Research Advances on Probiotics-assisted Therapy for Metabolic Dysfunction-Associated Fatty Liver Disease
-
摘要: 代谢功能障碍相关脂肪性肝病(metabolic dysfunction-associated steatotic liver disease,MASLD)是一种与肥胖、2型糖尿病、血脂异常和高血压等代谢紊乱密切相关的慢性肝病,其全球发病率持续攀升,已成为重大公共卫生问题。MASLD的发病机制复杂,“多重打击”学说指出,肝脏脂质沉积、胰岛素抵抗、氧化应激、肠道菌群紊乱及遗传因素共同驱动疾病进展。目前临床治疗以生活方式干预为基础,但缺乏特效药物,亟需探索新型辅助治疗策略。近年来,益生菌因其调节肠道微生态、改善胰岛素抵抗和减轻肝炎症的作用,在MASLD治疗中展现出潜在价值。系统综述了MASLD的发病机制与现有治疗手段的局限性,重点从动物实验和临床研究两个维度,总结益生菌辅助治疗MASLD的最新证据。通过分析不同菌种(如双歧杆菌、乳酸杆菌等)的作用靶点及分子机制,探讨益生菌在MASLD治疗中的转化应用前景,以期为未来研究提供理论依据和参考方向。
-
关键词:
- 代谢功能障碍相关脂肪性肝病 /
- 发病机制 /
- 益生菌 /
- 辅助治疗
Abstract: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver condition intricately linked to metabolic abnormalities such as obesity, type 2 diabetes, dyslipidemia, and hypertension. The global prevalence of MASLD continues to rise, posing a significant public health challenge.The pathogenesis of MASLD is multifactorial, with the "multiple-hit" hypothesis suggesting that hepatic lipid accumulation, insulin resistance, oxidative stress, gut microbiota dysbiosis, and genetic factors collectively drive disease progression. Currently, clinical management primarily relies on lifestyle interventions; however, there is a lack of targeted pharmacological interventions, and there is an urgent need to investigate novel adjunctive therapeutic strategies. In recent years, probiotics have demonstrated potential value in MASLD treatment due to their capacity to modulate gut microbiota, enhance insulin sensitivity, and reduce liver inflammation. This review systematically examines the pathogenesis of MASLD and the limitations of existing therapeutic approaches, synthesizing the latest evidence of probiotics-assisted therapy for MASLD from the perspectives of animal studies and clinical trials.By analyzing the target mechanisms and molecular pathways of different strains (e.g., Bifidobacterium, Lactobacillus), this review explores the translational potential of probiotics in MASLD treatment, aiming to provide a theoretical foundation and future research directions.-
Key words:
- MASLD /
- Pathogenic mechanism /
- Probiotics /
- Adjunctive therapy
-
表 1 双歧杆菌辅助治疗MASLD的变量分析
Table 1. Variable analysis of bifidobacterium-assisted therapy for MASLD
类型 剂量 对象 时长 效果 文献来源 双歧杆菌V9 1.0×109 CFU/d 大鼠 4周 ↓AST、ALT、TG、FFA、Glu、TNF-α、IL-1β、IL-6、SREBP-1c、FAS、炎性反应、NF-κB;↑肝糖原、PPAR-α Yan et al[20] 动物双歧杆
菌乳亚种SF1.0×108
CFU/d(灌胃)小鼠 12周 ↓TG、TG、LDL-C、ALT、AST、肝损伤、SREBP-1c、HOMA-IR、氧化应激、NF-κB、TNF-α、IL-6;↑AMPK Lv et al[21] 青春双歧杆菌 4 × 1010 CFU/d 大鼠 16周 ↓体重、肝脏重量、Glu、IL-1β、TG、TC、ALT、AST、ALP、LDL-C、LDH、NF-κB;↑HDL-C Mohammadmahdi Meybodi et al[22] 两歧双歧杆菌 1007478 104、105、106 CFU/mL/d 斑马鱼 5周 ↓ALT、AST、TG、TC、BMI、ROS、MDA、SREBP-1、IL-6、IL-1β、TNF-α;↑ILA Chao Tian et al[23] 长双歧杆菌 5.0×1010 CFU/kg/d 小鼠 4周 ↓TC、脂肪组织质量、Glu Machado et al[24] 动物双歧杆菌
乳亚种MG7411.0×105或1.0×106 CFU/d 小鼠 12周 ↓肝脏脂肪变性、β-葡萄糖醛酸酶、TC、TNF-α、IL-1β、IL-6 Do et al[25] 假长双歧杆菌 3.0×108 CFU/周 小鼠 1月 ↑乙酸盐代谢物 Song et al[26] 动物双歧杆菌 1.0×108 CFU/d 人群 24周 ↓超声MASLD等级、ALT、AST、AKP、γ-GT、肝酶浓度 Bakhshimoghaddam et al[27] 长双歧杆菌 2.5 g药物 人群 24周 ↓AST、LDL-C、CRP、TNF-α、HOMA-IR、LPS、脂肪变性、NASH活动指数 Malaguarnera et al[28] 动物双歧杆菌
乳亚种BB-1210×1010 CFU/d 人群 10-14月 改变粪便微生物 Scorletti et al[29] 注:TNF-α:肿瘤坏死因子-α,Glu:血糖,NF-κB:核因子κB,PPAR-α:过氧化物酶体增殖物激活受体-ɑ,HOMA-IR:胰岛素抵抗指数,AMPK:AMP依赖的蛋白激酶,AKP:碱性磷酸酶,CRP:C反应蛋白,ILA:吲哚-3-乳酸。 表 2 乳酸杆菌辅助治疗MASLD的变量分析
Table 2. Variable analysis of lactobacillus adjunct therapy for MASLD
类型 剂量 对象 时长 效果 文献来源 嗜酸乳杆菌 312 mg/kg/d 大鼠 14周 ↓MASLD活动评分、ALT、
AST 、TG、TBA、TCLuo et al[30] 干酪乳杆菌Jlus66 1.0、2.0、4.0×
1010 CFU/d大鼠 20周 ↓TNF-α、IL-6、MDA、LPS;↑IL-10、
SOD、GSH-Px、厚壁菌门Wang et al[31] 鼠李糖乳杆菌GG 1.0×108 CFU/d 小鼠 13周 ↓体重、肝脂肪变性、肠系膜脂肪、肝脏;
↑胰岛素敏感性、ADPNKim et al[32] 鼠李糖乳杆菌GG 1.0×108 CFU/d 小鼠 13周 ↓TC、TG、皮下脂肪、肝脏脂肪 Kim et al[33] 鼠李糖乳杆菌GG / 人群 8周 ↓TNF-α、LPS、肠杆菌科;↑毛螺菌科 Bajaj et al[34] 植物乳杆菌NCU116 1.0×108 CFU/mL,1.0×109 CFU/mL
(1 kg/10 mL)大鼠 5周 ↓肝脂肪变性、ALT、AST、Tbil、MDA、
TC、TG、IL-6、LPS、TNF-α;
↑GSH-Px、CAT、T-AOC、IL-10Li et al[35] 植物乳杆菌FZU3013 1.0×109 CFU/d 小鼠 8周 ↓体重、TC、TG、LDL-C、肝脏、
