留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

益生菌辅助治疗代谢功能障碍相关脂肪性肝病的研究进展

熊佳 曾加 周小仙 徐鑫 汪艳蛟 吴志霜 殷建忠 米飞

熊佳, 曾加, 周小仙, 徐鑫, 汪艳蛟, 吴志霜, 殷建忠, 米飞. 益生菌辅助治疗代谢功能障碍相关脂肪性肝病的研究进展[J]. 昆明医科大学学报, 2025, 46(7): 163-174. doi: 10.12259/j.issn.2095-610X.S20250720
引用本文: 熊佳, 曾加, 周小仙, 徐鑫, 汪艳蛟, 吴志霜, 殷建忠, 米飞. 益生菌辅助治疗代谢功能障碍相关脂肪性肝病的研究进展[J]. 昆明医科大学学报, 2025, 46(7): 163-174. doi: 10.12259/j.issn.2095-610X.S20250720
Jia XIONG, Jia ZENG, Xiaoxian ZHOU, Xin XU, Yanjiao WANG, Zhishuang WU, Jianzhong YIN, Fei MI. Research Advances on Probiotics-assisted Therapy for Metabolic Dysfunction-Associated Fatty Liver Disease[J]. Journal of Kunming Medical University, 2025, 46(7): 163-174. doi: 10.12259/j.issn.2095-610X.S20250720
Citation: Jia XIONG, Jia ZENG, Xiaoxian ZHOU, Xin XU, Yanjiao WANG, Zhishuang WU, Jianzhong YIN, Fei MI. Research Advances on Probiotics-assisted Therapy for Metabolic Dysfunction-Associated Fatty Liver Disease[J]. Journal of Kunming Medical University, 2025, 46(7): 163-174. doi: 10.12259/j.issn.2095-610X.S20250720

益生菌辅助治疗代谢功能障碍相关脂肪性肝病的研究进展

doi: 10.12259/j.issn.2095-610X.S20250720
基金项目: 国家自然科学基金(82260641);云南省基础研究专项计划重点项目(202501AS070132);云南省兴滇英才支持计划(XDYC-QNRC-2022-0229);昆明医科大学一流学科特色团队(2024XKTDTS15);云南省赵星专家工作站(202505AF350064)
详细信息
    作者简介:

    熊佳(1999~),女,云南昭通人,在读硕士研究生,主要从事营养流行病学研究工作

    通讯作者:

    殷建忠,E-mail:yinjianzhong2005@sina.com

    米飞,E-mail:mifei99@126.com

  • 中图分类号: R575.5

Research Advances on Probiotics-assisted Therapy for Metabolic Dysfunction-Associated Fatty Liver Disease

  • 摘要: 代谢功能障碍相关脂肪性肝病(metabolic dysfunction-associated steatotic liver disease,MASLD)是一种与肥胖、2型糖尿病、血脂异常和高血压等代谢紊乱密切相关的慢性肝病,其全球发病率持续攀升,已成为重大公共卫生问题。MASLD的发病机制复杂,“多重打击”学说指出,肝脏脂质沉积、胰岛素抵抗、氧化应激、肠道菌群紊乱及遗传因素共同驱动疾病进展。目前临床治疗以生活方式干预为基础,但缺乏特效药物,亟需探索新型辅助治疗策略。近年来,益生菌因其调节肠道微生态、改善胰岛素抵抗和减轻肝炎症的作用,在MASLD治疗中展现出潜在价值。系统综述了MASLD的发病机制与现有治疗手段的局限性,重点从动物实验和临床研究两个维度,总结益生菌辅助治疗MASLD的最新证据。通过分析不同菌种(如双歧杆菌、乳酸杆菌等)的作用靶点及分子机制,探讨益生菌在MASLD治疗中的转化应用前景,以期为未来研究提供理论依据和参考方向。
  • 图  1  MASLD发病机制

    注:IR:胰岛素抵抗,TG:甘油三酯,FAA:游离脂肪酸,FXR:法尼醇X受体,TGR5:G蛋白偶联胆汁酸受体1,TMAO:三甲胺-N-氧化物。TMA:三甲胺,FC:游离胆固醇,AMPK:AMP依赖的蛋白激酶,TNF-α:TNF-α为肿瘤坏死因子-α,IL-6:白介素6,CD68:分化簇68,TLR4:Toll样受体4,NFKB:核因子KB,KCs:库普弗细胞,SCFAs:短链脂肪酸,LPS:脂多糖。

