Predictive Value of Multimodal Magnetic Resonance Imaging in the Progression of TIA Patients
-
摘要:
目的 研究多模态磁共振技术对短暂性脑缺血发作(transient ischemic attack,TIA)患者病情进展的预测价值。 方法 回顾性选取2021年9月至2023年12月南京医科大学康达学院第一附属医院(连云港市第一人民医院)收治的103例TIA患者,根据是否进展为急性脑梗死(acute cerebral infarction,ACI)分为TIA组(n = 34)、ACI组(n = 69),入院后均行多模态磁共振技术检查,比较两组颅脑T1WI、T2WI、DWI、TOF-MRA、高分辨率磁共振血管成像、磁共振灌注加权成像扫描结果[斑块负荷、狭窄程度、强化指数、软脑膜侧支分级、脑血流量(CBF)、脑血容量(CBV)、对比剂平均通过时间(MTT)、灌注达峰时间(TTP)],分析多模态磁共振结果与ACI风险的相关性及对ACI的预测价值,并比较ACI不同神经缺损程度、不同预后患者多模态磁共振结果。 结果 ACI组斑块负荷、狭窄程度、强化指数、MTT、TTP高于TIA组,软脑膜侧支分级劣于TIA组,CBF、CBV低于TIA组(P < 0.05);Logistic回归分析显示,斑块负荷、狭窄程度、强化指数、MTT、TTP是TIA患者病情进展的相关危险因素(OR值 > 1,P < 0.001),软脑膜侧支分级、CBF、CBV是TIA患者病情进展的相关保护因素(OR值 < 1,P < 0.001);ROC曲线显示,斑块负荷、狭窄程度、强化指数、MTT、TTP、软脑膜侧支分级、CBF、CBV联合预测ACI的AUC为0.914(95%CI:0.842~0.960),大于软脑膜侧支分级(Z = 0.314,P < 0.05),采用Bootstrap内部验证显示,联合预测结果与理想曲线贴合度较高,提示联合预测ACI发生率与实际发生率基本一致;神经缺损重度患者斑块负荷、狭窄程度、强化指数、MTT、TTP高于轻中度患者,CBF、CBV低于轻中度患者(P < 0.05);预后不良患者斑块负荷、狭窄程度、强化指数、MTT、TTP高于良好患者,CBF、CBV低于良好患者(P < 0.05)。 结论 多模态磁共振技术对于TIA患者病情进展具有一定预测价值,为临床评估病情、预测预后提供参考,以针对性制定后续干预方案。 -
关键词:
- 短暂性脑缺血发作 /
- 脑梗死 /
- 多模态磁共振 /
- 高分辨率磁共振血管成像 /
- 磁共振灌注加权成像
Abstract:Objective To investigate the predictive value of multimodal magnetic resonance imaging (MRI) in the progression of transient ischemic attack (TIA) patients. Methods A retrospective study was conducted on 103 TIA patients admitted to the First Affiliated Hospital of Kangda College, Nanjing Medical University (Lianyungang First People’ s Hospital) from September 2021 to December 2023. These patients were divided into the TIA group (34 cases) and the ACI group (69 cases) based on whether they progressed to acute cerebral infarction (ACI). All patients underwent multimodal magnetic resonance examinations after admission. The imaging results of the cranial T1WI, T2WI, DWI, TOF-MRA, high-resolution magnetic resonance imaging, and magnetic resonance imaging perfusion-weighted imaging [plaque burden, stenosis degree, enhancement index, pial collateral grading, cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP)] were compared between the two groups. The correlation between multimodal MRI findings and ACI risk, as well as their predictive value for ACI, were analyzed. Additionally, multimodal MRI results were compared among patients with different degrees of neurological deficits and different prognoses. Results The ACI group exhibited higher plaque load, stenosis degree, enhancement index, MTT and TTP, worse pIA collateral grade, and lower CBF and CBV compared to the TIA group (P < 0.05). Logistic regression analysis revealed that plaque burden, stenosis degree, enhancement index, MTT, and TTP were associated risk factors for disease progression in TIA patients (OR value > 1, P < 0.001), while pial collateral grade, CBF, and CBV were associated protective factors for disease progression in TIA patients (OR value < 1, P < 0.001). ROC curve showed that the AUC of ACI predicted by combination of plaque load, stenosis degree, enhancement index, MTT, TTP, pia collateral grade, CBF and CBV was 0.914 (95%CI: 0.842~0.960), which was greater than that of pia collateral grade alone(Z = 0.314, P < 0.05).Bootstrap internal validation showed that the joint prediction results were well aligned with the ideal curve, indicating that the predicted incidence of ACI was consistent with the actual incidence. The plaque load, stenosis degree, enhancement index, MTT and TTP of patients with severe neurological deficits were higher than those with mild to moderate deficits, and CBF and CBV were lower than those of mild to moderate patients (P < 0.05). The plaque load, stenosis degree, enhancement index, MTT and TTP of patients with poor prognosis were highe, and CBF and CBV were lower than those of with good prognosis (P < 0.05). Conclusion Multimodal MRI has certain predictive value for the disease progression in TIA patients, providing a reference for clinical assessment of the condition and prognosis prediction, and helping to formulate targeted follow-up intervention plans. -
表 1 两组临床资料比较[n(%)/($ \bar x \pm s $)]
Table 1. Comparison of clinical data between the two groups [n(%)/($ \bar x \pm s $)]
组别 n 性别(男/女) 年龄(岁) BMI(kg/m2) 合并症 饮酒史 吸烟史 高血压 高脂血症 糖尿病 ACI组 69 42/27 62.41 ± 4.32 23.21 ± 1.13 35(50.72) 27(39.13) 19(27.54) 24(34.78) 31(44.93) TIA组 34 20/14 63.15 ± 4.62 23.35 ± 1.08 18(52.94) 15(44.12) 10(29.41) 9(26.47) 16(47.06) χ2/t 0.040 0.799 0.600 0.045 0.235 0.040 0.723 0.042 P 0.842 0.426 0.550 0.832 0.628 0.842 0.395 0.838 表 2 两组多模态磁共振结果比较[($\bar x \pm s $)/n(%)](1)
Table 2. Comparison of multimodal MRI results between the two groups[($\bar x \pm s $)/n(%)] (1)
组别 n 斑块负荷(%) 狭窄程度(%) 强化指数 软脑膜侧支分级 0级 1级 ACI组 69 87.35 ± 9.11 89.00 ± 4.32 1.15 ± 0.19 35(50.72) 30(19.28) TIA组 34 78.27 ± 7.64 75.63 ± 6.18 0.73 ± 0.24 2(5.88) 6(94.12) t/χ2 5.006 12.751 9.652 56.232 P < 0.001* < 0.001* < 0.001* < 0.001* *P < 0.05。 表 2 两组多模态磁共振结果比较[($\bar x \pm s $)/n(%)](2)
Table 2. Comparison of multimodal MRI results between the two groups[($\bar x \pm s $)/n(%)] (2)
组别 n 软脑膜侧支分级 CBF[mL/(min·100 g)] CBV(mL/100 g) MTT(s) TTP(s) 2级 3级 ACI组 69 3(4.35) 1(1.48) 2.29 ± 0.70 69.45 ± 21.36 30.66 ± 5.79 29.48 ± 5.23 TIA组 34 17(50.00) 9(26.47) 4.35 ± 1.01 102.37 ± 24.51 26.30 ± 4.48 24.25 ± 4.71 t/χ2 56.232 12.072 7.002 3.855 4.927 P < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* *P < 0.05。 表 3 多模态磁共振结果对病情进展的影响
Table 3. Impact of multimodal MRI results on disease progression
影响因素 β SE Wald χ2 OR 95%CI P 下限 上限 斑块负荷 0.254 0.068 13.924 1.289 1.225 1.356 < 0.001* 狭窄程度 0.209 0.054 14.935 1.232 1.174 1.293 < 0.001* 强化指数 0.164 0.037 19.529 1.178 1.086 1.277 < 0.001* 软脑膜侧支分级 −0.926 0.315 8.640 0.396 0.365 0.430 < 0.001* CBF −0.707 0.207 11.660 0.493 0.429 0.567 < 0.001* CBV −0.739 0.211 12.268 0.478 0.408 0.559 < 0.001* MTT 0.100 0.032 9.835 1.106 1.042 1.173 < 0.001* TTP 0.149 0.029 26.255 1.160 1.118 1.204 < 0.001* 常数项 0.254 0.068 13.924 1.289 1.225 1.356 < 0.001* 校正了性别、年龄、BMI、合并症、吸烟史、饮酒史、血脂后;*P < 0.005。 表 4 多模态磁共振预测ACI的ROC分析结果
Table 4. ROC analysis results of multimodal MRI for ACI prediction
指标 AUC 95%CI cut-off值 敏感度(%) 特异度(%) P 斑块负荷 0.780 0.688~0.856 > 86.85 62.32 88.24 < 0.001* 狭窄程度 0.801 0.711~0.873 > 85.13% 85.51 73.53 < 0.001* 强化指数 0.820 0.732~0.889 > 1.02 76.81 76.47 < 0.001* 软脑膜侧支分级 0.853 0.770~0.915 > 0级 94.20 76.47 < 0.001* CBF [mL/(min·100 g)] 0.835 0.749~0.901 ≤2.75 75.36 79.41 < 0.001* CBV (mL/100 g) 0.788 0.696~0.862 ≤90.69 81.16 67.65 < 0.001* MTT(s) 0.780 0.688~0.856 > 30.22 59.42 88.24 < 0.001* TTP (s) 0.816 0.727~0.885 > 26.06 76.81 79.41 < 0.001* 联合 0.914 0.842~0.960 85.51 91.18 < 0.001* *P < 0.05。 表 5 两组多模态磁共振结果比较[($\bar x \pm s $)/n(%)](1)
Table 5. Comparison of multimodal MRI results between the two groups [($\bar x \pm s $)/n(%)] (1)
组别 n 斑块负荷(%) 狭窄程度(%) 强化指数 软脑膜侧支分级 0级 1级 神经缺损程度 轻中度 35 79.00 ± 2.33 83.12 ± 4.53 0.86 ± 0.24 13(41.94) 15(48.39) 重度 34 95.95 ± 0.90 95.05 ± 1.77 1.45 ± 0.28 22(57.89) 15(39.47) t/χ2 39.636 14.328 9.407 2.968 P < 0.001* < 0.001* < 0.001* 0.397 预后 良好 40 80.28 ± 1.59 82.64 ± 3.09 0.90 ± 0.19 15(46.88) 13(40.63) 不良 29 97.10 ± 0.86 97.77 ± 1.25 1.49 ± 0.22 20(54.05) 17(45.95) t/χ2 51.682 24.892 11.912 4.911 P < 0.001* < 0.001* < 0.001* 0.178 *P < 0.05。 表 5 两组多模态磁共振结果比较[($\bar x \pm s $)/n(%)](2)
Table 5. Comparison of multimodal MRI results between the two groups [($\bar x \pm s $)/n(%)] (2)
组别 n 软脑膜侧支分级 CBF[mL/(min·100 g)] CBV(mL/100 g) MTT(s) TTP(s) 2级 3级 神经缺损程度 轻中度 35 2(6.45) 1(3.23) 2.64 ± 0.70 79.00 ± 18.26 24.56 ± 4.12 24.67 ± 3.86 重度 34 1(2.63) 0(0.00) 1.93 ± 0.55 59.62 ± 20.51 36.94 ± 3.87 34.43 ± 4.57 t/χ2 2.968 4.676 4.148 12.857 9.594 P 0.397 < 0.001* < 0.001* < 0.001* < 0.001* 预后 良好 40 3(9.38) 1(3.13) 2.56 ± 0.61 78.11 ± 19.78 22.97 ± 3.65 22.89 ± 4.90 不良 29 0(0.00) 0(0.00) 1.92 ± 0.48 57.51 ± 17.43 41.27 ± 4.33 38.57 ± 3.71 t/χ2 4.911 4.691 4.485 19.003 14.475 P 0.178 < 0.001* < 0.001* < 0.001* < 0.001* *P < 0.05。 -
[1] Kim S J,Schneider D J,Feldmann E,et al. Intracranial atherosclerosis:Review of imaging features and advances in diagnostics[J]. Int J Stroke,2022,17(6):599-607. doi: 10.1177/17474930211066427 [2] Wang Y,Cai X,Li H,et al. Association of intracranial atherosclerosis with cerebral small vessel disease in a community-based population[J]. Eur J Neurol,2023,30(9):2700-2712. doi: 10.1111/ene.15908 [3] Turan T N,Zaidat O O,Gronseth G S,et al. Stroke prevention in symptomatic large artery intracranial atherosclerosis practice advisory:Report of the AAN guideline subcommittee[J]. Neurology,2022,98(12):486-498. doi: 10.1212/WNL.0000000000200030 [4] Zhao D L,Li R Y,Li C,et al. Assessment of the degree of arterial stenosis in intracranial atherosclerosis using 3D high-resolution MRI:Comparison with time-of-flight MRA,contrast-enhanced MRA,and DSA[J]. Clin Radiol,2023,78(2):e63-e70. doi: 10.1016/j.crad.2022.08.132 [5] Dempsey P J,Murphy M C,Marnane M,et al. MRA-detected intracranial atherosclerotic disease in patients with TIA and minor stroke[J]. Ir J Med Sci 1971,2023,192(3):1395-1399. [6] 中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组. 中国急性缺血性脑卒中诊治指南2014[J]. 中华神经科杂志,2015,48(4):246-257. doi: 10.3760/cma.j.issn.1006-7876.2015.04.002 [7] 短暂性脑缺血发作中国专家共识组. 短暂性脑缺血发作的中国专家共识更新版(2011年)[J]. 中华内科杂志,2011,50(6):530-533. doi: 10.3760/cma.j.issn.0578-1426.2011.06.025 [8] 刘盈盈,易兴阳,王淳,等. 基于多模CT的区域软脑膜侧支评估与急性缺血性卒中梗死体积及出血转化的相关性研究[J]. 国际神经病学神经外科学杂志,2021,48(6):521-525. [9] 谈颂,常思远,宋波,等. 早期改良美国国立卫生研究院卒中量表评分对缺血性卒中预后的预测作用[J]. 中华神经科杂志,2012,45(3):154-157. doi: 10.3760/cma.j.issn.1006-7876.2012.03.003 [10] 陈露露,杨卫民,张晨,等. 急性脑梗死再通术后即刻平扫CT高密度影对短期预后的预测价值[J]. 中国神经精神疾病杂志,2020,46(9):540-545. doi: 10.3969/j.issn.1002-0152.2020.09.007 [11] 秦伟,杨磊,张晓丹,等. ABCD2评分和高敏C反应蛋白对短暂性脑缺血发作患者脑梗死风险的早期预测[J]. 中华老年心脑血管病杂志,2015,17(5):466-468. doi: 10.3969/j.issn.1009-0126.2015.05.006 [12] Siegler J E. Nonstenotic intracranial atherosclerosis as an emerging mechanism in cryptogenic cerebral embolism[J]. Eur J Neurol,2023,30(3):565-566. doi: 10.1111/ene.15662 [13] Wu G,Zhu C,Wang H,et al. Co-existing intracranial and extracranial carotid atherosclerosis predicts large-artery atherosclerosis stroke recurrence:A single-center prospective study utilizing combined head-and-neck vessel wall imaging[J]. Eur Radiol,2023,33(10):6970-6980. doi: 10.1007/s00330-023-09654-5 [14] Zwartbol M H T,van der Kolk A G,Ghaznawi R,et al. Intracranial atherosclerosis on 7T MRI and cognitive functioning:The SMART-MR study[J]. Neurology,2020,95(10):e1351-e1361. [15] Fan W,Sang Y,Zhou H,et al. MRA-free intracranial vessel localization on MR vessel wall images[J]. Sci Rep,2022,12(1):6240. [16] Haque M E. Editorial for “assessment of intracranial atherosclerotic plaques using 3D black-blood MRI:Comparison with 3D time-of-flight MRA and DSA”[J]. J Magn Reson Imaging,2021,53(2):479-480. [17] Tian X,Tian B,Shi Z,et al. Assessment of intracranial atherosclerotic plaques using 3D black-blood MRI:Comparison with 3D time-of-flight MRA and DSA[J]. J Magn Reson Imaging,2021,53(2):469-478. doi: 10.1002/jmri.27341 [18] Nam K W,Kwon H M,Jeong H Y,et al. Intracranial atherosclerosis and stage 1 hypertension defined by the 2017 ACC/AHA guideline[J]. Am J Hypertens,2020,33(1):92-98. doi: 10.1093/ajh/hpz138 [19] Kim J G,Suh D C,Song Y,et al. Direct stenting of intracranial atherosclerosis-related acute large vessel occlusion[J]. Clin Neuroradiol,2021,31(3):833-841. doi: 10.1007/s00062-020-00934-x [20] Zanaty M,Rossen J D,Roa J A,et al. Intracranial atherosclerosis:A disease of functional,not anatomic stenosis? how trans-stenotic pressure gradients can help guide treatment[J]. Oper Neurosurg (Hagerstown),2020,18(6):599-605. doi: 10.1093/ons/opz335 [21] Cohen-Cohen S,Lanzino G,Brinjikji W,et al. The role of angioplasty alone in intracranial atherosclerosis:2-dimensional operative video[J]. Oper Neurosurg (Hagerstown),2021,20(5):E350-E351. doi: 10.1093/ons/opaa479 [22] Fu W,Yan L,Hou Z,et al. Impact of cerebral small vessel disease on symptomatic in-stent restenosis in intracranial atherosclerosis[J]. J Neurosurg,2023,138(3):750-759. doi: 10.3171/2022.6.JNS221103 [23] Pons-Escoda A,Smits M. Dynamic-susceptibility-contrast perfusion-weighted-imaging (DSC-PWI) in brain tumors:A brief up-to-date overview for clinical neuroradiologists[J]. Eur Radiol,2023,33(11):8026-8030. doi: 10.1007/s00330-023-09729-3 [24] Nagendran A,McConnell J F. Diffusion- and perfusion-weighted imaging characteristics of an intracranial abscess in a cat[J]. J Small Anim Pract,2021,62(8):714. doi: 10.1111/jsap.13322 [25] 常小娜,何文进,蔡炜琼,等. 全脑CT灌注及磁共振弥散加权成像评价短暂性脑缺血发作继发脑梗死的价值[J]. 中国实用神经疾病杂志,2024,27(1):37-42. [26] 李兆妍,张晓曼,曹心慧,等. 急性缺血性脑卒中患者脑组织微循环的磁共振灌注加权成像特点[J]. 广西医学,2021,43(18):2154-2156. [27] 李兆妍,张晓曼,王军杰,等. 经颅多普勒与磁共振灌注加权成像评估急性缺血性脑卒中患者脑血流与脑灌注变化[J]. 中国实用神经疾病杂志,2020,23(22):1956-1960. [28] 何兴林,刘君,官念,等. ABCD2评分联合核磁共振灌注、弥散加权成像预测短暂性脑缺血后继发性脑梗死风险的价值研究[J]. 新疆医科大学学报,2019,42(11):1447-1451. doi: 10.3969/j.issn.1009-5551.2019.11.014 -
下载: