Analysis of the Interactive Effects of Diabetes and Dyslipidemia on the Treatment Efficacy of Rheumatoid Arthritis and Their Predictive Significance
-
摘要:
目的 探讨糖尿病和血脂异常对类风湿性关节炎(rheumatoid arthritis,RA)治疗效果的交互影响及预测意义,为RA合并代谢异常患者的个体化治疗提供依据。 方法 选取2022年6月至2023年6月就诊的180例RA患者作为研究对象。根据患者是否合并糖尿病和血脂异常,将其分为A组(单纯RA组,n = 45)、B组(RA合并糖尿病组,n = 45)、C组(RA合并血脂异常组,n = 45)和D组(RA合并糖尿病和血脂异常组,n = 45)。所有患者均按照2018年中国类风湿关节炎诊疗指南给予常规抗风湿治疗,B、D组患者加用二甲双胍控制血糖,C、D组患者加用他汀类药物调脂。治疗3个月后评估疗效,观察指标包括美国风湿病学会(American College of Rheumatology,ACR)20/50/70反应率、疾病活动度评分(disease activity score in 28 joints,DAS28)、C反应蛋白(C-reactive protein,CRP)、红细胞沉降率(erythrocyte sedimentation rate,ESR)、糖化血红蛋白(glycated hemoglobin,HbA1c)、空腹血糖(fasting plasma glucose,FPG)、总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C)和高密度脂蛋白胆固醇(high-density lipoprotein cholesterol,HDL-C)。多因素Logistic回归分析血糖、血脂水平对RA疗效的影响,并通过构建相加模型和相乘模型评估HbA1c和HDL-C的交互作用。 结果 治疗后,A组ACR20/50反应率显著高于其他三组,ACR70反应率也有较高趋势,D组各项反应率均最低(P < 0.05)。D组DAS28、CRP和ESR显著高于其他三组,A组最低(P < 0.05)。基线HbA1c水平、基线HDL-C水平、基线DAS28评分是ACR20反应的独立影响因素(P < 0.05)。相加模型和相乘模型的比较显示,HbA1c和HDL-C对ACR20反应的影响可能是相互独立的(P = 0.652)。 结论 糖尿病和血脂异常对RA治疗效果具有显著的负面影响,但其交互作用并不显著。对于RA合并代谢异常患者,应在抗风湿治疗的同时积极控制血糖和调节血脂,以提高治疗效果。基线HbA1c和HDL-C水平可作为预测RA治疗反应的重要因素。 Abstract:Objective To investigate the interactive effects of diabetes and lipid abnormalities on the treatment efficacy of rheumatoid arthritis (RA) and their predictive significance, providing a basis for individualized treatment of RA patients with metabolic disorders. Methods A total of 180 RA patients who visited the hospital between June 2022 and June 2023 were selected as research subjects. Based on whether patients had diabetes and dyslipidemia, they were divided into Group A (RA only, n = 45), Group B (RA with diabetes, n = 45), Group C (RA with dyslipidemia, n = 45), and Group D (RA with both diabetes and dyslipidemia, n = 45). All patients received conventional anti-rheumatic treatment according to the 2018 Chinese Rheumatoid Arthritis Diagnosis and Treatment Guidelines. Patients in Group B and D were additionally treated with metformin for blood glucose control, while patients in Group C and D received statins for lipid regulation. Treatment efficacy was assessed after 3 months of treatment. The Observed indicators included American College of Rheumatology (ACR) 20/50/70 response rates, Disease Activity Score (DAS28), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). Multivariate logistic regression analysis was used to evaluate the impact of blood glucose and lipid levels on RA treatment efficacy. Additive and multiplicative models were constructed to evaluate the interaction between HbA1c and HDL-C. Results After treatment, Group A showed significantly higher ACR20/50 response rates than the other three groups, and also showed a higher trend in ACR70 response rate. Group D had the lowest response rates across all criteria (P < 0.05). Group D also exhibited significantly higher levels of DAS28, CRP, and ESR than the other three groups, while Group A had the lowest levels (P < 0.05). Baseline HbA1c level, baseline HDL-C level and baseline DAS28 scores are independent influencing factors for ACR20 response (P < 0.05). Comparison of additive and multiplicative models suggested that the effects of HbA1c and HDL-C on ACR20 response might be independent of each other (P = 0.652). Conclusion Diabetes and dyslipidemia have significant negative impacts on RA treatment efficacy, but their interaction is not significant. For RA patients with metabolic disorders, it is important to actively control blood glucose and regulate lipid levels while undergoing anti-rheumatic treatment to improve therapeutic outcomes. Baseline HbA1c and HDL-C levels can serve as important predictors for RA treatment response. -
Key words:
- Rheumatoid arthritis /
- Diabetes /
- Dyslipidemia /
- Treatment efficacy /
- Predictive factors
-
表 1 四组患者基线特征比较 [($ \bar x \pm s $)/n(%)]
Table 1. Comparison of baseline characteristics among four groups of patients [($ \bar x \pm s $)/n(%)]
特征 A组(n = 45) B组(n = 45) C组(n = 45) D组(n = 45) F/χ2 P 年龄(岁) 54.69 ± 9.57 54.40 ± 8.39 52.98 ± 9.07 54.13 ± 10.95 0.278 0.841 性别 0.865 0.834 男 15(33.33) 11(24.44) 13(28.89) 13(28.89) 女 30(66.67) 34(75.56) 32(71.11) 32(71.11) 病程(月) 75.82 ± 35.02 71.13 ± 38.13 67.22 ± 32.54 68.40 ± 37.16 0.513 0.674 BMI(kg/m2) 25.65 ± 3.50 24.45 ± 3.05 24.42 ± 3.43 23.81 ± 4.20 2.096 0.103 基线DAS28评分(分) 5.89 ± 1.13 5.70 ± 1.18 6.17 ± 1.35 5.99 ± 1.13 1.234 0.299 基线CRP(mg/L) 34.88 ± 20.54 38.22 ± 21.00 37.43 ± 20.25 32.75 ± 20.64 0.659 0.578 基线ESR(mm/h) 55.16 ± 25.49 52.43 ± 19.12 50.82 ± 25.09 50.23 ± 21.67 0.413 0.744 表 2 四组患者治疗后ACR20/50/70反应率比较 [n(%)]
Table 2. Comparison of ACR20/50/70 response rates among four groups of patients after treatment [n(%)]
组别 ACR20反应率 ACR50反应率 ACR70反应率 A组(n = 45) 37(82.22) 28(62.22) 18(40.00) B组(n = 45) 31(68.89) 21(46.67) 12(26.67) C组(n = 45) 33(73.33) 23(51.11) 14(31.11) D组(n = 45) 26(57.78)△▲ 17(37.78)△▲ 9(20.00)∆▲ χ2 7.368 6.234 5.127 P 0.036* 0.047* 0.062 *P < 0.05;与A组比较,∆P < 0.05;与C组比较,▲P < 0.05。 表 3 四组患者治疗前后DAS28、CRP和ESR水平比较($ \bar x \pm s $)
Table 3. Comparison of DAS28,CRP and ESR levels among four groups of patients before and after treatment ($ \bar x \pm s $)
组别 时间点 DAS28 CRP(mg/L) ESR(mm/h) A组(n = 45) 治疗前 5.89 ± 1.13 34.88 ± 20.54 55.16 ± 25.49 治疗后 3.16 ± 1.15# 11.18 ± 6.56# 26.23 ± 12.04# B组(n = 45) 治疗前 5.70 ± 1.18 38.22 ± 21.00 52.43 ± 19.12 治疗后 3.63 ± 1.24∆# 20.08 ± 11.21∆# 32.86 ± 11.89∆# C组(n = 45) 治疗前 6.17 ± 1.35 37.43 ± 20.25 50.82 ± 25.09 治疗后 4.04 ± 1.39∆# 17.83 ± 9.86∆# 29.19 ± 14.41∆# D组(n = 45) 治疗前 5.99 ± 1.13 32.75 ± 20.64 50.23 ± 21.67 治疗后 4.30 ± 1.11∆#▲ 18.71 ± 11.75∆#▲ 33.89 ± 14.61∆#▲ F 96.156 5.948 12.792 P < 0.001* < 0.001* < 0.001* *P < 0.05;与A组比较,∆P < 0.05;与本组治疗前比较,#P < 0.05;与B、C组比较,▲P < 0.05。 表 4 四组患者治疗前后血糖和血脂指标比较 ($ \bar x \pm s $)
Table 4. Comparison of blood glucose and blood lipid indexes among four groups of patients before and after treatment ($ \bar x \pm s $)
组别 时间点 FPG(mmol/L) HbA1c(%) TC(mmol/L) TG(mmol/L) LDL-C(mmol/L) HDL-C(mmol/L) A组 治疗前 5.12 ± 0.40 5.48 ± 0.30 4.51 ± 0.48 1.42 ± 0.28 2.67 ± 0.49 1.28 ± 0.19 治疗后 5.02 ± 0.38 5.40 ± 0.30 4.42 ± 0.47 1.36 ± 0.27 2.60 ± 0.47 1.31 ± 0.19 B组 治疗前 9.09 ± 1.25∆ 8.25 ± 0.83∆ 4.60 ± 0.60 1.48 ± 0.28 2.78 ± 0.53 1.34 ± 0.18 治疗后 7.00 ± 0.97∆# 7.21 ± 0.74∆# 4.51 ± 0.59 1.42 ± 0.27 2.69 ± 0.51 1.37 ± 0.18 C组 治疗前 5.11 ± 0.40 5.50 ± 0.28 6.77 ± 0.75∆ 2.48 ± 0.67∆ 4.04 ± 0.67∆ 0.89 ± 0.22∆ 治疗后 5.01 ± 0.39 5.42 ± 0.28 5.93 ± 0.66∆# 2.04 ± 0.56∆# 3.55 ± 0.60∆# 1.01 ± 0.25∆# D组 治疗前 9.02 ± 1.30∆ 8.30 ± 0.90∆ 6.70 ± 0.67∆ 2.38 ± 0.58∆ 4.14 ± 0.71∆ 0.85 ± 0.15∆ 治疗后 6.98 ± 1.02∆#▲ 7.25 ± 0.79∆#▲ 5.86 ± 0.58∆#▲ 1.96 ± 0.48∆#▲ 3.62 ± 0.62∆#▲ 0.96 ± 0.18∆#▲ F 1140.903 954.846 888.889 324.138 474.521 287.320 P < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* *P < 0.05;与A组比较,∆P < 0.05;与本组治疗前比较,#P < 0.05;与B、C组比较,▲P < 0.05。 表 5 血糖和血脂指标与ACR20反应的多因素Logistic回归分析结果
Table 5. Results of multivariate Logistic regression analysis of blood glucose and blood lipid indexes and ACR20 response
变量 单因素 多因素 OR(95%CI) P OR(95%CI) P HbA1c基线 1.423(1.131~1.790) 0.003* 1.624(1.039~2.539) 0.033* FPG基线 1.589(1.024~2.465) 0.039* 1.534(0.964~2.441) 0.071 TC基线 1.638(1.077~2.492) 0.021* 1.514(0.950~2.414) 0.081 TG基线 1.593(1.031~2.461) 0.036* 1.586(0.382~6.581) 0.525 LDL-C基线 1.652(1.086~2.513) 0.019* 1.281(0.812~2.031) 0.285 HDL-C基线 0.528(0.331~0.842) 0.007* 0.624(0.409~0.951) 0.028* 年龄 1.567(1.010~2.431) 0.045* 1.478(0.925~2.350) 0.103 性别(男性) 1.658(1.069~2.572) 0.024* 2.354(0.689~8.045) 0.172 病程 1.643(1.059~2.549) 0.027* 1.485(0.899~2.453) 0.122 DAS28基线评分 1.587(1.128~2.232) 0.008* 1.286(1.007~1.643) 0.044* *P < 0.05。 表 6 共线性分析
Table 6. Collinearity analysis
自变量 条件指标 容差 VIF 常量 1.000 − − HbA1c 12.124 0.817 1.052 FPG 10.935 0.845 1.064 TC 7.183 0.823 1.138 TG 8.564 0.860 1.284 LDL-C 8.912 0.924 1.235 HDL-C 12.812 0.963 1.038 年龄 6.942 0.789 1.315 性别(男性) 6.817 0.912 1.612 病程 6.782 0.858 1.403 DAS28基线评分 8.134 0.907 1.627 表 7 HbA1c和HDL-C对ACR20反应的相加交互作用分析
Table 7. Additive Interaction Analysis of HbA1c and HDL-C on ACR20 Response
指标 估计值 95%CI P 相对危险度(RR) HbA1c(+)HDL-C(−) 2.27 1.42~3.65 0.008* HbA1c(−)HDL-C(+) 3.70 2.15~6.36 0.003* HbA1c(+)HDL-C(+) 8.21 4.76~14.15 < 0.001* 交互作用指标 RERI 3.24 1.85~4.63 0.015* AP 0.39 0.21~0.57 0.012* SI 1.82 1.24~2.40 0.008* *P < 0.05;RERI:相对超额危险度指数;AP:归因比例;SI:协同指数;HbA1c(+):HbA1c≥6.5%;HDL-C(+):HDL-C < 1.0 mmol/L。 表 8 HbA1c和HDL-C对ACR20反应的相乘交互作用分析
Table 8. Multiplicative Interaction Analysis of HbA1c and HDL-C on ACR20 Response
模型参数 β系数 标准误 OR 95%CI P 常数项 1.245 0.324 − − < 0.001* HbA1c 0.821 0.283 2.27 1.30~3.96 0.004* HDL-C 1.308 0.276 3.70 2.15~6.36 0.001* HbA1c×HDL-C 0.183 0.400 1.20 0.55~2.63 0.652 模型拟合优度 −2Log似然值 159.48 AIC 162.45 R2 0.386 *P < 0.05;OR:比值比;AIC:赤池信息准则;R2:决定系数。 -