    Figure  1.  Pathogenesis of MASLD

    表  1  双歧杆菌辅助治疗MASLD的变量分析

    Table  1.   Variable analysis of bifidobacterium-assisted therapy for MASLD

    类型 剂量 对象 时长 效果 文献来源
    双歧杆菌V9 1.0×109 CFU/d 大鼠 4周 ↓AST、ALT、TG、FFA、Glu、TNF-α、IL-1β、IL-6、SREBP-1c、FAS、炎性反应、NF-κB;↑肝糖原、PPAR-α Yan et al[20]
    动物双歧杆
    菌乳亚种SF
    1.0×108
    CFU/d(灌胃)
    小鼠 12周 ↓TG、TG、LDL-C、ALT、AST、肝损伤、SREBP-1c、HOMA-IR、氧化应激、NF-κB、TNF-α、IL-6;↑AMPK Lv et al[21]
    青春双歧杆菌 4 × 1010 CFU/d 大鼠 16周 ↓体重、肝脏重量、Glu、IL-1β、TG、TC、ALT、AST、ALP、LDL-C、LDH、NF-κB;↑HDL-C Mohammadmahdi Meybodi et al[22]
    两歧双歧杆菌1007478 104、105、106 CFU/mL/d 斑马鱼 5周 ↓ALT、AST、TG、TC、BMI、ROS、MDA、SREBP-1、IL-6、IL-1β、TNF-α;↑ILA Chao Tian et al[23]
    长双歧杆菌 5.0×1010 CFU/kg/d 小鼠 4周 ↓TC、脂肪组织质量、Glu Machado et al[24]
    动物双歧杆菌
    乳亚种MG741
    1.0×105或1.0×106 CFU/d 小鼠 12周 ↓肝脏脂肪变性、β-葡萄糖醛酸酶、TC、TNF-α、IL-1β、IL-6 Do et al[25]
    假长双歧杆菌 3.0×108 CFU/周 小鼠 1月 ↑乙酸盐代谢物 Song et al[26]
    动物双歧杆菌 1.0×108 CFU/d 人群 24周 ↓超声MASLD等级、ALT、AST、AKP、γ-GT、肝酶浓度 Bakhshimoghaddam et al[27]
    长双歧杆菌 2.5 g药物 人群 24周 ↓AST、LDL-C、CRP、TNF-α、HOMA-IR、LPS、脂肪变性、NASH活动指数 Malaguarnera et al[28]
    动物双歧杆菌
    乳亚种BB-12
    10×1010 CFU/d 人群 10-14月 改变粪便微生物 Scorletti et al[29]
      注:TNF-α:肿瘤坏死因子-α,Glu:血糖,NF-κB:核因子κB,PPAR-α:过氧化物酶体增殖物激活受体-ɑ,HOMA-IR:胰岛素抵抗指数,AMPK:AMP依赖的蛋白激酶,AKP:碱性磷酸酶,CRP:C反应蛋白,ILA:吲哚-3-乳酸。
    下载: 导出CSV

    表  2  乳酸杆菌辅助治疗MASLD的变量分析

    Table  2.   Variable analysis of lactobacillus adjunct therapy for MASLD

    类型 剂量 对象 时长 效果 文献来源
    嗜酸乳杆菌 312 mg/kg/d 大鼠 14周 ↓MASLD活动评分、ALT、
    AST 、TG、TBA、TC
    Luo et al[30]
    干酪乳杆菌Jlus66 1.0、2.0、4.0×
    1010 CFU/d
    大鼠 20周 ↓TNF-α、IL-6、MDA、LPS;↑IL-10、
    SOD、GSH-Px、厚壁菌门
    Wang et al[31]
    鼠李糖乳杆菌GG 1.0×108 CFU/d 小鼠 13周 ↓体重、肝脂肪变性、肠系膜脂肪、肝脏;
    ↑胰岛素敏感性、ADPN
    Kim et al[32]
    鼠李糖乳杆菌GG 1.0×108 CFU/d 小鼠 13周 ↓TC、TG、皮下脂肪、肝脏脂肪 Kim et al[33]
    鼠李糖乳杆菌GG / 人群 8周 ↓TNF-α、LPS、肠杆菌科;↑毛螺菌科 Bajaj et al[34]
    植物乳杆菌NCU116 1.0×108 CFU/mL,1.0×109 CFU/mL
    (1 kg/10 mL)
    大鼠 5周 ↓肝脂肪变性、ALT、AST、Tbil、MDA、
    TC、TG、IL-6、LPS、TNF-α;
    ↑GSH-Px、CAT、T-AOC、IL-10
    Li et al[35]
    植物乳杆菌FZU3013 1.0×109 CFU/d 小鼠 8周 ↓体重、TC、TG、LDL-C、肝脏、
    附睾脂肪指数、BAs、FFA;↑NEFA
    Chen et al[36]
    副干酪乳杆菌N1115 2.2×109 CFU/d 小鼠 16周 ↓脂肪变性、TNF-α、TG、TC Yao et al[37]
    沙克乳酸杆菌MJM60958 1.0×108 CFU/d,1.0× 109 CFU/d 小鼠 12周 ↓肝脏、Leptin、脂肪变性;↑ADPN Nguyen et al[38]
    棒状乳杆菌T3 1.0×109 CFU/d 小鼠 6周 ↓肝脏脂肪、体重、WAT、IL-6、
    TNF-α、TC、TG、AST、ALT、
    MDA;↑iBAT指数、GSH-Px、SOD
    Song et al[39]
    罗伊氏乳杆菌 1.0×108 CFU/次,
    每日2次
    人群 3月 ↓脂肪变性、体重、BMI、腰围 Ferolla et al[40]
    鼠李糖乳杆菌GG 1.0×109 CFU/d 小鼠 9周 ↓体重、WAT Jang et al[41]
    发酵乳杆菌CQPC06 1.0×109 CFU/kg/d 小鼠 8周
    ↓体重、肝脏指数、ALT、AST、AKP、
    TC、TG、LDL-C、LPS、HDL-C、gWAT
    Mu et al[42]
    发酵乳杆菌LM1016 1.0×109 CFU/d 小鼠 8周 ↓体重、BAT、Glu、TC、Leptin Yoon et al[43]
    植物乳杆菌 1.0×108 CFU/d 大鼠 12周 ↓体重、肾周脂肪指数、肝脂肪指数、肝脏总
    脂肪含量、TGF-β1、SOD、GSH-Px、TBARS
    Zhu et al[44]
    嗜酸乳杆菌、发酵乳杆菌、植物乳杆菌、副干酪乳杆菌 1.0×109 CFU/d 小鼠 8周 ↓肝脏、TC、脂肪变性 Lee et al[45]
    罗伊氏乳杆菌MJM60668 1.0×108 CFU/d、1.0×109 CFU/d 小鼠 12周 ↓体重、ALT、AST Werlinger et al[46]
    罗伊氏乳杆菌MG5149 2.0×108 CFU/d 小鼠 8周 ↓体重、脂肪组织、ALT、AST、
    TG、TC、LDL-C、血糖;↑ADPN
    Choi et al[47]
    短乳酸杆菌 109 CFU / mL/d 小鼠 8周 ↓体重、TG、TC、LDL-C、Leptin、ALT、
    AST、MDA、WAT、Glu、初级胆汁酸;
    ↑HDL-C、SOD、次级胆汁酸、有益菌
    Liping Zhou et al[48]
    瑞士乳杆菌HY7804 109 CFU/kg/d 小鼠 7周 ↓ALT、AST、TG、TC、Glu、LDL-C、
    TLR4、NF-κB、MASLD活动评分、
    拟杆菌;↑乳酸杆菌、梭状芽孢杆菌
    Hyeonji Kim et al[49]
    嗜酸乳杆菌 2.0×109 CFU/次,
    每日3次
    人群 1月 ↓ALT、AST Abdel Monem et al[50]
    鼠李糖乳杆菌GG 1.2×1010 CFU/d 人群 8周 ↓ALT、抗肽聚糖-多糖抗体 Vajro et al[51]
      注:TBA:总胆汁酸,TBil:总胆红素水平,CAT:过氧化氢酶,T-AOC:总抗氧化能力,BAs:生物胺,NEFA:非酯化脂肪酸,Leptin:瘦素,WAT:白色脂肪组织,iBAT:肩胛间棕色脂肪组织,GSH:谷胱甘肽,BAT:棕色脂肪组织,gWAT:性腺白色脂肪组织,TBARS:具有代表性的有害脂质过氧化物。
    下载: 导出CSV

    表  3  NGPs辅助治疗MASLD的变量分析

    Table  3.   Variable analysis of NGPs as adjunctive therapy for MASLD

    类型 剂量 对象 时长 效果 文献来源
    丁酸梭菌
    MIYAIRI 588
    8.5×109 CFU/g/d 大鼠 50周 ↓TG、HOMA-IR、ALT、TNF-α、LPS Endo et al[52]
    丁酸梭菌B1 1.0×109 CFU/d 小鼠 16周 ↓附睾脂肪组织指数、ALT、AST、
    HOMA-IR 、Glu、MASLD评分、
    肝脏脂肪、TG、TC;↑ISI、丁酸盐
    Zhou et al[53]
    丁酸梭菌 5.0×107 CFU/kg/d 小鼠 6周 ↓Glu、LPS、TG、TC、IL-1β、TNF-α、
    肝脏、ALT、AKP;↑GLP-1
    Yang et al[54]
    丁酸梭菌 400 mg/次,每日3次 人群 6月 ↓TC、TG、FFA、TBIL、DBIL、PIIIP、C-IV、HA、LN、ALT、AST、TNF-α;↑IL-6 Zhu et al[55]
    芽孢杆菌 1.0×108 CFU/d 小鼠 13周 ↓体重、肝脏、Glu、TG Kim et al[56]
    凝结芽孢杆菌BC30 1.0×109 CFU/d 人群 12周 ↓ALT、γ-GT、TNF-α、肝脂肪变性 Abhari et al[57]
    嗜黏蛋白阿克曼菌 1.0×109 CFU/
    200 µL/d
    小鼠 4周 ↓TNF-α、IL-6、ALT、AST、Glu、TC、
    TG、LDL-C、VLDL-C;↑IL-10
    Raftar et al[58]
    嗜黏蛋白阿克曼菌 108 ~109 CFU/d 小鼠 10周 ↓TG、ALT、IL-6 Kim et al[59]
    普拉梭菌 1.0×109 CFU/d 小鼠 12周 ↓体重、FFA、TC、TG、LDL-C、附睾脂肪指数、TNF-α、IL-6、MDA、IL-1β、Glu、HOMA-IR;↑HDL-C、SOD、GSH-Px Hu et al[60]
    嗜黏蛋白阿克曼菌 2.0×108 CFU/d 大鼠 9周 ↓TG、脂肪变性、MASLD评分、
    HOMA-IR;↑Leptin
    Juárez-Fernández
    et al[61]
    嗜黏蛋白阿克曼菌 0.2×109 CFU/mL,每周3次 小鼠 20周 ↓体重、HOMA-IR、Glu、TC、TG、ALT、AST、肝脏指数、TNF-α、IL-6、IL-17A;↑IL-10 Fulin Nian et al[62]
    嗜黏蛋白阿克曼菌 1.0×1010 CFU/d 人群 3月 ↓HOMA-IR、DPP-IV活性、TC、γ-GT、AST、LPS、LDH、CK、体重、脂肪量 Clara Depommier et al[63]
    嗜黏蛋白阿克曼菌 1.0×109 CFU/
    200 µL/d
    小鼠 4周 ↓TNF-α、IL-6、ALT、AST;↑IL-10 Raftar et al[64]
    嗜黏蛋白阿克曼菌 2.0×109 CFU/d 小鼠 10周 ↓脂肪变性、MASLD活性评分、Glu、ALT Li et al[65]
    嗜黏蛋白阿克曼菌 1.0×109 CFU/d 小鼠 20周 ↓体重、Glu、TC、ALT、AST、
    肝脂肪变性、MASLD活性评分
    Han et al[66]
    普拉梭菌 1.0× 108 CFU/d 小鼠 16周 ↓Glu、TG、TC、ALT、AST Shin et al[67]
      注:ISI:胰岛素敏感指数,GLP-1:胰高血糖素样肽-1,TBIL:总胆红素,DBIL:直接胆红素,PIIIP:前胶原III肽,C-IV:胶原-IV,HA:透明质酸,LN:层粘连蛋白,VLDL- C:极低密度脂蛋白,DPP-IV:二肽基肽酶- IV,LDH:乳酸脱氢酶,CK:肌酸激酶。
    下载: 导出CSV

    表  4  联合益生菌辅助治疗MASLD的变量分析

    Table  4.   Variable analysis of combined probiotic adjunctive therapy for MASLD

    类型 剂量 对象 时长 效果 文献来源
    6个乳酸杆菌+3个双歧杆菌 6.0×1010 CFU/d 大鼠 16周 ↓FFA、TG、IL-1β、
    IL-18、ALT
    Liang et al[68]
    干酪乳杆菌、鼠李糖乳杆菌、
    嗜酸乳杆菌、长双歧杆菌和短双歧杆菌
    5.0×1010 CFU/d 人群 12周 ↓TG、ALT、AST、γ-GT、ALP、Hs-CRP Behrouz et al[69]
    MCP®BCMC®(嗜酸乳杆菌BCMC、
    干酪乳杆菌BCMC、两歧双歧杆菌BCMC、
    婴儿双歧杆菌BCMC、长双歧杆菌BCMC)
    2.0×107 CFU/g,
    3 g/d
    人群 3月 ↓BMI、Glu、肝脂肪变性 Mohamad Nor
    et al[70]
    MCP®BCMC® 2.0×107 CFU/g,
    3 g/d
    人群 6月 ↓TC、TNF-α、IFN-γ、
    ZO-1;↑IL-6
    Ayob et al[71]
    双歧杆菌、乳酸杆菌、肠球菌 1 g/次,2次/d 人群 3月 ↓ALT 、AST、γ-GT、
    TC、TG、HOMA-IR、MASLD评分
    Cai et al[72]
    嗜酸乳杆菌、双歧双歧杆菌、长双歧杆菌、
    德氏乳杆菌保加利亚亚种、瑞氏乳杆菌、
    植物乳杆菌、鼠李糖乳杆菌、干酪乳杆菌、
    乳酸乳球菌、嗜热链球菌
    3粒/d 人群 12周 ↓TG、ALT、MASLD
    纤维化评分、
    内脏肥胖指数
    Crommen et al[73]
    嗜酸乳杆菌+双歧杆菌 1.0×109 CFU/d 人群 6月 ↓AST;APRI评分 Escouto et al[74]
    鼠李糖乳杆菌HN001、嗜酸乳杆菌NCFM、
    乳双歧杆菌HN019、副干酪乳杆菌LPC-37
    4.0×109 CFU/g,
    1 g/d
    人群 24周 ↓miR-122 Barcelos et al[75]
    VSL#3®(嗜热链球菌、长双歧杆菌、
    短双歧杆菌、婴儿双歧杆菌、嗜酸乳杆菌、
    植物乳杆菌、副干酪乳杆菌)
    2包/d 人群 3月 ↓TG、Hs-CRP、ALT、AST、γ-GT、AST/ALT、脂肪肝变性/改善/消失 Derosa et al[76]
    VSL#3® 2包/次,2次/d 人群 10周 ↑模式ASQ评分 Chong et al[77]
    索氏厌氧丁酸菌、嗜黏蛋白阿克曼菌、
    动物双歧杆菌、低聚果糖+FMT
    2粒/d、109
    1010、3×1010
    人群 24周 Quinten J J Augustijn et al[78]
      注:Hs-CRP 为超敏C反应蛋白,IFN-γ为干扰素-γ,ZO-1为闭锁小带蛋白1,ASQ为纤维化评分声学结构量化。
    下载: 导出CSV
  • [1] Poniachik J,Roblero J P,Urzúa A,et al. A new definition for non-alcoholic fatty liver disease[J]. J Hepatol,2021,74(4):982-983. doi: 10.1016/j.jhep.2020.09.002
    [2] Cotter T G,Rinella M. Nonalcoholic fatty liver disease 2020: The state of the disease[J]. Gastroenterology,2020,158(7):1851-1864. doi: 10.1053/j.gastro.2020.01.052
    [3] Scapaticci S,D’ Adamo E,Mohn A,et al. Non-alcoholic fatty liver disease in obese youth with insulin resistance and type 2 diabetes[J]. Front Endocrinol(Lausanne),2021,12:639548. doi: 10.3389/fendo.2021.639548
    [4] Pafili K,Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans[J]. Mol Metab,2021,50:101122.
    [5] Wang C,Zhu C,Shao L,et al. Role of bile acids in dysbiosis and treatment of nonalcoholic fatty liver disease[J]. Mediators Inflamm,2019,2019:7659509.
    [6] De Munck T J I,Xu P,Verwijs H J A,et al. Intestinal permeability in human nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Liver Int,2020,40(12):2906-2916. doi: 10.1111/liv.14696
    [7] Han H,Jiang Y,Wang M,et al. Intestinal dysbiosis in nonalcoholic fatty liver disease (NAFLD): Focusing on the gut-liver axis[J]. Crit Rev Food Sci Nutr,2023,63(12):1689-1706. doi: 10.1080/10408398.2021.1966738
    [8] Quek J,Chan K E,Wong Z Y,et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol,2023,8(1):20-30. doi: 10.1016/S2468-1253(22)00317-X
    [9] Vilar-Gomez E,Martinez-Perez Y,Calzadilla-Bertot L,et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis [J]. Gastroenterology,2015,149(2): 367-378. e5.
    [10] Kandel A,Pant P,Todi S,et al. Effect of exercise and pharmacotherapy on non-alcoholic fatty liver disease[J]. SAGE Open Med,2024,12:20503121241227090.
    [11] Abdel-Razik A,Mousa N,Shabana W,et al. Rifaximin in nonalcoholic fatty liver disease: Hit multiple targets with a single shot[J]. Eur J Gastroenterol Hepatol,2018,30(10):1237-1246. doi: 10.1097/MEG.0000000000001232
    [12] Li K P,Yu Y,Yuan M,et al. Tian-Huang formula,a traditional Chinese medicinal prescription,improves hepatosteatosis and glucose intolerance targeting AKT-SREBP nexus in diet-induced obese rats[J]. Evid Based Complement Alternat Med,2021,2021:6617586.
    [13] Ji L,Li Q,He Y,et al. Therapeutic potential of traditional Chinese medicine for the treatment of NAFLD: A promising drug Potentilla discolor Bunge[J]. Acta Pharm Sin B,2022,12(9):3529-3547. doi: 10.1016/j.apsb.2022.05.001
    [14] Shou D,Luo Q,Tang W,et al. Hepatobiliary and pancreatic: Multi-donor fecal microbiota transplantation attenuated high-fat diet-induced hepatic steatosis in mice by remodeling the gut microbiota[J]. J Gastroenterol Hepatol,2023,38(12):2195-2205. doi: 10.1111/jgh.16359
    [15] Witjes J J,Smits L P,Pekmez C T,et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis[J]. Hepatol Commun,2020,4(11):1578-1590. doi: 10.1002/hep4.1601
    [16] Craven L,Rahman A,Nair Parvathy S,et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: A randomized control trial[J]. Am J Gastroenterol,2020,115(7):1055-1065. doi: 10.14309/ajg.0000000000000661
    [17] Xue L,Deng Z,Luo W,et al. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: A randomized clinical trial[J]. Front Cell Infect Microbiol,2022,12:759306. doi: 10.3389/fcimb.2022.759306
    [18] Yu Q,Wu L,Ji J,et al. Gut microbiota,peroxisome proliferator-activated receptors,and hepatocellular carcinoma[J]. J Hepatocell Carcinoma,2020,7:271-288. doi: 10.2147/JHC.S277870
    [19] Zaharuddin L,Mokhtar N M,Muhammad Nawawi K N,et al. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer[J]. BMC Gastroenterol,2019,19(1):131. doi: 10.1186/s12876-019-1047-4
    [20] Yan Y,Liu C,Zhao S,et al. Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease[J]. AMB Express,2020,10(1):101. doi: 10.1186/s13568-020-01038-y
    [21] Lv H,Tao F,Peng L,et al. In vitro probiotic properties of Bifidobacterium animalis subsp. lactis SF and its alleviating effect on non-alcoholic fatty liver disease[J]. Nutrients,2023,15(6):1355. doi: 10.3390/nu15061355
    [22] Meybodi S M,Rezazadeh Khabaz M J,Vojdani A,et al. Bifidobacterium adolescentis prevents diabetes-induced liver injury via pyroptosis attenuation[J]. Exp Cell Res,2025,447(2):114518. doi: 10.1016/j.yexcr.2025.114518
    [23] Tian C,Deng S,Zhang Z,et al. Bifidobacterium bifidum 1007478 derived indole-3-lactic acid alleviates NASH via an aromatic hydrocarbon receptor-dependent pathway in zebrafish[J]. Life Sci,2025,369:123557. doi: 10.1016/j.lfs.2025.123557
    [24] Machado A S,Oliveira J R,Lelis D F,et al. Oral probiotic Bifidobacterium longum supplementation improves metabolic parameters and alters the expression of the renin-angiotensin system in obese mice liver[J]. Biol Res Nurs,2021,23(1):100-108. doi: 10.1177/1099800420942942
    [25] Do M H,Oh M J,Lee H B,et al. Bifidobacterium animalis ssp. lactis MG741 reduces body weight and ameliorates nonalcoholic fatty liver disease via improving the gut permeability and amelioration of inflammatory cytokines[J]. Nutrients,2022,14(9):1965. doi: 10.3390/nu14091965
    [26] Song Q,Zhang X,Liu W,et al. Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma[J]. J Hepatol,2023,79(6):1352-1365. doi: 10.1016/j.jhep.2023.07.005
    [27] Bakhshimoghaddam F,Shateri K,Sina M,et al. Daily consumption of synbiotic yogurt decreases liver steatosis in patients with nonalcoholic fatty liver disease: A randomized controlled clinical trial[J]. J Nutr,2018,148(8):1276-1284. doi: 10.1093/jn/nxy088
    [28] Malaguarnera M,Vacante M,Antic T,et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis[J]. Dig Dis Sci,2012,57(2):545-553. doi: 10.1007/s10620-011-1887-4
    [29] Scorletti E,Afolabi P R,Miles E A,et al. Synbiotics alter fecal microbiomes,but not liver fat or fibrosis,in a randomized trial of patients with nonalcoholic fatty liver disease [J]. Gastroenterology,2020,158(6): 1597-1610. e7.
    [30] Luo M,Yan J,Wu L,et al. Probiotics alleviated nonalcoholic fatty liver disease in high-fat diet-fed rats via gut microbiota/FXR/FGF15 signaling pathway[J]. J Immunol Res,2021,2021:2264737.
    [31] Wang W,Li Q,Chai W,et al. Lactobacillus paracasei Jlus66 extenuate oxidative stress and inflammation via regulation of intestinal flora in rats with non alcoholic fatty liver disease[J]. Food Sci Nutr,2019,7(8):2636-2646. doi: 10.1002/fsn3.1118
    [32] Kim S W,Park K Y,Kim B,et al. Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production[J]. Biochem Biophys Res Commun,2013,431(2):258-263. doi: 10.1016/j.bbrc.2012.12.121
    [33] Kim B,Park K Y,Ji Y,et al. Protective effects of Lactobacillus rhamnosus GG against dyslipidemia in high-fat diet-induced obese mice[J]. Biochem Biophys Res Commun,2016,473(2):530-536. doi: 10.1016/j.bbrc.2016.03.107
    [34] Bajaj J S,Heuman D M,Hylemon P B,et al. Randomised clinical trial: Lactobacillus GG modulates gut microbiome,metabolome and endotoxemia in patients with cirrhosis[J]. Aliment Pharmacol Ther,2014,39(10):1113-1125. doi: 10.1111/apt.12695
    [35] Li C,Nie S P,Zhu K X,et al. Lactobacillus plantarum NCU116 improves liver function,oxidative stress and lipid metabolism in rats with high fat diet induced non-alcoholic fatty liver disease[J]. Food Funct,2014,5(12):3216-3223. doi: 10.1039/C4FO00549J
    [36] Chen M,Guo W L,Li Q Y,et al. The protective mechanism of Lactobacillus plantarum FZU3013 against non-alcoholic fatty liver associated with hyperlipidemia in mice fed a high-fat diet[J]. Food Funct,2020,11(4):3316-3331. doi: 10.1039/C9FO03003D
    [37] Yao F,Jia R,Huang H,et al. Effect of Lactobacillus paracasei N1115 and fructooligosaccharides in nonalcoholic fatty liver disease[J]. Arch Med Sci,2019,15(5):1336-1344. doi: 10.5114/aoms.2019.86611
    [38] Nguyen H T,Gu M,Werlinger P,et al. Lactobacillus sakei MJM60958 as a potential probiotic alleviated non-alcoholic fatty liver disease in mice fed a high-fat diet by modulating lipid metabolism,inflammation,and gut microbiota[J]. Int J Mol Sci,2022,23(21):13436. doi: 10.3390/ijms232113436
    [39] Song W,Wang T,Cui X,et al. Lactobacillus coryniformis subsp. torquens T3 alleviates non-alcoholic fatty liver disease via reconstruction of the gut microbiota and redox system[J]. J Sci Food Agric,2023,103(14):6814-6825. doi: 10.1002/jsfa.12774
    [40] Ferolla S M,Couto C A,Costa-Silva L,et al. Beneficial effect of synbiotic supplementation on hepatic steatosis and anthropometric parameters,but not on gut permeability in a population with nonalcoholic steatohepatitis[J]. Nutrients,2016,8(7):E397. doi: 10.3390/nu8070397
    [41] Jang H R,Park H J,Kang D,et al. A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption[J]. Exp Mol Med,2019,51(8):1-14.
    [42] Mu J,Tan F,Zhou X,et al. Lactobacillus fermentum CQPC06 in naturally fermented pickles prevents non-alcoholic fatty liver disease by stabilizing the gut-liver axis in mice[J]. Food Funct,2020,11(10):8707-8723. doi: 10.1039/D0FO01823F
    [43] Yoon Y,Kim G,Noh M G,et al. Lactobacillus fermentum promotes adipose tissue oxidative phosphorylation to protect against diet-induced obesity[J]. Exp Mol Med,2020,52(9):1574-1586. doi: 10.1038/s12276-020-00502-w
    [44] Zhu C,Guan Q,Song C,et al. Regulatory effects of Lactobacillus fermented black barley on intestinal microbiota of NAFLD rats[J]. Food Res Int,2021,147:110467. doi: 10.1016/j.foodres.2021.110467
    [45] Lee N Y,Shin M J,Youn G S,et al. Lactobacillus attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steatosis[J]. Clin Mol Hepatol,2021,27(1):110-124. doi: 10.3350/cmh.2020.0125
    [46] Werlinger P,Nguyen H T,Gu M,et al. Lactobacillus reuteri MJM60668 prevent progression of non-alcoholic fatty liver disease through anti-adipogenesis and anti-inflammatory pathway[J]. Microorganisms,2022,10(11):2203. doi: 10.3390/microorganisms10112203
    [47] Choi S I,You S,Kim S,et al. Weissella cibaria MG5285 and Lactobacillus reuteri MG5149 attenuated fat accumulation in adipose and hepatic steatosis in high-fat diet-induced C57BL/6J obese mice[J]. Food Nutr Res,2021,65:8087.
    [48] Zhou L,Gong L,Liu Z,et al. Probiotic interventions with highly acid-tolerant Levilactobacillus brevis strains improve lipid metabolism and gut microbial balance in obese mice[J]. Food Funct,2025,16(1):112-132. doi: 10.1039/D4FO03417A
    [49] Kim H,Jeon H J,Jeong J W,et al. Lactobacillus helveticus HY7804 modulates the gut-liver axis to improve metabolic dysfunction-associated steatotic liver disease in a mouse model[J]. Int J Mol Sci,2025,26(8):3557.
    [50] Abdel Monem S M. Probiotic therapy in patients with nonalcoholic steatohepatitis in zagazig university hospitals[J]. Euroasian J Hepatogastroenterol,2017,7(1):101-106.
    [51] Vajro P,Mandato C,Licenziati M R,et al. Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease[J]. J Pediatr Gastroenterol Nutr,2011,52(6):740-743. doi: 10.1097/MPG.0b013e31821f9b85
    [52] Endo H,Niioka M,Kobayashi N,et al. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: New insight into the probiotics for the gut-liver axis[J]. PLoS One,2013,8(5):e63388. doi: 10.1371/journal.pone.0063388
    [53] Zhou D,Pan Q,Liu X L,et al. Clostridium butyricum B1 alleviates high-fat diet-induced steatohepatitis in mice via enterohepatic immunoregulation[J]. J Gastroenterol Hepatol,2017,32(9):1640-1648. doi: 10.1111/jgh.13742
