Correlation of Multiple Clinical Indicators with Benign and Malignant Pulmonary Nodules
-
摘要:
目的 探究肺结节良恶性与血清炎症因子、肿瘤指标、影像学特征的相关性。 方法 收集2023年1月至2024年1月在昆明市第三人民医院行肺穿刺活检的肺结节患者209例,根据病理结果分为良性肺结节组(n=106)、恶性肺结节组(n=103)。收集所有研究对象的一般资料和临床指标,分析两组间不同指标的差异。 结果 血清炎症因子方面:两组研究对象的LYMPH、NLR、LMR、IL-2、IL-6、IL-17、IFN-γ、HsCRP、SAA、PCT差异存在统计学意义(P < 0.05),WBC、NETU、MONO、PLT、SII、IL-1β、IL-5、IL-8、IL-10、IL-12P70、IFN-α差异无统计学意义(P > 0.05)。血清肿瘤标志物方面:两组研究对象的CEA、CA125、CA199、CYFRA21-1、ProGRP、NSE差异存在统计学意义(P < 0.05),TNF-α、TSGF 、AFP、CA153差异无统计学意义(P > 0.05)。影像学特征方面:两组患者在结节数量、直径、边界、分叶征、毛刺征、胸膜凹陷征等方面差异有统计学意义(P < 0.05),在结节是否钙化、结节密度、结节位置方面差异无统计学意义(P > 0.05)。二元Logistic-向后-Wald条件法回归分析显示,患者年龄、分叶征、CEA、NSE、ProGRP、IL-6都是恶性肺结节的独立危险因素(P < 0.05),以上指标联合诊断,预测恶性肺结节模型的AUC为0.965(P < 0.05)。 结论 肺结节患者高龄、影像学表现有分叶、血清中NSE、ProGRP、IL-6、CEA增高时,恶性概率更高;联合上述指标检测,可以预测肺结节的性质,为恶性结节早期诊断提供指导。 Abstract:Objective To investigate the correlation between the benign and malignant pulmonary nodules and serum inflammatory factors, tumor markers, and imaging features. Methods A total of 209 patients with pulmonary nodules who underwent lung puncture biopsy at the Third People's Hospital of Kunming from January 2023 to January 2024 were enrolled. Based on pathological results, the patients were divided into benign pulmonary nodules group (n=106) and malignant pulmonary nodules group (n=103). General data and clinical indicators of all subjects were collected, and differences in various indicators between the two groups were analyzed. Results In terms of Serum inflammatory factors: there were statistically significant differences in LYMPH, NLR, LMR, IL-2, IL-6, IL-17, IFN-γ, HsCRP, SAA, and PCT between the two groups (P < 0.05), while no significant differences were found in WBC, NETU, MONO, PLT, SII, IL-5, IFN-α, IL-1β, IL-10, IL-8, and IL-12P70 (P > 0.05). Regarding Serum tumor markers: there were statistically significant differences in CEA, CA125, CA199, CYFRA21-1, ProGRP, and NSE between the two groups (P < 0.05), whereas no significant differences were found in TSGF, AFP, and CA153 (P > 0.05). In terms of Imaging features: there were statistically significant differences in the number, diameter, boundary, fissure sign, spiculated sign, and pleural retraction sign of nodules between the two groups (P < 0.05), while no significant differences were found in nodular calcification, nodule density, and location (P > 0.05). Binary logistic regression analysis (backward-Wald conditional method) identified patient age, fissure sign, CEA, NSE, ProGRP, and IL-6 were independent risk factors for malignant pulmonary nodules (P < 0.05). The combined diagnostic model of these indicators for predicting malignant pulmonary nodules had an AUC of 0.965 (P < 0.05). Conclusion Malignant pulmonary nodules are more likely in older patients with lobulation on imaging and elevated serum levels of NSE, ProGRP, IL-6, and CEA. Combined detection of these indicators can predict the nature of pulmonary nodules, guiding early diagnosis of malignant nodules. -
Key words:
- Pulmonary nodules /
- Inflammatory factors /
- Tumor markers /
- Imaging features /
- Correlation
-
表 1 两组患者的一般资料比较[($ \bar x \pm s $)/n (%)]
Table 1. Comparison of general information between the two groups [($ \bar x \pm s $)/n (%)]
项目 良性肺结节组(n=106) 恶性肺结节组(n=103) χ2/t P 年龄(岁) 50.34±14.55 60.87±11.41 −5.833 0.001* 年龄组(岁) 18~29 12(11.3) 0(0.0) 24.313 0.001ω 30~44 17(16.0) 6(5.8) 45~54 32(30.2) 25(24.3) ≥55 45(42.5) 72(69.9) 性别 男 34(32.1) 37(35.9) 0.345 0.557 女 72(67.9) 66(64.1) 吸烟史 现在吸烟 43(40.6) 46(44.7) 0.358 0.836 既往吸烟 11(10.4) 10(9.7) 从未吸烟 52(49.1) 47(45.6) *P < 0.05;进行Bonferroni校正后,ωP < 0.05。 表 2 两组患者血清炎症指标比较[M(P25,P75)]
Table 2. Comparison of serum inflammatory markers between the two groups[M(P25,P75)]
指标 良性结节组(n=106) 恶性结节组(n=103) Z P WBC(10−9/L) 5.90(4.96,7.13) 6.46(4.78,8.37) −1.455 0.146 NETU(10−9/L) 3.58(2.89,4.39) 3.87(2.63,5.63) −1.219 0.223 LYMPH(10−9/L) 3.58(2.89,4.39) 3.87(2.63,5.63) −2.098 0.001* MONO(10−9/L) 0.45(0.33,0.59) 0.47(0.36,0.63) −1.301 0.194 PLT(10−9/L) 243.00(194.50,280.25) 236.00(198.00,294.00) −0.462 0.644 NLR 2.24(1.72,3.03) 2.63(1.74,4.32) −2.168 0.003* LMR 3.645(2.78,4.63) 2.85(2.05,4.34) −2.833 0.003* SII 535.31(376.03,762.37) 602.39(386.58, 1238.07 )−1.606 0.108 IL-1β(pg/mL) 7.49(3.38~13.53) 6.81(2.48,15.42) −0.408 0.683 IL-2(pg/mL) 4.24(2.27,6.99) 2.14(1.37,3.80) −3.766 0.001* IL-5(pg/mL) 2.23(1.67,2.90) 2.10(1.37,2.71) −1.717 0.086 IL-6(pg/mL) 2.83(1.39,8.92) 7.99(4.38,25.51) −4.919 0.001* IL-8(pg/mL) 2.08(1.72,3.51) 3.35(1.51,13.04) −0.600 0.549 IL-10(pg/mL) 3.09(2.12,4.41) 2.69(1.41,5.52) −1.316 0.188 IL-12P70(pg/mL) 1.77(1.32,2.51) 1.65(1.04,2.02) −1.474 0.141 IL-17(pg/mL) 3.91(2.41,9.56) 2.35(1.40,5.38) −2.973 < 0.001* IFN-α(pg/mL) 2.58(1.69,3.79) 2.21(1.43,3.63) −1.069 0.285 IFN-γ(pg/mL) 11.47(5.44,17.76) 4.98(3.39,8.73) −3.413 < 0.001* HsCRP(mg/L) 3.29(1.13,12.03) 11.09(2.32,27.56) −2.736 < 0.001* SAA(mg/L) 10.53(3.05,56.08) 26.35(7.31,205.55) −2.155 0.002* PCT(ng/mL) 0.05(0.03,0.08) 0.07(0.04,0.15) −2.312 0.003* *P < 0.05。 表 3 两组患者血清肿瘤标志物比较[M(P25,P75)]
Table 3. Comparison of serum tumor markers between the two groups[M(P25,P75)]
项目 良性结节组(n=106) 恶性结节组(n=103) Z P TNF-α(pg/mL) 2.57(1.54,3.99) 2.21(1.64,3.49) −1.314 0.189 TSGF(U/mL) 44.12(41.55,50.15) 42.15(33.33,54.50) −0.718 0.473 CEA(ng/mL) 1.93(1.91,2.76) 2.96(1.59,7.22) −4.531 0.001* AFP(ng/mL) 2.41(1.96,3.30) 2.52(2.15,3.55) −1.025 0.305 CA125(U/mL) 13.29(7.38,20.92) 14.88(8.68,44.17) −2.021 0.001* CA153(U/mL) 12.32(8.76,15.47) 11.31(8.82,19.97) −0.832 0.406 CA199(U/mL) 11.18(6.25,15.43) 13.025(8.70,22.96) −2.370 0.001* CYFRA21-1(ng/mL) 2.11(1.64,2.84) 3.77(2.36,8.36) −6.059 0.001* ProGRP(pg/mL) 39.57(31.92,59.88) 54.10(40.77,70.20) −1.988 0.002* NSE(ng/mL) 10.01(8.11,11.68) 12.82(9.13,16.86) −3.760 0.001* *P < 0.05。 表 4 两组患者影像学特征比较[n(%)]
Table 4. Comparison of imaging features between the two groups[n(%)]
项目 良性结节组(n=106) 恶性结节组(n=103) χ2 P 结节数量(个) ≤2 11(10.4) 41(39.8) 24.206 0.001* >2 95(89.6) 62(60.2) 结节直径(mm) 5~8 78(73.6) 27(26.2) 55.959 0.001ω 9~15 14(13.2) 13(12.6) 16~30 14(13.2) 63(61.2) 结节位置 右肺上叶 71(23.4) 52(26.8) 2.959 0.562 右肺中叶 48(15.8) 22(11.3) 右肺下叶 63(20.7) 44(22.7) 左肺上叶 64(21.1) 36(18.6) 左肺下叶 58(19.1) 40(20.6) 结节密度 纯磨玻璃结节 49(46.2) 46(44.7) 4.298 0.117 混杂磨玻璃结节 23(21.7) 34(33.0) 实性结节 34(32.1) 23(22.3) 边界 光滑 99(93.4) 55(43.4) 43.101 0.001* 毛糙 7(6.6) 48(46.6) 分叶征 有 3(2.8) 47(45.6) 52.581 0.001* 无 103(97.2) 56(54.4) 毛刺征 有 4(3.8) 40(38.8) 36.638 0.001* 无 102(96.2) 63(61.2) 胸膜凹陷征 有 8(7.5) 29(28.2) 15.228 0.001* 无 98(92.5) 74(71.8) 钙化 有 8(7.5) 14(13.6) 2.027 0.155 无 98(92.5) 89(86.4) *P < 0.05;进行Bonferroni校正后,ωP < 0.05。 表 5 两组患者多因素回归分析
Table 5. Multivariate regression analysis of the two groups
因素 β SE Wald P OR 95%CI 常量 −25.098 6.260 16.073 0.001* 0.000 年龄 0.193 0.062 9.662 0.002* 1.212 1.074~1.369 分叶 5.233 1.395 14.032 0.001* 14.341 12.181~31.531 CEA 0.606 0.229 7.018 0.008* 1.833 1.171~2.869 ProGRP 0.039 0.016 5.530 0.019* 1.040 1.006~1.074 NSE 0.386 0.129 8.936 0.003* 1.471 1.142~1.896 IL-6 0.210 0.074 7.974 0.005* 1.234 1.066~1.428 *P < 0.05。 表 6 恶性肺结节的风险预测模型的效果评价
Table 6. Evaluation of the effectiveness of a risk prediction model for malignant pulmonary nodules
因素 曲线下面积 标准误 P 95%CI 下限 上限 年龄 0.714 0.035 0.001* 0.645 0.782 分叶 0.709 0.037 0.001* 0.638 0.781 CEA 0.716 0.036 0.001* 0.646 0.786 NSE 0.607 0.035 0.01* 0.537 0.676 ProGRP 0.654 0.035 0.001* 0.586 0.722 IL-6 0.655 0.032 0.001* 0.591 0.718 联合指标 0.965 0.014 0.001* 0.938 0.992 *P < 0.05。 -
[1] 国家癌症中心,国家肿瘤质控中心肺癌质控专家委员会. 中国原发性肺癌规范诊疗质量控制指标(2022版)[J]. 中华肿瘤杂志,2022,44(7):594-599. doi: 10.3760/cma.j.cn112152-20220418-00266 [2] Sakharkar P,Kurup S,Deb S,et al. Investigating the efficacy of EGFR-TKIs and anti-VEGFR combination in advanced non-small cell lung cancer: A meta-analysis[J]. Cancers (Basel),2024,16(6):1188. doi: 10.3390/cancers16061188 [3] Yu L,Huang Z,Xiao Z,et al. Unveiling the best predictive models for early-onset metastatic cancer: Insights and innovations (Review)[J]. Oncol Rep,2024,51(4):60. doi: 10.3892/or.2024.8719 [4] 中华医学会呼吸病学分会肺癌学组,中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2018年版)[J]. 中华结核和呼吸杂志,2018,41(10):763-771. doi: 10.3760/cma.j.issn.1001-0939.2018.10.004 [5] MacMahon H,Naidich D P,Goo J M,et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the fleischner society 2017[J]. Radiology,2017,284(1):228-243. doi: 10.1148/radiol.2017161659 [6] Wei X,Li X,Hu S,et al. Regulation of ferroptosis in lung adenocarcinoma[J]. Int J Mol Sci,2023,24(19):14614. doi: 10.3390/ijms241914614 [7] Thandra K C,Barsouk A,Saginala K,et al. Epidemiology of lung cancer[J]. Contemp Oncol(Pozn),2021,25(1):45-52. [8] Zhang Y,Qiang J W,Ye J D,et al. High resolution CT in differentiating minimally invasive component in early lung adenocarcinoma[J]. Lung Cancer,2014,84(3):236-241. doi: 10.1016/j.lungcan.2014.02.008 [9] Diakos C I,Charles K A,McMillan D C,et al. Cancer-related inflammation and treatment effectiveness[J]. Lancet Oncol,2014,15(11):e493-e503. doi: 10.1016/S1470-2045(14)70263-3 [10] Budisan L,Zanoaga O,Braicu C,et al. Links between infections,lung cancer,and the immune system[J]. Int J Mol Sci,2021,22(17):9394. doi: 10.3390/ijms22179394 [11] Huang B,Lang X,Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers[J]. Front Oncol,2022,12:1023177. doi: 10.3389/fonc.2022.1023177 [12] An J,Gu Q,Cao L,et al. Serum IL-6 as a vital predictor of severe lung cancer[J]. Ann Palliat Med,2021,10(1):202-209. doi: 10.21037/apm-20-2229 [13] Bi H,Yin L,Fang W,et al. Association of CEA,NSE,CYFRA 21-1,SCC-Ag,and ProGRP with clinicopathological characteristics and chemotherapeutic outcomes of lung cancer[J]. Lab Med,2023,54(4):372-379. doi: 10.1093/labmed/lmac122 [14] 中国食品药品检定研究院,中华医学会放射学分会心胸学组. 胸部CT肺结节数据标注与质量控制专家共识(2018)[J]. 中华放射学杂志,2019,53(1):9-15. doi: 10.3760/cma.j.issn.1005-1201.2019.01.004 [15] Roberts T J,Lennes I T,Hawari S,et al. Integrated,multidisciplinary management of pulmonary nodules can streamline care and improve adherence to recommendations[J]. Oncologist,2020,25(5):431-437. doi: 10.1634/theoncologist.2019-0519 [16] Tao R,Cao W,Zhu F,et al. Liquid biopsies to distinguish malignant from benign pulmonary nodules[J]. Thorac Cancer,2021,12(11):1647-1655. doi: 10.1111/1759-7714.13982 [17] Archer J M,Mendoza D P,Hung Y P,et al. Surgical resection of benign nodules in lung cancer screening: Incidence and features[J]. JTO Clin Res Rep,2023,4(12):100605. [18] Swensen S J,Silverstein M D,Ilstrup D M,et al. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules[J]. Arch Intern Med,1997,157(8):849-855. doi: 10.1001/archinte.1997.00440290031002 [19] Gould M K,Ananth L,Barnett P G,et al. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules[J]. Chest,2007,131(2):383-388. doi: 10.1378/chest.06-1261 [20] 李运,陈克终,隋锡朝,等. 孤立性肺结节良恶性判断数学预测模型的建立[J]. 北京大学学报(医学版),2011,43(3):450-454. doi: 10.3969/j.issn.1671-167X.2011.03.027 -
下载: