Predictive Value and Model Construction of C-reactive Protein/D-dimer Ratio and Fibrinogen/Albumin Ratio for the Occurrence of MACE after PCI in Patients with Coronary Artery Disease
-
摘要:
目的 全面评估C反应蛋白(CRP)/D-二聚体(D-D)联合白蛋白/纤维蛋白原(FAR)在预测冠心病(CHD)患者经皮冠状动脉介入治疗(PCI)术后主要不良心血管事件(MACE)中的预测价值,并据此构建用于预测CHD患者术后MACE的列线图(Nomogram)模型。 方法 回顾性选取2022年6月至2025年3月期间在昆明医科大学第一附属医院接受PCI治疗的201例CHD患者作为研究对象(训练集)。根据是否发生MACE分为MACE组(n = 77)和非MACE组(n = 124)。同时收集了来自另一医疗中心的84例CHD患者作为验证集。比较两组患者CRP/D-D及FAR表达水平;通过单因素和多因素Logistic回归分析筛选CHD患者术后MACE的独立预测因素;采用ROC曲线评估CRP/D-D及FAR对CHD患者术后MACE发生的预测价值;整合CRP/D-D、FAR等指标建立Nomogram模型,采用ROC曲线、校准曲线和DCA曲线对Nomogram模型进行内部验证和外部验证。 结果 与非MACE组CHD患者相比,MACE组CRP/D-D及FAR水平升高(P < 0.05)。多因素Logistic分析显示,年龄、NTproBNP、WBC、CRP/DD、FAR均为CHD患者术后MACE的独立风险因素(P < 0.05)。ROC曲线分析显示,CRP/D-D联合FAR预测的AUC高于CRP/D-D(Z = 3.473,P < 0.001)、FAR(Z = 2.812,P < 0.05)单独使用时的AUC(P < 0.05)。基于上述影响因素构建Nomogram模型并进行内外部验证,结果显示,该Nomogram模型具有良好的校准度、优异的判别能力以及可靠的临床实用价值,能够准确预测术后MACE的发生风险。 结论 CRP/D-D比值与FAR作为综合反映炎症和凝血功能的复合生物标志物,在预测CHD患者术后MACE风险方面展现出较高的判别能力,为临床风险分层提供了新的可靠工具。 -
关键词:
- C反应蛋白/D-二聚体比值 /
- 纤维蛋白原/白蛋白比值 /
- 冠心病 /
- PCI /
- MACE /
- 预测模型
Abstract:Objective To comprehensively assess the predictive value of C-reactive protein (CRP)/D-dimer (D-D) and albumin/fibrinogen (FAR) in predicting major adverse cardiovascular events (MACE) after percutaneous coronary intervention (PCI) in patients with coronary heart disease (CHD) and to construct a nomogram model for predicting post-procedural MACE in CHD patients. Methods A retrospective study was conducted on 201 CHD patients who underwent PCI at the First Affiliated Hospital of Kunming Medical University between June 2022 and March 2025. These patients were divided into MACE group (n = 77) and non-MACE group (n = 124) based on whether MACE occurred or not. 84 CHD patients from another medical center were also collected as the validation set. The expression levels of CRP/D-D and FAR were compared between the two groups; independent predictors of postoperative MACE in CHD patients were screened by univariate and multivariate logistic regression analyses; the predictive value of CRP/D-D and FAR for the occurrence of postoperative MACE in CHD patients was assessed using ROC curves; A nomogram model was established integrating indicators such as CRP/D-D and FAR, and internal and external validations of the nomogram model were conducted using ROC curves, calibration curves, and decision curve analysis (DCA) curves. Results Compared with CHD patients in the non-MACE group, CRP/D-D and FAR levels were significantly higher in the MACE group (P < 0.05). Multivariate analysis showed that age, NTproBNP, WBC, CRP/D-D, and FAR were independent risk factors for postoperative MACE in CHD patients (P < 0.05). ROC curve analysis indicated that the AUC predicted by CRP/D-D combined with FAR was higher than that of CRP/D-D alone (Z = 3.473, P < 0.001), and FAR alone(Z = 2.812, P < 0.05) . The Nomogram model constructed based on the aforementioned factors was validated internally and externally, and the results showed that the Nomogram model had good calibration, excellent discriminative ability, and reliable clinical utility, accurately predicting the risk of postoperative MACE. Conclusion The CRP/D-D ratio and FAR, as emerging composite biomarkers, showed significant predictive ability in predicting the risk of MACE after PCI in patients with CHD, providing a new reliable tool for clinical risk stratification. -
Key words:
- C-reactive protein/D-dimer ratio /
- Fibrinogen/albumin ratio /
- Coronary heart disease /
- PCI /
- MACE /
- Predictive model
-
表 1 训练集和验证集患者临床资料的比较[n(%)/($ \bar x \pm s $)]
Table 1. Comparison of clinical data between training and validation sets[n(%)/($ \bar x \pm s $)]
项目 类别 n 训练集(n=201) 验证集(n=84) t/χ2 P 性别 女 146 98(48.76) 48(57.14) 1.668 0.197 男 139 103(51.24) 36(42.86) 年龄(岁) 285 75.25 ± 8.25 74.29 ± 9.23 0.964 0.388 吸烟史 无 140 99(49.25) 41(48.81) 0.005 0.945 有 145 102(50.75) 43(51.19) 饮酒史 无 139 104(51.74) 35(41.67) 2.407 0.121 有 146 97(48.26) 49(58.33) 高血压史 无 141 99(49.25) 42(50.00) 0.013 0.909 有 144 102(50.75) 42(50.00) 糖尿病史 无 139 104(51.74) 35(41.67) 2.407 0.121 有 146 97(48.26) 49(58.33) PCI史 无 140 105(52.24) 35(41.67) 2.649 0.104 有 145 96(47.76) 49(58.33) CHD史 无 142 106(52.74) 36(42.86) 2.313 0.128 有 143 95(47.26) 48(57.14) 左心室射血分数(%) 285 55.39 ± 7.14 54.17 ± 6.58 1.345 0.180 NT-proBNP(ng/L) 285 95.47 ± 11.23 94.28 ± 10.25 0.836 0.404 TC(mmol/L) 285 3.54 ± 0.36 3.49 ± 0.41 1.025 0.306 TG(mmol/L) 285 1.85 ± 0.25 1.79 ± 0.32 1.695 0.091 手术时间(min) 285 104.12 ± 7.58 103.69 ± 6.23 0.459 0.647 LDL-C(mmol/L) 285 2.17 ± 0.19 2.15 ± 0.12 0.893 0.373 HDL-C(mmol/L) 285 1.16 ± 0.14 1.13 ± 0.21 1.411 0.159 WBC(×109/L) 285 12.47 ± 2.03 11.99 ± 2.47 1.704 0.090 cTnI(ng/L) 285 0.81 ± 0.25 0.79 ± 0.23 0.630 0.529 IL-6(pg/mL) 285 45.98 ± 5.98 44.57 ± 4.13 1.972 0.050 TNF-α(pg/mL) 285 33.69 ± 5.49 33.25 ± 4.13 0.660 0.510 表 2 两组患者CRP/D-D和FAR水平比较($ \bar x \pm s $)
Table 2. Comparison of CRP/D-D and FAR levels between the two groups ($ \bar x \pm s $)
指标 n CRP/D-D FAR(×10−3) MACE组 77 31.25 ± 5.47 39.85 ± 6.47 非MACE组 124 24.14 ± 4.15 30.14 ± 5.13 t 10.431 11.784 P <0.001* <0.001* *P < 0.05。 表 3 影响CHD患者PCI术后MACE的单因素分析[n(%)/($ \bar x \pm s $)]
Table 3. Univariate analysis of factors affecting postoperative MACE in CHD Patients after PCI [n(%)/($ \bar x \pm s $)]
项目 类别 n 发生MACE组(n=77) 未发生MACE组(n=124) t/χ2 P 性别 女 98 35(45.45) 63(50.81) 0.545 0.461 男 103 42(54.55) 61(49.19) 年龄(岁) 201 79.25 ± 12.36 65.28 ± 9.63 8.953 <0.001* 吸烟史 无 99 14(18.18) 85(68.55) 48.212 <0.001* 有 102 63(81.82) 39(31.45) 饮酒史 无 104 39(50.65) 65(52.42) 0.060 0.807 有 97 38(49.35) 59(47.58) 高血压史 无 99 21(27.27) 78(62.90) 24.128 <0.001* 有 102 56(72.73) 46(37.10) 糖尿病史 无 104 35(45.45) 69(55.65) 1.976 0.160 有 97 42(54.55) 55(44.35) PCI史 无 105 39(50.65) 66(53.23) 0.126 0.722 有 96 38(49.35) 58(46.77) CHD史 无 106 21(27.27) 85(68.55) 32.469 <0.001* 有 95 56(72.73) 39(31.45) 左心室射血分数(%) 201 53.14 ± 8.46 59.14 ± 9.36 4.581 <0.001* NT-proBNP(ng/L) 201 98.27 ± 15.64 80.85 ± 14.23 8.121 <0.001* TC(mmol/L) 201 3.91 ± 0.25 3.90 ± 0.11 0.389 0.697 TG(mmol/L) 201 1.98 ± 0.46 1.91 ± 0.57 0.909 0.364 手术时间(min) 201 105.33 ± 16.58 103.69 ± 15.25 0.717 0.474 LDL-C(mmol/L) 201 2.15 ± 0.23 2.21 ± 0.31 1.466 0.144 HDL-C(mmol/L) 201 1.16 ± 0.25 1.13 ± 0.09 1.217 0.225 WBC(×109/L) 201 12.36 ± 2.14 10.36 ± 3.25 4.791 <0.001* cTnI(ng/L) 201 0.81 ± 0.25 0.31 ± 0.16 17.297 <0.001* IL-6(pg/mL) 201 45.98 ± 5.98 41.57 ± 12.47 2.901 0.004 TNF-α(pg/mL) 201 33.69 ± 11.25 31.25 ± 8.41 1.753 0.081 *P < 0.05。 表 4 影响术后MACE的多因素Logistic回归分析
Table 4. Multivariate logistic regression analysis of factors affecting postoperative MACE
因素 B SE Wald OR 95%CI P 年龄 0.141 0.036 15.170 1.151 1.072~1.235 <0.001* NTproBNP 0.100 0.024 17.900 1.105 1.055~1.157 <0.001* WBC 0.330 0.127 6.780 1.390 1.085~1.782 0.009* CRP/DD 0.266 0.080 11.116 1.305 1.116~1.526 0.001* FAR 0.235 0.058 16.591 1.265 1.130~1.417 <0.001* 常数 −38.772 6.455 36.079 *P < 0.05。 表 5 CRP/D-D和FAR对术后MACE的预测价值
Table 5. Predictive value of CRP/D-D and FAR for postoperative MACE
变量 AUC 最佳Cut off值 95%CI 灵敏度(%) 特异度(%) 约登指数 CRP/D-D 0.854 >27.08 0.797~0.899 81.82 77.42 0.5924 FAR 0.876 >36.42 0.822~0.918 70.13 90.32 0.6045 联合 0.933 >0.33 0.890~0.964 88.31 84.68 0.7299 -
[1] Zhang X,Wang Y,Liu L,et al. Efficacy of Wen-Dan Decoction in the treatment of patients with coronary heart disease: A protocol for systematic review and meta-analysis[J]. Medicine (Baltimore),2022,101(1):e28041. [2] Kou L,Yang N,Dong B,et al. Potential roles of IL-38,among other inflammation-related biomarkers,in predicting post-percutaneous coronary intervention cardiovascular events[J]. Front Cardiovasc Med,2024,11:1426939. doi: 10.3389/fcvm.2024.1426939 [3] Saraste A,Knuuti J. ESC 2019 guidelines for the diagnosis and management of chronic coronary syndromes[J]. Herz,2020,45(5):409-420. doi: 10.1093/eurheartj/ehz425 [4] Rusnak J,Fastner C,Behnes M,et al. Biomarkers in stable coronary artery disease[J]. Curr Pharm Biotechnol,2017,18(6):456-471. [5] Avan A,Tavakoly Sany S B,Ghayour-Mobarhan M,et al. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice[J]. J Cell Physiol,2018,233(11):8508-8525. doi: 10.1002/jcp.26791 [6] Chen R,Liu C,Zhou P,et al. Prognostic Value of D-dimer in patients with acute coronary syndrome treated by percutaneous coronary intervention: A retrospective cohort study[J]. Thromb J,2021,19(1):30. [7] Besir Y,Karaagac E,Kurus M,et al. The effect of bovine serum albumin-glutaraldehyde and polyethylene glycol polymer on local tissue reaction and inflammation in rabbit carotid artery anastomosis[J]. Vascular,2023,31(3):554-563. doi: 10.1177/17085381221075484 [8] Dhindsa S,Ghanim H,Dandona P. Nonesterified fatty acids,albumin,and platelet aggregation[J]. Diabetes.,2015,64(3):703-705. doi: 10.2337/db14-1481 [9] Amaro E,Moore-Lotridge S N,Wessinger B,et al. Albumin and the fibrinogen-to-albumin ratio: Biomarkers for the acute phase response following total knee arthroplasty[J]. PLoS One,2021,16(2):e0247070. [10] Joseph J,Velasco A,Hage F G,et al. Guidelines in review: Comparison of ESC and ACC/AHA guidelines for the diagnosis and management of patients with stable coronary artery disease[J]. J Nucl Cardiol,2018,25(2):509-515. doi: 10.1007/s12350-017-1055-0 [11] Tian J,Zhang L,Yang X,et al. The effect of Shexiang Tongxin Dropping Pills on coronary microvascular dysfunction (CMVD) among those with a mental disorder and non-obstructive coronary artery disease based on stress cardiac magnetic resonance images: A study protocol[J]. Medicine (Baltimore),2020,99(21):e20099. [12] Yan J,Tian J,Yang H,et al. A clinical decision support system for predicting coronary artery stenosis in patients with suspected coronary heart disease. Comput Biol Med,2022,151[J]: 106300. [13] Bhatt D L. Percutaneous coronary intervention in 2018[J]. JAMA,2018,319(20):2127-2128. doi: 10.1001/jama.2018.5281 [14] Hamasaki S,Tei C. Effect of coronary endothelial function on outcomes in patients undergoing percutaneous coronary intervention[J]. J Cardiol,2011,57(3):231-238. doi: 10.1016/j.jjcc.2011.02.003 [15] Chen X,Xu X,Li Y,et al. Association between fibrinogen-to-albumin ratio and functional prognosis of 3 months in patients with acute ischemic stroke after intravenous thrombolysis[J]. Brain Behav,2024,14(1):e3364. doi: 10.1002/brb3.3364 [16] 何平. D-二聚体,超敏C反应蛋白,脂蛋白a检测与冠心病早期诊断的关联性研究[J]. 标记免疫分析与临床,2023,30(3):473-475. [17] Wang X,Guo R,Huang M,et al. Fibrinogen-to-albumin ratio and glucose metabolic states in patients with coronary heart disease[J]. Angiology,2025,76(3):271-280. doi: 10.1177/00033197231206235 [18] Wang P,Yuan D,Zhang C,et al. High fibrinogen-to-albumin ratio with type 2 diabetes mellitus is associated with poor prognosis in patients undergoing percutaneous coronary intervention: 5-year findings from a large cohort[J]. Cardiovasc Diabetol,2022,21(1):46. doi: 10.1186/s12933-022-01477-w [19] Xu T,Yu D,Zhou W,et al. A nomogram model for the risk prediction of type 2 diabetes in healthy Eastern China residents: A 14-year retrospective cohort study from 15,166 participants[J]. EPMA J,2022,13(3):397-405. doi: 10.1007/s13167-022-00295-0 [20] 王月梅,宋妮. 老年冠心病患者PCI术后MACE发生的危险因素分析及强化预防护理对策[J]. 临床医学研究与实践,2018,3(22):2. [21] Kong S,Chen C,Zheng G,et al. A prognostic nomogram for long-term major adverse cardiovascular events in patients with acute coronary syndrome after percutaneous coronary intervention[J]. BMC Cardiovasc Disord,2021,21(1):253. doi: 10.1186/s12872-021-02051-0 -
下载: