留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

骨髓间充质干细胞移植对脊髓损伤后神经病理性疼痛大鼠的影响以及对LPS诱导神经元细胞的作用

张明慧 温江涛 辛小梅 张宝惠

张明慧, 温江涛, 辛小梅, 张宝惠. 骨髓间充质干细胞移植对脊髓损伤后神经病理性疼痛大鼠的影响以及对LPS诱导神经元细胞的作用[J]. 昆明医科大学学报, 2025, 46(7): 74-83. doi: 10.12259/j.issn.2095-610X.S20250709
引用本文: 张明慧, 温江涛, 辛小梅, 张宝惠. 骨髓间充质干细胞移植对脊髓损伤后神经病理性疼痛大鼠的影响以及对LPS诱导神经元细胞的作用[J]. 昆明医科大学学报, 2025, 46(7): 74-83. doi: 10.12259/j.issn.2095-610X.S20250709
Minghui ZHANG, Jiangtao WEN, Xiaomei XIN, Baohui ZHANG. Effects of Bone Marrow Mesenchymal Stem Cell Transplantation on Neuropathic Pain in Rats with Spinal Cord Injury and Its Action on LPS-Induced Neuronal Cells[J]. Journal of Kunming Medical University, 2025, 46(7): 74-83. doi: 10.12259/j.issn.2095-610X.S20250709
Citation: Minghui ZHANG, Jiangtao WEN, Xiaomei XIN, Baohui ZHANG. Effects of Bone Marrow Mesenchymal Stem Cell Transplantation on Neuropathic Pain in Rats with Spinal Cord Injury and Its Action on LPS-Induced Neuronal Cells[J]. Journal of Kunming Medical University, 2025, 46(7): 74-83. doi: 10.12259/j.issn.2095-610X.S20250709

骨髓间充质干细胞移植对脊髓损伤后神经病理性疼痛大鼠的影响以及对LPS诱导神经元细胞的作用

doi: 10.12259/j.issn.2095-610X.S20250709
基金项目: 临汾市人民医院院级课题(T20210512154)
详细信息
    作者简介:

    张明慧(1985~),女,山西临汾人,医学硕士,主治医师,主要从事神经病理性疼痛研究工作

    通讯作者:

    张宝惠,E-mail:minghui19850407@163.com

  • 中图分类号: R744.9

Effects of Bone Marrow Mesenchymal Stem Cell Transplantation on Neuropathic Pain in Rats with Spinal Cord Injury and Its Action on LPS-Induced Neuronal Cells

  • 摘要:   目的  探究骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)治疗对脊髓损伤(spinal cord injury,SCI)神经病理性疼痛大鼠的影响及其作用机制。  方法  将大鼠随机分为假手术(sham)组、骨髓损伤模型(SCI)组、SCI+BMSCs组、SCI+BMSCs+LY294002组(n=15)。利用Sprague-Dawley大鼠诱导SCI模型,并对SCI大鼠损伤脊髓中注射BMSCs和PI3K抑制剂LY294002。测定大鼠(basso-beattie-bresnahan,BBB)评分、爪机械缩回阈值(paw mechanical withdrawal threshold,pMWT)和热刺激下的爪热缩回潜伏期(paw thermal withdrawal latency,pTWL)。苏木精-伊红染色、免疫荧光染色、酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)和Western Blot实验探讨BMSCs移植对SCI大鼠的作用。利用脂多糖(lipopolysaccharide,LPS)诱导大鼠脊髓神经元细胞(rat spinal cord neurons,RSCN),并将其与BMSCs及其外泌体共培养,通过Annexin V-FITC/PI试剂盒、ELISA和Western Blot实验探讨BMSCs及其外泌体对RSCN的作用。  结果  SCI造模后第5天大鼠BBB评分≤5,且第20天BBB评分<10分,HE染色脊髓组织结构疏松、形成大量空泡、神经元细胞萎缩即认为SCI模型成功。与sham组比较,SCI组BBB评分、pMWT和pTWL值降低(P < 0.001),脊髓中IBA1荧光强度、促炎细胞因子和疼痛相关因子的水平增加(P < 0.001),抑制PI3K/AKT信号通路激活。BMSCs移植通过激活PI3K/AKT通路(P < 0.001),对脊髓损伤大鼠具有保护作用。注射LY294002减弱BMSCs对SCI大鼠损伤脊髓修复作用。LPS诱导RSCN细胞凋亡促炎细胞因子水平(P < 0.001),MSCs或BMSCs-exo与RSCN共培养可激活PI3K/AKT信号通路,减少LPS诱导的细胞凋亡和促炎细胞因子生成(P < 0.05)。  结论  BMSCs通过外泌体激活神经元中的PI3K/AKT信号通路,抑制TNF-α、SP、NE、5-HT水平,促进SCI大鼠功能恢复。
  • 图  1  大鼠BBB评分、pMWT和pTWL值

    A:各组大鼠BBB评分;B:大鼠pMWT值比较;C:大鼠pTWL值比较;与sham组相比,***P < 0.001;与SCI组相比,△△P < 0.01,△△△P < 0.001;与SCI+BMSCs组相比,#P < 0.05,##P < 0.01,###P < 0.001。

    Figure  1.  BBB score,pMWT,and pTWL values in rats

    图  2  大鼠脊髓组织HE染色(×20)

    Figure  2.  HE staining of rat spinal cord tissue (×20)

    图  3  脊髓IBA1荧光染色(×20)

    Figure  3.  IF staining of IBA1 in spinal cord (×20)

    图  4  ELISA试剂盒检测炎性细胞因子和致痛因子水平($ \bar x \pm s $,n = 6)

    A~E:ELISA检测促炎细胞因子和致痛因子的水平;A:TNF-α;B:IL-4;C:SP;D:NE;E:5-HT;***P < 0.001。

    Figure  4.  Inflammatory cytokines and nociceptive factors detected by ELISA ($ \bar x \pm s $,n = 6)

    图  5  PI3K、AKT及其磷酸化蛋白表达($ \bar x \pm s $,n = 6)

    A~E:Western Blot检测PI3K、PI3K-P85、AKT和AKT-PS473蛋白表达及其相对表达分析;***P < 0.001。

    Figure  5.  Expression of PI3K,AKT,and their phosphorylated proteins ($ \bar x \pm s $,n = 6)

    图  6  骨髓间充质干细胞对LPS诱导神经元细胞的作用($ \bar x \pm s $,n = 3)

    A~B:Annexin V-FITC/PI检测细胞凋亡率;C~D:ELISA试剂盒检测TNF-α和IL-4浓度;**P < 0.01,***P < 0.001。

    Figure  6.  Effects of bone marrow mesenchymal stem cells on LPS-induced neuronal cells ($ \bar x \pm s $,n = 3)

    图  7  BMSCs来源外泌体减轻LPS对神经元细胞的作用($ \bar x \pm s $,n = 3)

    A:外泌体扫描电镜观察结果;B:Western Blot检测外泌体标志物Alix和CD63在BMSCs和BMSCs-exo中的表达;C~D:Annexin V-FITC/PI检测细胞凋亡率;E~F:ELISA检测TNF-α和IL-4浓度;G~K:Western Blot检测PI3K/AKT通路蛋白和其磷酸化水平的表达;*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  7.  BMSC-derived exosomes alleviate the effects of LPS on neuronal cells ($ \bar x \pm s $,n = 3)

  • [1] Wang H,Liu X,Zhao Y,et al. Incidence and pattern of traumatic spinal fractures and associated spinal cord injury resulting from motor vehicle collisions in China over 11 years: An observational study[J]. Medicine (Baltimore),2016,95(43):e5220.
    [2] Yang R,Guo L,Huang L,et al. Epidemiological characteristics of traumatic spinal cord injury in Guangdong,China[J]. Spine (Phila Pa 1976),2017,42(9): E555-E561.
    [3] Chan B C,Cadarette S M,Wodchis W P,et al. The lifetime cost of spinal cord injury in Ontario,Canada: A population-based study from the perspective of the public health care payer[J]. J Spinal Cord Med,2019,42(2):184-193. doi: 10.1080/10790268.2018.1486622
    [4] Huynh V, Rosner J, Curt A, et al. Disentangling the effects of spinal cord injury and related neuropathic pain on supraspinal neuroplasticity: A systematic review on neuroimaging[J]. Front Neurol,2019,10:1413.
    [5] Shiao R,Lee-Kubli C A. Neuropathic pain after spinal cord injury: Challenges and research perspectives[J]. Neurotherapeutics,2018,15(3):635-653. doi: 10.1007/s13311-018-0633-4
    [6] Tahmasebi F,Barati S. Effects of mesenchymal stem cell transplantation on spinal cord injury patients[J]. Cell Tissue Res,2022,389(3):373-384. doi: 10.1007/s00441-022-03648-3
    [7] Assunção Silva R C,Pinto L,Salgado A J. Cell transplantation and secretome based approaches in spinal cord injury regenerative medicine[J]. Med Res Rev,2022,42(2):850-896. doi: 10.1002/med.21865
    [8] Ma H,Wang C,Han L,et al. Tofacitinib promotes functional recovery after spinal cord injury by regulating microglial polarization via JAK/STAT signaling pathway[J]. Int J Biol Sci,2023,19(15):4865-4882. doi: 10.7150/ijbs.84564
    [9] Li H,Wang C,He T,et al. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction[J]. Theranostics,2019,9(7):2017-2035. doi: 10.7150/thno.29400
    [10] Du H Y,Wang R,Li J L,et al. Ligustrazine protects against chronic hypertensive glaucoma in rats by inhibiting autophagy via the PI3K-Akt/mTOR pathway[J]. Mol Vis,2021,27:725-733.
    [11] Zhao Y, Ye C, Wang H, et al. Loading tea polyphenols enhances the repair of human umbilical cord mesenchymal stem cell sheet after spinal cord injury[J]. Stem Cell Res Ther,2025,16(1):264.
    [12] Nishi R A, Liu H, Chu Y, et al. Behavioral, histological, and ex vivo magnetic resonance imaging assessment of graded contusion spinal cord injury in mice[J]. J Neurotrauma,2007,24(4):674-689.
    [13] Guo Y,Du J,Xiao C,et al. Inhibition of ferroptosis-like cell death attenuates neuropathic pain reactions induced by peripheral nerve injury in rats[J]. Eur J Pain,2021,25(6):1227-1240. doi: 10.1002/ejp.1737
    [14] Dai W L,Yan B,Bao Y N,et al. Suppression of peripheral NGF attenuates neuropathic pain induced by chronic constriction injury through the TAK1-MAPK/NF-κB signaling pathways[J]. Cell Commun Signal,2020,18(1):66. doi: 10.1186/s12964-020-00556-3
    [15] Ahuja C S,Wilson J R,Nori S,et al. Traumatic spinal cord injury[J]. Nat Rev Dis Primers,2017,3:17018. doi: 10.1038/nrdp.2017.18
    [16] Courtine G,Sofroniew M V. Spinal cord repair: Advances in biology and technology[J]. Nat Med,2019,25(6):898-908. doi: 10.1038/s41591-019-0475-6
    [17] Evangelista A F,Vannier-Santos M A,de Assis Silva G S,et al. Bone marrow-derived mesenchymal stem/stromal cells reverse the sensorial diabetic neuropathy via modulation of spinal neuroinflammatory cascades[J]. J Neuroinflammation,2018,15(1):189. doi: 10.1186/s12974-018-1224-3
    [18] Farabi B,Roster K,Hirani R,et al. The efficacy of stem cells in wound healing: A systematic review[J]. Int J Mol Sci,2024,25(5):3006. doi: 10.3390/ijms25053006
    [19] Primavera R,Regmi S,Yarani R,et al. Precision delivery of human bone marrow-derived mesenchymal stem cells into the pancreas via intra-arterial injection prevents the onset of diabetes[J]. Stem Cells Transl Med,2024,13(6):559-571. doi: 10.1093/stcltm/szae020
    [20] Chai M,Su G,Chen W,et al. Effects of bone marrow mesenchymal stem cell-derived exosomes in central nervous system diseases[J]. Mol Neurobiol,2024,61(10):7481-7499. doi: 10.1007/s12035-024-04032-8
    [21] Li J Y,Ren K K,Zhang W J,et al. Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway[J]. Stem Cell Res Ther,2019,10(1):247. doi: 10.1186/s13287-019-1366-y
    [22] Atluri S,Murphy M B,Dragella R,et al. Evaluation of the effectiveness of autologous bone marrow mesenchymal stem cells in the treatment of chronic low back pain due to severe lumbar spinal degeneration: A 12-month,open-label,prospective controlled trial[J]. Pain Physician,2022,25(2):193-207.
    [23] Afridi B,Khan H,Akkol E K,et al. Pain perception and management: Where do we stand?[J]. Curr Mol Pharmacol,2021,14(5):678-688. doi: 10.2174/1874467213666200611142438
    [24] Paracha M,Brezinski A N,Singh R,et al. Targeting spinal interneurons for respiratory recovery after spinal cord injury[J]. Cells,2025,14(4):288. doi: 10.3390/cells14040288
    [25] Zholudeva L V,Abraira V E,Satkunendrarajah K,et al. Spinal interneurons as gatekeepers to neuroplasticity after injury or disease[J]. J Neurosci,2021,41(5):845-854. doi: 10.1523/JNEUROSCI.1654-20.2020
    [26] Kim J W,Kim J,Lee S M,et al. Combination of induced pluripotent stem cell-derived motor neuron progenitor cells with irradiated brain-derived neurotrophic factor over-expressing engineered mesenchymal stem cells enhanced restoration of axonal regeneration in a chronic spinal cord injury rat model[J]. Stem Cell Res Ther,2024,15(1):173. doi: 10.1186/s13287-024-03770-9
    [27] Liu Z,Yao X,Jiang W,et al. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury[J]. J Neuroinflammation,2020,17(1):90. doi: 10.1186/s12974-020-01751-2
    [28] Xiong W,Li C,Kong G,et al. Treg cell-derived exosomes miR-709 attenuates microglia pyroptosis and promotes motor function recovery after spinal cord injury[J]. J Nanobiotechnology,2022,20(1):529. doi: 10.1186/s12951-022-01724-y
    [29] Fang S,Tang H,Li M Z,et al. Identification of the CCL2 PI3K/Akt axis involved in autophagy and apoptosis after spinal cord injury[J]. Metab Brain Dis,2023,38(4):1335-1349. doi: 10.1007/s11011-023-01181-y
    [30] Ma Z,Liu T,Liu L,et al. Epidermal neural crest stem cell conditioned medium enhances spinal cord injury recovery via PI3K/AKT-mediated neuronal apoptosis suppression[J]. Neurochem Res,2024,49(10):2854-2870. doi: 10.1007/s11064-024-04207-8
  • [1] 徐静逍, 刘佳, 姚姝, 张希, 李江, 崔桂琴, 易小玲, 李东云.  槲皮素对BMSCs成骨分化的影响及作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250504
    [2] 沈晓霞, 冯春晖, 赵晓东.  基于外泌体STAT3蛋白转运探讨干细胞在对梗死心脏修复及心电生理的影响, 昆明医科大学学报.
    [3] 宋希猛, 袁士龙, 卢子昂, 徐茂通.  基于巨噬细胞自噬探讨川芎嗪对脊髓损伤修复的分子机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250705
    [4] 杨镕羽, 宋飞, 黄浩, 段开文, 向盈盈.  骨髓间充质干细胞在口腔医学中的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230323
    [5] 刘亚南, 杨双, 徐世莲.  小针刀疗法在病理性疼痛中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210213
    [6] 王彬, 廖烨晖, 陈茉弦, 刘垚, 赵云欣, 敖丽娟.  超声在神经病理性疼痛中的应用研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210430
    [7] 魏韩笑, 张爱君, 李强, 金培生.  血管内皮祖细胞外泌体调控骨髓间充质干细胞基因表达谱芯片, 昆明医科大学学报.
    [8] 刘娟, 张小梅, 张帆, 杨春燕, 李娜, 田莹.  药物联合音乐疗法对缓解慢性神经病理性疼痛的有效性, 昆明医科大学学报.
    [9] 刘少星, 谢先丰, 曹德钧.  帕瑞昔布钠对神经病理性疼痛大鼠脊髓背角胶质纤维酸性蛋白及脊髓炎性反应的影响, 昆明医科大学学报.
    [10] 王福科, 张红, 杨桂然, 肖渝, 何川, 宋恩, 李彦林.  携载增强型绿色荧光蛋白基因慢病毒转染骨髓间充质干细胞示踪方法, 昆明医科大学学报.
    [11] 白刚, 张洪钿, 赖军, 罗林, 左频, 范耀东.  NT-3-HUMSCs联合基因沉默SOCS3治疗SD大鼠脊髓损伤后的运动功能分析, 昆明医科大学学报.
    [12] 白刚, 张洪钿, 赖军, 罗林, 左频, 范耀东.  NT-3-HUMSCs联合基因沉默SOCS3治疗SD大鼠脊髓损伤后的神经再生修复, 昆明医科大学学报.
    [13] 徐林, 胡敏, 李钟辉, 范建楠.  骨髓间充质干细胞复合人工支架材料治疗骨缺损的研究进展, 昆明医科大学学报.
    [14] 周琦.  催眠治疗对脊髓损伤患者康复的影响, 昆明医科大学学报.
    [15] 单可记.  氨茶碱对急性颈髓损伤并心动过缓患者近期疗效探讨, 昆明医科大学学报.
    [16] 王慧明.  地佐辛腹腔内注射减轻神经病理性疼痛大鼠的痛行为研究, 昆明医科大学学报.
    [17] 王慧明.  地佐辛腹腔内注射减轻神经病理性疼痛大鼠的痛行为研究, 昆明医科大学学报.
    [18] 王殿华.  骨髓间充质干细胞移植治疗急性肺损伤研究进展, 昆明医科大学学报.
    [19] 体外诱导猪骨髓间充质干细胞向尿路上皮细胞分化的实验研究, 昆明医科大学学报.
    [20] 段艳萍.  GAP-43治疗大鼠完全性脊髓损伤后Nogo-A在神经元的表达, 昆明医科大学学报.
  • 加载中
图(7)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  147
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-02
  • 刊出日期:  2025-07-21

目录

    /

    返回文章
    返回