌细胞增殖和迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220731
    [12] 李刚, 杨少华, 沈甍, 谢楠, 张贯博, 王家兴, 李金淞.  EIF5A2和Ki67在肝内胆管癌组织中的表达及临床意义, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220630
    [13] 廖周俊, 杨少华, 刘立鑫, 胡晟, 陈轶晖, 康强, 张小文.  AK4对肝内胆管癌细胞HUCCT1增殖、迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220611
    [14] 杨兰, 贾霄, 姜奕彤, 崔琪, 刘光赐, 何颖红.  UBE2C基因沉默表达对人胃癌AGS细胞增殖和迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210504
    [15] 李刚, 李金凇, 谢楠, 李春满, 魏雷, 曹凡, 苏莹珍.  B7-H4在肝内胆管癌的表达及临床意义, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210415
    [16] 杨少华, 廖周俊, 胡晟, 洪茂林, 宋志美, 危群, 张小文.  真核翻译起始因子-5A2在肝内胆管癌中的表达及意义, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210505
    [17] 贾楠楠.  Gnaq对SH-SY5Y细胞增殖的作用及机制, 昆明医科大学学报.
    [18] 李政.  磁共振结合CA199、CEA、CA50、ALP对诊断肝内胆管结石合并早期胆管癌的可行性, 昆明医科大学学报.
    [19] 王海峰.  上调microRNA-101沉默EZH2基因表达对人膀胱癌T24细胞系增殖和凋亡的影响, 昆明医科大学学报.
    [20] 刘佳鑫.  SDF-1/CXCR4在恶性胶质瘤细胞体外增殖、迁移及侵袭中的作用, 昆明医科大学学报.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  93
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-23
  • 刊出日期:  2025-07-21

目录

    /

    返回文章
    返回