    [54] Yang T,Yang H,Heng C,et al. Amelioration of non-alcoholic fatty liver disease by sodium butyrate is linked to the modulation of intestinal tight junctions in db/db mice[J]. Food Funct,2020,11(12):10675-10689. doi: 10.1039/D0FO01954B
    [55] Zhu W,Yan M,Cao H,et al. Effects of Clostridium butyricum capsules combined with rosuvastatin on intestinal flora,lipid metabolism,liver function and inflammation in NAFLD patients[J]. Cell Mol Biol(Noisy-le-grand),2022,68(2):64-69. doi: 10.14715/cmb/2022.68.2.10
    [56] Kim B,Kwon J,Kim M S,et al. Protective effects of Bacillus probiotics against high-fat diet-induced metabolic disorders in mice[J]. PLoS One,2018,13(12):e0210120. doi: 10.1371/journal.pone.0210120
    [57] Abhari K,Saadati S,Yari Z,et al. The effects of Bacillus coagulans supplementation in patients with non-alcoholic fatty liver disease: A randomized,placebo-controlled,clinical trial[J]. Clin Nutr ESPEN,2020,39:53-60. doi: 10.1016/j.clnesp.2020.06.020
    [58] Keshavarz Azizi Raftar S,Ashrafian F,Yadegar A,et al. The protective effects of live and pasteurized Akkermansia muciniphila and its extracellular vesicles against HFD/CCl4-induced liver injury[J]. Microbiol Spectr,2021,9(2):e0048421. doi: 10.1128/Spectrum.00484-21
    [59] Kim S,Lee Y,Kim Y,et al. Akkermansia muciniphila prevents fatty liver disease,decreases serum triglycerides,and maintains gut homeostasis[J]. Appl Environ Microbiol,2020,86(7):e03004-19.
    [60] Hu W,Gao W,Liu Z,et al. Specific strains of Faecalibacterium prausnitzii ameliorate nonalcoholic fatty liver disease in mice in association with gut microbiota regulation[J]. Nutrients,2022,14(14):2945. doi: 10.3390/nu14142945
    [61] Juárez-Fernández M,Porras D,Petrov P,et al. The synbiotic combination of Akkermansia muciniphila and quercetin ameliorates early obesity and NAFLD through gut microbiota reshaping and bile acid metabolism modulation[J]. Antioxidants(Basel),2021,10(12):2001. doi: 10.3390/antiox10122001
    [62] Nian F,Wu L,Xia Q,et al. Akkermansia muciniphila and Bifidobacterium bifidum prevent NAFLD by regulating FXR expression and gut microbiota[J]. J Clin Transl Hepatol,2023,11(4):763-776.
    [63] Depommier C,Everard A,Druart C,et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study[J]. Nat Med,2019,25(7):1096-1103.
    [64] Raftar S K A,Ashrafian F,Abdollahiyan S,et al. The anti-inflammatory effects of Akkermansia muciniphila and its derivates in HFD/CCL4-induced murine model of liver injury[J]. Sci Rep,2022,12(1):2453. doi: 10.1038/s41598-022-06414-1
    [65] Li T,Lin X,Shen B,et al. Akkermansia muciniphila suppressing nonalcoholic steatohepatitis associated tumorigenesis through CXCR6+ natural killer T cells[J]. Front Immunol,2022,13:1047570. doi: 10.3389/fimmu.2022.1047570
    [66] Han Y,Ling Q,Wu L,et al. Akkermansia muciniphila inhibits nonalcoholic steatohepatitis by orchestrating TLR2-activated γδT17 cell and macrophage polarization[J]. Gut Microbes,2023,15(1):2221485. doi: 10.1080/19490976.2023.2221485
    [67] Shin J H,Lee Y,Song E J,et al. Faecalibacterium prausnitzii prevents hepatic damage in a mouse model of NASH induced by a high-fructose high-fat diet[J]. Front Microbiol,2023,14:1123547. doi: 10.3389/fmicb.2023.1123547
    [68] Liang Y,Lin C,Zhang Y,et al. Probiotic mixture of Lactobacillus and Bifidobacterium alleviates systemic adiposity and inflammation in non-alcoholic fatty liver disease rats through Gpr109a and the commensal metabolite butyrate[J]. Inflammopharmacology,2018,26(4):1051-1055. doi: 10.1007/s10787-018-0479-8
    [69] Behrouz V,Aryaeian N,Zahedi M J,et al. Effects of probiotic and prebiotic supplementation on metabolic parameters,liver aminotransferases,and systemic inflammation in nonalcoholic fatty liver disease: A randomized clinical trial[J]. J Food Sci,2020,85(10):3611-3617. doi: 10.1111/1750-3841.15367
    [70] Mohamad Nor M H,Ayob N,Mokhtar N M,et al. The effect of probiotics (MCP® BCMC® strains) on hepatic steatosis,small intestinal mucosal immune function,and intestinal barrier in patients with non-alcoholic fatty liver disease[J]. Nutrients,2021,13(9):3192. doi: 10.3390/nu13093192
    [71] Ayob N,Muhammad Nawawi K N,Mohamad Nor M H,et al. The effects of probiotics on small intestinal microbiota composition,inflammatory cytokines and intestinal permeability in patients with non-alcoholic fatty liver disease[J]. Biomedicines,2023,11(2):640. doi: 10.3390/biomedicines11020640
    [72] Cai G S,Su H,Zhang J. Protective effect of probiotics in patients with non-alcoholic fatty liver disease[J]. Medicine(Baltimore),2020,99(32):e21464. doi: 10.1097/MD.0000000000021464
    [73] Crommen S,Rheinwalt K P,Plamper A,et al. A specifically tailored multistrain probiotic and micronutrient mixture affects nonalcoholic fatty liver disease-Related markers in patients with obesity after mini gastric bypass surgery[J]. J Nutr,2022,152(2):408-418. doi: 10.1093/jn/nxab392
    [74] Escouto G S,Port G Z,Tovo C V,et al. Probiotic supplementation,hepatic fibrosis,and the microbiota profile in patients with nonalcoholic steatohepatitis: A randomized controlled trial[J]. J Nutr,2023,153(7):1984-1993. doi: 10.1016/j.tjnut.2023.05.019
    [75] Barcelos S T A,Silva-Sperb A S,Moraes H A,et al. Oral 24-week probiotics supplementation did not decrease cardiovascular risk markers in patients with biopsy proven NASH: A double-blind placebo-controlled randomized study[J]. Ann Hepatol,2023,28(1):100769. doi: 10.1016/j.aohep.2022.100769
    [76] Derosa G,Guasti L,D'Angelo A,et al. Probiotic therapy with VSL#3® in patients with NAFLD: A randomized clinical trial[J]. Front Nutr,2022,9:846873. doi: 10.3389/fnut.2022.846873
    [77] Chong P L,Laight D,Aspinall R J,et al. A randomised placebo controlled trial of VSL#3® probiotic on biomarkers of cardiovascular risk and liver injury in non-alcoholic fatty liver disease[J]. BMC Gastroenterol,2021,21(1):144. doi: 10.1186/s12876-021-01660-5
    [78] Augustijn Q J J,Grefhorst A,de Groen P,et al. Randomised double-blind placebo-controlled trial protocol to evaluate the therapeutic efficacy of lyophilised faecal microbiota capsules amended with next-generation beneficial bacteria in individuals with metabolic dysfunction-associated steatohepatitis[J]. BMJ Open,2025,15(1):e088290. doi: 10.1136/bmjopen-2024-088290
  • [1] 李梦焕, 艾丽, 李永霞.  单细胞RNA测序:慢性阻塞性肺疾病研究的新视角, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250301
    [2] 韦嘉雯, 夏猛, 陈玉君, 杨永, 张瑛, 张江银, 陈奎奎, 邱祥龙.  饮料干预在代谢功能障碍相关脂肪性肝病中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20251018
    [3] 金以超, 王晓川, 敖春萍, 徐良恒.  瘢痕疙瘩相关性瘙痒的发病机制及治疗研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241224
    [4] 梁国晶, 冀琨, 张恺纯, 张玉芳, 安晶, 张钰鸽, 文娟, 任海燕.  益生菌对脑缺血再灌注损伤大鼠Aβ表达的影响及神经元的保护作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240506
    [5] 冉蕾晶, 王绍华, 李林童, 桂莉.  益生菌辅助治疗骨质疏松患者效果的Meta分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240209
    [6] 江华维, 刘霞, 王艳, 章敏慧, 尹维丹, 张利伟.  翼状胬肉发病机制的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230125
    [7] 杨顺航, 李炯明, 刘建和, 王光, 李沛.  肠源性高草酸尿症的发病机制与治疗进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220734
    [8] 武翠玲, 刘弘毅, 范源, 刘嘉瑞.  糖尿病脑病的发病机制研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220733
    [9] 徐永芳, 吴娜, 胡月新, 赵永美, 郑绍鼎, 危玲, 郑思佳, 刘建军.  GW7647对大鼠非酒精性脂肪性肝病(NAFLD)的治疗作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210804
    [10] 刘幸, 李海雯, 黄红丽, 沈凌筠, 张乐, 刘向芳, 张文林, 王璐.  益生菌强化肠内营养支持对重症急性胰腺炎患者胃肠道功能和炎症因子的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211116
    [11] 林泽西, 林荔青, 王剑刃, 谢涛, 傅西安, 浦军.  益生菌肠内营养对重型颅脑损伤患者呼吸机相关性肺炎的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211213
    [12] 杨怀勇, 黎麟达.  双歧杆菌三联活菌胶囊联合二甲双胍治疗对结直肠癌合并2型糖尿病患者血糖控制和临床疗效, 昆明医科大学学报.
    [13] 刘娟, 张小梅, 张帆, 杨春燕, 李娜, 田莹.  药物联合音乐疗法对缓解慢性神经病理性疼痛的有效性, 昆明医科大学学报.
    [14] 刘华, 岳万远, 骆琦, 邵帅, 张亮, 代晓明.  TATA结合蛋白在舌粘膜癌变中的过表达, 昆明医科大学学报.
    [15] 梁昕悦, 郭皓.  线粒体解偶联蛋白2与高血压的研究进展, 昆明医科大学学报.
    [16] 秦源, 杨莹.  正常甲状腺功能病态综合征的研究进展, 昆明医科大学学报.
    [17] 李東霖, 吴文娟, 邹丹丹, 何黎痤疮研究进展, 昆明医科大学学报.
    [18] 李文华, 魏云鸿, 叶吉云.  益生菌对老年冠心病患者血脂代谢的影响, 昆明医科大学学报.
    [19] 杨再英.  骨质疏松症对骨性关节炎发病机制的影响, 昆明医科大学学报.
    [20] 熊雁.  益生菌治疗婴儿抗生素相关性腹泻疗效分析, 昆明医科大学学报.
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  522
  • HTML全文浏览量:  258
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-15
  • 刊出日期:  2025-07-21

目录

    /

    返回文章
    返回