[1] 谢小倩,王亚乐,罗沙沙,等. 类风湿性关节炎发病机制研究进展[J]. 世界最新医学信息文摘(连续型电子期刊),2019,19(71):109-111. [2] 陈开浪. 类风湿关节炎患者血脂代谢特点及与DAS28评分和颈动脉内膜中层厚度的相关性分析[J]. 临床与病理杂志,2021,41(11):2530-2535. doi: 10.3978/j.issn.2095-6959.2021.11.006 [3] Raadsen R,Dijkshoorn B,van Boheemen L,et al. Lipid profile and NT-proBNP changes from pre-clinical to established rheumatoid arthritis:A 12 years follow-up explorative study[J]. Joint Bone Spine,2024,91(3):105683. doi: 10.1016/j.jbspin.2023.105683 [4] Yan J,Yang S,Han L,et al. Dyslipidemia in rheumatoid arthritis:The possible mechanisms[J]. Front Immunol,2023,14:1254753. [5] Verma A K,Bhatt D,Goyal Y,et al. Association of rheumatoid arthritis with diabetic comorbidity:Correlating accelerated insulin resistance to inflammatory responses in patients[J]. J Multidiscip Healthc,2021,14:809-820. [6] Elazab S A,Elsayed W E,Alrahim N M,et al. Relationship between triglyceride-glucose index and disease activity and subclinical atherosclerosis in rheumatoid arthritis[J]. Curr Rheumatol Rev,2024,20(2):191-199. doi: 10.2174/0115733971259984230922054439 [7] 胡永玮. 甲氨蝶呤与羟氯喹联合来氟米特对活动性类风湿关节炎患者疗效与血脂及炎症水平的影响[J]. 中国药物经济学,2023,18(2):101-103+110. doi: 10.12010/j.issn.1673-5846.2023.02.020 [8] 杭元星,任天丽,周红霞,等. 羟氯喹对类风湿关节炎合并2型糖尿病患者血糖和血脂的影响[J]. 江苏医药,2018,44(1):66-68. [9] 胡冬霞,姚瑶,葛卫红,等. 羟氯喹对类风湿关节炎患者血糖影响的研究进展[J]. 中南药学,2021,19(7):1358-1363. [10] Aletaha D. The 2010 American College of Rheumatology/European League Against Rheumatism classification criteria for rheumatoid arthritis: Phase 2 methodological report[J]. Arthritis Rheum,2010,62(9):2582-2591. doi: 10.1136/ard.2010.130310 [11] Alberti K G,Zimmet P Z. Definition,diagnosis and classification of diabetes mellitus and its complications. Part 1:Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation[J]. Diabet Med,1998,15(7):539-553. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S [12] 诸骏仁,高润霖,赵水平,等. 中国成人血脂异常防治指南(2016年修订版)[J]. 中国循环杂志,2016,31(10):937-953. doi: 10.3969/j.issn.1000-3614.2016.10.001 [13] 中华医学会风湿病学分会. 2018中国类风湿关节炎诊疗指南[J]. 中华内科杂志,2018,57(4):10-18. doi: 10.3760/cma.j.issn.0578-1426.2018.04.004 [14] Gaafar A,Amer,H. Metabolic syndrome,hematological markers of inflammation and disease activity in rheumatoid arthritis[J]. International Journal of Clinical Rheumatology,2021,16(7):52-63. [15] 金更学,徐翔宇,韩江,等. 2型糖尿病患者血清炎症因子及25羟维生素D水平与血管病变的相关性分析[J]. 中华糖尿病杂志,2023,15(Z2):23-28. doi: 10.3760/cma.j.cn115791-20230628-00278 [16] Qin W,Xu S,Wei J,et al. Deciphering chondrocyte diversity in diabetic osteoarthritis through single-cell transcriptomics[J]. Comput Biol Chem,2025,115:108356. [17] 汤亚微. 类风湿关节炎患者外周B细胞功能紊乱的糖代谢机制研究[D]. 大连:大连医科大学,2021. [18] Baker J F,England B R,George M,et al. Disease activity,cytokines,chemokines and the risk of incident diabetes in rheumatoid arthritis[J]. Ann Rheum Dis,2021,80(5):566-572. doi: 10.1136/annrheumdis-2020-219140 [19] Liu J,Pan S,Wang X,et al. Role of advanced glycation end products in diabetic vascular injury:Molecular mechanisms and therapeutic perspectives[J]. Eur J Med Res,2023,28(1):553-568. [20] 范晓蕾,刘中华,岳涛,等. 血清TNF-α、IL-1β、IL-6和IL-17表达水平在阿达木单抗治疗活动性类风湿关节炎中的疗效预测作用[J]. 中国医科大学学报,2018,47(6):556-561. doi: 10.12007/j.issn.0258‐4646.2018.06.017 [21] 田浩,孙鑫,田野. 他汀类药物临床多效性研究进展[J]. 医学综述,2017,23(15):3056-3061. doi: 10.3969/j.issn.1006-2084.2017.15.029 -
下载: