留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外泌体miR-210-3p通过靶向FBXO31促进宫颈癌的化疗耐药和干细胞特性

唐晓玲 谢帮芳 黄海龙

唐晓玲, 谢帮芳, 黄海龙. 外泌体miR-210-3p通过靶向FBXO31促进宫颈癌的化疗耐药和干细胞特性[J]. 昆明医科大学学报, 2025, 46(7): 54-64. doi: 10.12259/j.issn.2095-610X.S20250707
引用本文: 唐晓玲, 谢帮芳, 黄海龙. 外泌体miR-210-3p通过靶向FBXO31促进宫颈癌的化疗耐药和干细胞特性[J]. 昆明医科大学学报, 2025, 46(7): 54-64. doi: 10.12259/j.issn.2095-610X.S20250707
Xiaoling TANG, Bangfang XIE, Hailong HUANG. Exosomal Mir-210-3p Promotes Chemoresistance and Stem Cell Properties in Cervical Cancer by Targeting FBXO31[J]. Journal of Kunming Medical University, 2025, 46(7): 54-64. doi: 10.12259/j.issn.2095-610X.S20250707
Citation: Xiaoling TANG, Bangfang XIE, Hailong HUANG. Exosomal Mir-210-3p Promotes Chemoresistance and Stem Cell Properties in Cervical Cancer by Targeting FBXO31[J]. Journal of Kunming Medical University, 2025, 46(7): 54-64. doi: 10.12259/j.issn.2095-610X.S20250707

外泌体miR-210-3p通过靶向FBXO31促进宫颈癌的化疗耐药和干细胞特性

doi: 10.12259/j.issn.2095-610X.S20250707
基金项目: 四川省卫生健康科研基金(23PJ249)
详细信息
    作者简介:

    唐晓玲(1987~),女,四川安县人,医学学士,主治医师,主要从事妇产科研究工作

  • 中图分类号: R711.74

Exosomal Mir-210-3p Promotes Chemoresistance and Stem Cell Properties in Cervical Cancer by Targeting FBXO31

  • 摘要:   目的  探讨外泌体中的microRNA(miRNA)miR-210-3p在宫颈癌(cervical cancer,CC)化疗耐药及干细胞特性形成中的作用,并揭示其靶向F-盒蛋白31(F-box protein 31,FBXO31)蛋白的潜在机制。  方法  以顺铂敏感Hela细胞和顺铂耐药HeLa/DDP细胞为对象,通过超速离心法提取HeLa外泌体,并通过PKH26红色荧光探针验证HeLa/DDP细胞对外泌体的摄取。将NC inhibitor、miR-210-3p inhibitor单独或联合si-NC、si-FBXO31转入HeLa细胞。转染24 h后,提取外泌体,并与HeLa/DDP细胞共培养48 h。然后将HeLa/DDP细胞分为五组:Ctrl组(PBS空白对照)、NC inhibitor组、miR-210-3p inhibitor组、miR-210-3p inhibitor+si-NC组和miR-210-3p inhibitor+si-FBXO31组。RT-qPCR检测miR-210-3p 和FBXO31表达水平;采用MTT法检测IC50;瘤球形成实验检测干细胞特性;Western Blot检测FBXO31和干细胞标志物的表达水平;双荧光素酶检测miR-210-3p 与FBXO31靶向关系;裸鼠移植瘤检测外泌体miR-210-3p对宫颈癌体内转移的影响。  结果  与人正常宫颈上皮细胞HCeEpiC相比,miR-210-3p在宫颈癌细胞系HeLa、HT3、C33A和Caski显著高表达(P < 0.05),而FBXO31显著低表达(P < 0.05)。与HeLa细胞相比,HeLa/DDP细胞IC50和miR-210-3p的表达水平显著增加(P < 0.05),且HeLa的外泌体可被HeLa/DDP细胞摄取。与NC inhibitor组相比,miR-210-3p inhibitor组的miR-210-3p、Oct-4、SOX2和NANOG表达水平、IC50显著降低(P < 0.05),而FBXO31表达显著增加(P < 0.05)。与miR-210-3p inhibitor+si-NC组相比,miR-210-3p inhibitor+si-FBXO31组的FBXO31表达显著降低(P < 0.05),IC50、Oct-4、SOX2和NANOG表达水平显著增加(P < 0.05)。与对照组和空载组相比,miR-210-3p干扰组的肿瘤重量和肿瘤体积显著降低(P < 0.05)。  结论  外泌体miR-210-3p通过靶向抑制FBXO3,从而促进CC细胞的对化疗药物DDP耐药性和干细胞特性。
  • 图  1  FBXO31在CC细胞系中的表达(n = 3,$\bar x \pm s $)

    Figure  1.  Expression of FBXO31 in CC cell lines (n = 3,$\bar x \pm s $)

    图  2  外泌体的提取、鉴定和摄取(n = 3,$\bar x \pm s $)

    A:透射电子显微镜观察外泌体形状;B: 纳米颗粒示踪分析外泌体粒径;C:CD9和CD81蛋白表达水平;D:HeLa/DDP细胞对HeLa细胞的外泌体摄取作用(×2000,标尺:100 nm)。

    Figure  2.  Isolation,identification and uptake of exosomes (n = 3,$\bar x \pm s $)

    图  3  外泌体来源miR-210-3p对 HeLa/DDP细胞干细胞特性的影响(n = 3,$\bar x \pm s $)

    A:各组干细胞标志物Oct-4、SOX2和NANOG的表达水平;B:瘤球形成实验(×400,标尺:25 µm)。

    Figure  3.  Effects of exosomal miR-210-3p on stem cell properties of HeLa/DDP cells (n = 3,$\bar x \pm s $)

    图  4  FBXO31是miR-210-3p的靶标(n = 3,$\bar x \pm s $)

    A:miR-210-3p和FBXO31预测靶点;B:各组FBXO31的表达水平。

    Figure  4.  FBXO31 is a target of miR-210-3p (n = 3,$\bar x \pm s $)

    图  5  外泌体来源miR-210-3p对 HeLa/DDP细胞干细胞特性的影响(n = 3,$\bar x \pm s $)

    A:各组干细胞标志物Oct-4、SOX2和NANOG的表达水平;B:瘤球形成实验(×800,标尺:25 µm)。

    Figure  5.  Effects of exosomal miR-210-3p on stem cell properties of HeLa/DDP cells (n = 3,$\bar x \pm s $)

    图  6  各组裸鼠移植瘤(n = 5,$\bar x \pm s $)

    Figure  6.  Transplanted tumor of nude mice in each group (n = 5,$\bar x \pm s $)

    表  1  引物序列信息

    Table  1.   Primer sequence information

    基因 引物类型 序列 5'→3'
    miR-210-3p F CTGTGCGTGTGACAG
    R GTGCAGGGTCCGAGGT
    FBXO31 F CCATACGGAGGACTGCTGA
    R GTACATCCACCCGATGATGA
    U6 F CAGCACATATACTAAAATGGAACG
    R ACGAATTTGCGTGTCATCC
    β-actin F CAGAAGGAGATTACTGCT
    R TACTCCTGCTTGCTGATCCAC
    下载: 导出CSV

    表  2  miR-210-3p和FBXO31在CC细胞系中的表达(n = 3,$ \bar x \pm s $)

    Table  2.   Expression of miR-210-3p and FBXO31 in CC cell lines (n = 3,$ \bar x \pm s $)

    细胞系 miR-210-3p mRNA FBXO31 mRNA FBXO31蛋白
    HCeEpiC 1.00 ± 0.04 1.01 ± 0.04 0.97 ± 0.08
    HeLa 3.86 ± 0.24 0.20 ± 0.03 0.16 ± 0.02
    HT3 2.04 ± 0.15 0.32 ± 0.04 0.25 ± 0.01
    C33A 1.97 ± 0.09 0.67 ± 0.06 0.64 ± 0.05
    Caski 2.13 ± 0.29 0.65 ± 0.05 0.60 ± 0.04
    F 92.273 150.515 136.132
    P <0.001* <0.001* <0.001*
      *P < 0.05;与HCeEpiC相比,P < 0.05。
    下载: 导出CSV

    表  3  DDP对HeLa/DDP和HeLa细胞的抑制率(n = 3,$ \bar x \pm s $)

    Table  3.   Inhibition rate of DDP on HeLa/DDP and HeLa cells (n = 3,$ \bar x \pm s $)

    组别抑制率(%)IC50
    (μg/mL)
    DDP
    0 μg/mL
    DDP
    2.0 μg/mL
    DDP
    4.0 μg/mL
    DDP
    8.0 μg/mL
    DDP
    16.0 μg/mL
    DDP
    32.0 μg/mL
    DDP
    64.0 μg/mL
    FP
    HeLa0.00 ± 0.0015.49 ± 1.32a27.03 ± 3.45b46.04 ± 3.42c65.32 ± 3.79d82.62 ± 4.29e97.98 ± 1.03f474.235<0.001*8.59 ± 0.95
    HeLa/DDP0.00 ± 0.008.08 ± 1.15a11.95 ± 2.12b19.49 ± 2.91c29.95 ± 3.35d45.29 ± 3.16e67.91 ± 4.28f323.727<0.001*34.03 ± 2.95
    t-7.3316.45010.24112.11113.43511.831--14.218
    P-0.002*0.003*0.001*<0.001*<0.001*<0.001*--<0.001*
      *P < 0.05;横向比较:与DDP 0 μg/mL相比,aP < 0.05;与DDP 2.0 μg/mL相比,bP < 0.05;与DDP 4.0 μg/mL相比,cP < 0.05;与DDP 8.0 μg/mL相比,dP < 0.05;与DDP 16.0 μg/mL相比,eP < 0.05;与DDP 32.0 μg/mL相比,fP < 0.05。
    下载: 导出CSV

    表  4  miR-210-3p在HeLa/DDP和HeLa细胞的表达水平(n = 3,$ \bar x \pm s $)

    Table  4.   Expression levels of miR-210-3p in HeLa/DDP and HeLa cells (n = 3,$ \bar x \pm s $)

    组别 miR-210-3p mRNA
    HeLa 0.39 ± 0.04
    HeLa/DDP 1.02 ± 0.03
    t 21.824
    P <0.001*
      *P < 0.05。
    下载: 导出CSV

    表  5  CD9和CD81在外泌体和细胞裂解液的表达水平(n = 3,$ \bar x \pm s $)

    Table  5.   Expression levels of CD9 and CD81 in exosomes and cell lysates (n = 3,$ \bar x \pm s $)

    样本来源 CD9 CD81 Calnexin
    外泌体 1.01 ± 0.08 0.83 ± 0.07 0.02 ± 0.01
    细胞裂解液 0.20 ± 0.04 0.11 ± 0.01 1.09 ± 0.10
    t 15.686 17.636 18.441
    P <0.001* <0.001* <0.001*
      *P < 0.05。
    下载: 导出CSV

    表  6  各组 miR-210-3p的表达水平(n = 3,$ \bar x \pm s $)

    Table  6.   Expression levels of miR-210-3p in each group (n = 3,$ \bar x \pm s $)

    组别 miR-210-3p
    Ctrl组 1.00 ± 0.09
    NC inhibitor组 0.99 ± 0.08
    miR-210-3p inhibitor组 0.24 ± 0.03∆#
    F 11.058
    P <0.001*
      *P < 0.05;与Ctrl组相比,P < 0.05;与NC inhibitor组相比,#P < 0.05。
    下载: 导出CSV

    表  7  DDP对HeLa/DDP和HeLa细胞的抑制率(n = 3,$ \bar x \pm s $)

    Table  7.   Inhibitory rate of DDP on HeLa/DDP and HeLa cells (n = 3,$ \bar x \pm s $)

    组别 抑制率(%) IC50
    (μg/mL)
    DDP
    0 μg/mL
    DDP
    2.0 μg/mL
    DDP
    4.0 μg/mL
    DDP
    8.0 μg/mL
    DDP
    16.0 μg/mL
    DDP
    32.0 μg/mL
    DDP
    64.0 μg/mL
    F P
    Ctrl组 0.00±0.00 7.60±0.97a 12.27±2.17b 19.92±2.43c 31.24±3.55d 47.01±3.41e 67.59±3.63f 245.673 <0.001* 33.09±1.42
    NC inhibitor组 0.00±0.00 7.57±0.87a 12.13±1.89b 20.07±2.74c 30.10±3.12d 46.32±2.99e 68.16±3.97f 260.926 <0.001* 33.27±1.51
    miR-210-3p
    inhibitor组
    0.00±0.00 10.24±0.94a△# 19.75±2.13b△# 30.26±2.86c△# 42.56±3.74d△# 58.93±4.13e△# 78.98±3.36f△# 291.249 <0.001* 20.10±1.36△#
    F - 8.379 13.345 14.642 11.756 12.023 9.215 - - 83.522
    P - 0.019* 0.006* 0.005* 0.008* 0.008* 0.015* - - <0.001*
      *P < 0.05;横向比较:与DDP 0 μg/mL相比,aP < 0.05;与DDP 2.0 μg/mL相比,bP < 0.05;与DDP 4.0 μg/mL相比,cP < 0.05;与DDP 8.0 μg/mL相比,dP < 0.05;与DDP 16.0 μg/mL相比,eP < 0.05;与DDP 32.0 μg/mL相比,fP < 0.05。纵向比较:与Ctrl组相比,P < 0.05;与NC inhibitor组相比,#P < 0.05。
    下载: 导出CSV

    表  8  各组干细胞标志物Oct-4、SOX2和NANOG的表达水平(n = 3,$ \bar x \pm s $)

    Table  8.   Expression levels of stem cell markers Oct-4,SOX2 and NANOG in each group (n = 3,$ \bar x \pm s $)

    组别 Oct-4 SOX2 NANOG
    Ctrl组 1.06 ± 0.07 0.96 ± 0.05 1.00 ± 0.07
    NC inhibitor组 1.04 ± 0.08 0.98 ± 0.06 1.01 ± 0.06
    miR-210-3p
    inhibitor组
    0.43 ± 0.05△# 0.40 ± 0.03△# 0.31 ± 0.03△#
    F 83.630 139.371 154.181
    P <0.001* <0.001* <0.001*
      *P < 0.05;与Ctrl组相比,P < 0.05;与NC inhibitor组相比,#P < 0.05。
    下载: 导出CSV

    表  9  双荧光素酶实验(n = 3,$ \bar x \pm s $)

    Table  9.   Dual-luciferase reporter assay (n = 3,$ \bar x \pm s $)

    组别 FBXO31-WT FBXO31-MUT
    NC mimic组 1.00 ± 0.05 1.01 ± 0.03
    miR-210-3p mimic组 0.42 ± 0.03 1.00 ± 0.02
    t 17.229 0.480
    P <0.001* 0.656
      *P < 0.05。
    下载: 导出CSV

    表  10  各组FBXO31的表达水平(n = 3,$ \bar x \pm s $)

    Table  10.   Expression levels of FBXO31 in each group (n = 3,$ \bar x \pm s $)

    组别 FBXO31 mRNA FBXO31 蛋白
    Ctrl组 0.99 ± 0.06 0.41 ± 0.02
    NC inhibitor组 1.00 ± 0.07 0.39 ± 0.03
    miR-210-3p inhibitor组 3.15 ± 0.24△# 1.10 ± 0.07△#
    miR-210-3p inhibitor+si-NC组 3.09 ± 0.20 1.07 ± 0.08
    miR-210-3p inhibitor
    +si-FBXO31组
    1.57 ± 0.11 0.77 ± 0.06
    F 149.353 108.907
    P <0.001* <0.001*
      *P < 0.05;与Ctrl组相比,P < 0.05;与NC inhibitor组相比,#P < 0.05;与miR-210-3p inhibitor+si-NC组相比,P < 0.05。
    下载: 导出CSV

    表  11  DDP对HeLa/DDP和HeLa细胞的抑制率(n = 3,$ \bar x \pm s $).

    Table  11.   Inhibitory rate of DDP on HeLa/DDP and HeLa cells (n = 3,$ \bar x \pm s $)

    组别 抑制率(%) IC50
    (μg/mL)
    DDP
    0 μg/mL
    DDP
    2.0 μg/mL
    DDP
    4.0 μg/mlL
    DDP
    8.0 μg/mL
    DDP
    16.0 μg/mL
    DDP
    32.0 μg/mL
    DDP
    64.0 μg/mL
    F P
    miR-210-3p inhibitor+
    si-NC组
    0.00 ± 0.00 10.33 ± 0.57a 19.32 ± 1.75b 31.06 ± 2.51c 42.99 ± 3.25d 55.34 ± 1.91e 78.23 ± 1.67f 329.076 <0.001* 20.64 ± 1.30
    miR-210-3p inhibitor+
    si-FBXO31组
    0.00 ± 0.00 8.61 ± 0.44a 14.26 ± 1.35b 23.47 ± 1.75c 32.62 ± 2.13d 50.03 ± 1.64e 70.45 ± 1.19f 937.739 <0.001* 29.07 ± 1.87*
    t - 4.137 3.965 4.296 3.138 3.653 6.571 - - 6.411
    P - 0.014* 0.017* 0.013* 0.035* 0.022* 0.003* - - 0.003*
      *P < 0.05;横向比较:与DDP 0 μg/mL相比,aP < 0.05;与DDP 2.0 μg/mL相比,bP < 0.05;与DDP 4.0 μg/mL相比,cP < 0.05;与DDP 8.0 μg/mL相比,dP < 0.05;与DDP 16.0 μg/mL相比,eP < 0.05;与DDP 32.0 μg/mL相比,fP < 0.05。
    下载: 导出CSV

    表  12  各组干细胞标志物Oct-4、SOX2和NANOG的表达水平(n = 3,$ \bar x \pm s $)

    Table  12.   Expression levels of stem cell markers Oct-4,SOX2 and NANOG in each group (n = 3,$ \bar x \pm s $)

    组别Oct-4SOX2NANOG
    miR-210-3p inhibitor+si-NC组0.41 ± 0.040.38 ± 0.040.30 ± 0.03
    miR-210-3p inhibitor+si-FBXO31组0.77 ± 0.080.62 ± 0.050.81 ± 0.07
    t6.9716.49211.599
    P0.002*0.003*<0.001*
      *P < 0.05。
    下载: 导出CSV

    表  13  各组裸鼠移植瘤重量和体积的比较(n = 5,$ \bar x \pm s $)

    Table  13.   Comparison of transplanted tumor weight and volume in each group of nude mice (n = 5,$ \bar x \pm s $)

    组别 肿瘤重量/(mg) 肿瘤体积/(mm3
    7 d 14 d 21 d 28 d
    对照组 523.49 ± 55.76 90.47 ± 8.19 162.16 ± 13.44 375.94 ± 37.84 505.48 ± 46.31
    空载组 530.72 ± 49.04 92.67 ± 7.94 167.20 ± 15.38 380.25 ± 35.72 512.04 ± 51.70
    miR-210-3p干扰组 312.06 ± 27.85△# 53.19 ± 6.48△# 97.93 ± 7.17△#▽ 173.43 ± 19.10△#▽ 300.69. ± 28.46△#▽
    F 73.586 85.797 95.492 136.372 77.145
    P <0.001* <0.001* <0.001* <0.001* <0.001*
      *P < 0.05;与对照组相比,P < 0.05;与空载组相比,P < 0.05;与前日期相比,P < 0.05。
    下载: 导出CSV
  • [1] Siegel R L,Miller K D,Fuchs H E,et al. Cancer statistics,2021[J]. CA Cancer J Clinicians,2021,71(1):7-33. doi: 10.3322/caac.21654
    [2] Islami F,Fedewa S A,Jemal A. Trends in cervical cancer incidence rates by age,race/ethnicity,histological subtype,and stage at diagnosis in the United States[J]. Prev Med,2019,123:316-323. doi: 10.1016/j.ypmed.2019.04.010
    [3] Simms K T,Steinberg J,Caruana M,et al. Impact of scaled up human papillomavirus vaccination and cervical screening and the potential for global elimination of cervical cancer in 181 countries,2020-99: A modelling study[J]. Lancet Oncol,2019,20(3):394-407. doi: 10.1016/S1470-2045(18)30836-2
    [4] Suk R,Hong Y R,Rajan S S,et al. Assessment of US preventive services task force guideline-concordant cervical cancer screening rates and reasons for underscreening by age,race and ethnicity,sexual orientation,rurality,and insurance,2005 to 2019[J]. JAMA Netw Open,2022,5(1):e2143582. doi: 10.1001/jamanetworkopen.2021.43582
    [5] Bhattacharjee R,Dey T,Kumar L,et al. Cellular landscaping of cisplatin resistance in cervical cancer[J]. Biomed Pharmacother,2022,153:113345. doi: 10.1016/j.biopha.2022.113345
    [6] Kalluri R, LeBleu V S. The biology, function, and biomedical applications of exosomes [J]. Science, 2020, 367(6478): eaau6977.

    Kalluri R,LeBleu V S. The biology,function,and biomedical applications of exosomes [J]. Science,2020,367(6478):eaau6977.
    [7] Zhu X,Long L,Xiao H,et al. Cancer-derived exosomal miR-651 as a diagnostic marker restrains cisplatin resistance and directly targets ATG3 for cervical cancer[J]. Dis Markers,2021,2021:1544784.
    [8] Ge L,Zhou F,Nie J,et al. Hypoxic colorectal cancer-secreted exosomes deliver miR-210-3p to normoxic tumor cells to elicit a protumoral effect[J]. Exp Biol Med (Maywood),2021,246(17):1895-1906. doi: 10.1177/15353702211011576
    [9] 刘尧尧,刘娇,张帆. miR-210-3p通过靶向调控SMAD4基因对宫颈癌Hela细胞增殖、侵袭的影响[J]. 解剖科学进展,2021,27(06):657-660.
    [10] Karabay A Z,Ozkan T,Karadag Gurel A,et al. Identification of exosomal microRNAs and related hub genes associated with imatinib resistance in chronic myeloid leukemia[J]. Naunyn Schmiedebergs Arch Pharmacol,2024,397(12):9701-9721. doi: 10.1007/s00210-024-03198-1
    [11] 谷宁,王振祥,王鹏辉,等. 基于miR-29c/FBXO31轴研究铁线莲总皂苷对食管癌细胞化疗耐药的作用机制[J]. 中药药理与临床,2024,40(2):84-90.
    [12] 秦晓洋,张伟杰. FBXO31对人宫颈癌细胞C-33A增殖的影响及其在人宫颈癌组织中的表达和临床意义研究[J]. 国际妇产科学杂志,2020,47(3):350-353+363. doi: 10.3969/j.issn.1674-1870.2020.03.025
    [13] Lee Y,Nam S. Performance comparisons of AlexNet and GoogLeNet in cell growth inhibition IC50 prediction[J]. Int J Mol Sci,2021,22(14):7721. doi: 10.3390/ijms22147721
    [14] Jia Y,Zou K,Zou L. Research progress of metabolomics in cervical cancer[J]. Eur J Med Res,2023,28(1):586. doi: 10.1186/s40001-023-01490-z
    [15] Huang S,Dong M,Chen Q. Tumor-derived exosomes and their role in breast cancer metastasis[J]. Int J Mol Sci,2022,23(22):13993. doi: 10.3390/ijms232213993
    [16] Hosseinikhah S M,Gheybi F,Moosavian S A,et al. Role of exosomes in tumour growth,chemoresistance and immunity: State-of-the-art[J]. J Drug Target,2023,31(1):32-50. doi: 10.1080/1061186X.2022.2114000
    [17] Ingenito F,Roscigno G,Affinito A,et al. The role of exo-miRNAs in cancer: A focus on therapeutic and diagnostic applications[J]. Int J Mol Sci,2019,20(19):E4687. doi: 10.3390/ijms20194687
    [18] Nilsen A,Jonsson M,Aarnes E K,et al. Reference microRNAs for RT-qPCR assays in cervical cancer patients and their application to studies of HPV16 and hypoxia biomarkers[J]. Transl Oncol,2019,12(3):576-584. doi: 10.1016/j.tranon.2018.12.010
    [19] Yang Q,Zhao S,Shi Z,et al. Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling[J]. J Exp Clin Cancer Res,2021,40(1):120. doi: 10.1186/s13046-021-01901-1
    [20] Canovai M,Evangelista M,Mercatanti A,et al. Secreted miR-210-3p,miR-183-5p and miR-96-5p reduce sensitivity to docetaxel in prostate cancer cells[J]. Cell Death Discov,2023,9(1):445. doi: 10.1038/s41420-023-01696-4
    [21] Hisakane K,Seike M,Sugano T,et al. Exosome-derived miR-210 involved in resistance to osimertinib and epithelial-mesenchymal transition in EGFR mutant non-small cell lung cancer cells[J]. Thorac Cancer,2021,12(11):1690-1698. doi: 10.1111/1759-7714.13943
    [22] Saygin C,Matei D,Majeti R,et al. Targeting cancer stemness in the clinic: From hype to hope[J]. Cell Stem Cell,2019,24(1):25-40. doi: 10.1016/j.stem.2018.11.017
    [23] Wang Q,Liang N,Yang T,et al. DNMT1-mediated methylation of BEX1 regulates stemness and tumorigenicity in liver cancer[J]. J Hepatol,2021,75(5):1142-1153. doi: 10.1016/j.jhep.2021.06.025
    [24] Tsao A N,Chuang Y S,Lin Y C,et al. Dinaciclib inhibits the stemness of two subtypes of human breast cancer cells by targeting the FoxM1 and Hedgehog signaling pathway[J]. Oncol Rep,2022,47(5):105. doi: 10.3892/or.2022.8316
    [25] Dhanyamraju P K,Schell T D,Amin S,et al. Drug-tolerant persister cells in cancer therapy resistance[J]. Cancer Res,2022,82(14):2503-2514. doi: 10.1158/0008-5472.CAN-21-3844
    [26] Lin T C,Wang K H,Chuang K H,et al. Oct-4 induces cisplatin resistance and tumor stem cell-like properties in endometrial carcinoma cells[J]. Taiwan J Obstet Gynecol,2023,62(1):16-21. doi: 10.1016/j.tjog.2022.08.014
    [27] Robinson M,Gilbert S F,Waters J A,et al. Characterization of SOX2,OCT4 and NANOG in ovarian cancer tumor-initiating cells[J]. Cancers (Basel),2021,13(2):E262. doi: 10.3390/cancers13020262
    [28] Zhao F,Yan L,Zhao X,et al. Aberrantly high FBXO31 impairs oocyte quality in premature ovarian insufficiency[J]. Aging Dis,2024,15(2):804-823.
    [29] Chen K,Wang Y,Dai X,et al. FBXO31 is upregulated by METTL3 to promote pancreatic cancer progression via regulating SIRT2 ubiquitination and degradation[J]. Cell Death Dis,2024,15(1):37. doi: 10.1038/s41419-024-06425-y
    [30] Zhu Z,Zheng Y,He H,et al. FBXO31 sensitizes cancer stem cells-like cells to cisplatin by promoting ferroptosis and facilitating proteasomal degradation of GPX4 in cholangiocarcinoma[J]. Liver Int,2022,42(12):2871-2888. doi: 10.1111/liv.15462
    [31] Zhang N,Meng Y,Mao S,et al. FBXO31-mediated ubiquitination of OGT maintains O-GlcNAcylation homeostasis to restrain endometrial malignancy[J]. Nat Commun,2025,16(1):1274. doi: 10.1038/s41467-025-56633-z
  • [1] 严怡然, 沈成万, 尚香玉, 冯婵, 李金秋, 阿仙姑·哈斯木.  高良姜素通过影响Hippo/YAP通路抑制宫颈癌Hela细胞迁移和侵袭, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250105
    [2] 张春瑜, 罗健, 周琦.  miR-147a调控铁死亡影响宫颈癌细胞的侵袭转移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20251006
    [3] 舒若, 罗华友, 宋丽君, 高宇, 侯艳, 张鑫锋, 李颖.  基于生物信息学和细胞实验探讨APOE在结肠癌耐药中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250902
    [4] 沈晓霞, 冯春晖, 赵晓东.  基于外泌体STAT3蛋白转运探讨干细胞在对梗死心脏修复及心电生理的影响, 昆明医科大学学报.
    [5] 闵志波, 周冉, 蒲丹, 杨涛.  宫颈癌组织中ANXA8、PGRMC1和miR-92a表达水平及其与临床病理特征的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240815
    [6] 郭妮, 张承, 洪超, 刘伟鹏, 姚宇峰, 严志凌.  KRAS基因3′UTR多态性与云南汉族人群宫颈癌及宫颈上皮内瘤变的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240203
    [7] 廉阳秧, 岳红萍, 端娅, 胡红文, 罗芳.  miRNA-15a/16调控Bmi-1蛋白在卵巢癌顺铂化疗耐药中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231204
    [8] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  M2巨噬细胞来源的外泌体miR-1246调控胃癌细胞的生长和侵袭, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230724
    [9] 顾君, 何泽喜, 栾婷, 王海峰, 王剑松, 丁明霞.  外泌体长链非编码RNA在膀胱癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220110
    [10] 张天红, 杨红菊.  外泌体miRNA在肝细胞癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220221
    [11] 马丽娅, 饶南荃, 杨禾丰.  间充质干细胞外泌体在口腔组织再生中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210527
    [12] 蔡啸, 扆雪涛, 姚菁青, 戴昕妤, 汤忠泉, 欧婷, 赵晓敏, 李云涛.  人骨髓间充质干细胞分泌的外泌体调控恶性胶质瘤相关巨噬细胞的极化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210101
    [13] 刘洋, 廖婧, 卢又汇, 孙春意, 孟昱时.  miR-21负向调控宫颈癌HeLa细胞株中hTERT的表达, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210307
    [14] 翟淑娟, 潘景, 孙春意, 刘洋, 杨莹莹, 周红林.  p62、OPTN在宫颈癌中的表达及其与HPV的相关性, 昆明医科大学学报.
    [15] 胡滔, 洪颖, 陈红兰, 常业飞, 姜水, 习杨彦彬, 檀雅欣, 李珊, 刘光彩, 吴晓虹.  miR-1对HR HPV 16~+/18~+宫颈癌细胞周期相关蛋白的调控, 昆明医科大学学报.
    [16] 朱胜章.  宫颈液基细胞学检查在贵州黔南地区宫颈癌筛查中的临床运用, 昆明医科大学学报.
    [17] 杨正浩.  细胞DNA定量分析法和液基薄层细胞学检测技术在宫颈癌早期诊断中的应用对比, 昆明医科大学学报.
    [18] 严志凌.  宿主p53基因多态性与HPV16 感染、宫颈癌发生发展的相关性, 昆明医科大学学报.
    [19] 段鲜盟.  集束化护理对宫颈癌化疗患者效果生活质量及心理状态影响, 昆明医科大学学报.
    [20] 黄雅.  Brn-3a、PPAR-γ在宫颈癌及癌前病变中的表达, 昆明医科大学学报.
  • 加载中
图(6) / 表(13)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  136
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-09
  • 刊出日期:  2025-07-21

目录

    /

    返回文章
    返回