附睾脂肪指数、BAs、FFA;↑NEFAChen et al[36] 副干酪乳杆菌N1115 2.2×109 CFU/d 小鼠 16周 ↓脂肪变性、TNF-α、TG、TC Yao et al[37] 沙克乳酸杆菌MJM60958 1.0×108 CFU/d,1.0× 109 CFU/d 小鼠 12周 ↓肝脏、Leptin、脂肪变性;↑ADPN Nguyen et al[38] 棒状乳杆菌T3 1.0×109 CFU/d 小鼠 6周 ↓肝脏脂肪、体重、WAT、IL-6、
TNF-α、TC、TG、AST、ALT、
MDA;↑iBAT指数、GSH-Px、SODSong et al[39] 罗伊氏乳杆菌 1.0×108 CFU/次,
每日2次人群 3月 ↓脂肪变性、体重、BMI、腰围 Ferolla et al[40] 鼠李糖乳杆菌GG 1.0×109 CFU/d 小鼠 9周 ↓体重、WAT Jang et al[41] 发酵乳杆菌CQPC06 1.0×109 CFU/kg/d 小鼠 8周 ↓体重、肝脏指数、ALT、AST、AKP、
TC、TG、LDL-C、LPS、HDL-C、gWATMu et al[42] 发酵乳杆菌LM1016 1.0×109 CFU/d 小鼠 8周 ↓体重、BAT、Glu、TC、Leptin Yoon et al[43] 植物乳杆菌 1.0×108 CFU/d 大鼠 12周 ↓体重、肾周脂肪指数、肝脂肪指数、肝脏总
脂肪含量、TGF-β1、SOD、GSH-Px、TBARSZhu et al[44] 嗜酸乳杆菌、发酵乳杆菌、植物乳杆菌、副干酪乳杆菌 1.0×109 CFU/d 小鼠 8周 ↓肝脏、TC、脂肪变性 Lee et al[45] 罗伊氏乳杆菌MJM60668 1.0×108 CFU/d、1.0×109 CFU/d 小鼠 12周 ↓体重、ALT、AST Werlinger et al[46] 罗伊氏乳杆菌MG5149 2.0×108 CFU/d 小鼠 8周 ↓体重、脂肪组织、ALT、AST、
TG、TC、LDL-C、血糖;↑ADPNChoi et al[47] 短乳酸杆菌 109 CFU / mL/d 小鼠 8周 ↓体重、TG、TC、LDL-C、Leptin、ALT、
AST、MDA、WAT、Glu、初级胆汁酸;
↑HDL-C、SOD、次级胆汁酸、有益菌Liping Zhou et al[48] 瑞士乳杆菌HY7804 109 CFU/kg/d 小鼠 7周 ↓ALT、AST、TG、TC、Glu、LDL-C、
TLR4、NF-κB、MASLD活动评分、
拟杆菌;↑乳酸杆菌、梭状芽孢杆菌Hyeonji Kim et al[49] 嗜酸乳杆菌 2.0×109 CFU/次,
每日3次人群 1月 ↓ALT、AST Abdel Monem et al[50] 鼠李糖乳杆菌GG 1.2×1010 CFU/d 人群 8周 ↓ALT、抗肽聚糖-多糖抗体 Vajro et al[51] 注:TBA:总胆汁酸,TBil:总胆红素水平,CAT:过氧化氢酶,T-AOC:总抗氧化能力,BAs:生物胺,NEFA:非酯化脂肪酸,Leptin:瘦素,WAT:白色脂肪组织,iBAT:肩胛间棕色脂肪组织,GSH:谷胱甘肽,BAT:棕色脂肪组织,gWAT:性腺白色脂肪组织,TBARS:具有代表性的有害脂质过氧化物。 表 3 NGPs辅助治疗MASLD的变量分析
Table 3. Variable analysis of NGPs as adjunctive therapy for MASLD
类型 剂量 对象 时长 效果 文献来源 丁酸梭菌
MIYAIRI 5888.5×109 CFU/g/d 大鼠 50周 ↓TG、HOMA-IR、ALT、TNF-α、LPS Endo et al[52] 丁酸梭菌B1 1.0×109 CFU/d 小鼠 16周 ↓附睾脂肪组织指数、ALT、AST、
HOMA-IR 、Glu、MASLD评分、
肝脏脂肪、TG、TC;↑ISI、丁酸盐Zhou et al[53] 丁酸梭菌 5.0×107 CFU/kg/d 小鼠 6周 ↓Glu、LPS、TG、TC、IL-1β、TNF-α、
肝脏、ALT、AKP;↑GLP-1Yang et al[54] 丁酸梭菌 400 mg/次,每日3次 人群 6月 ↓TC、TG、FFA、TBIL、DBIL、PIIIP、C-IV、HA、LN、ALT、AST、TNF-α;↑IL-6 Zhu et al[55] 芽孢杆菌 1.0×108 CFU/d 小鼠 13周 ↓体重、肝脏、Glu、TG Kim et al[56] 凝结芽孢杆菌BC30 1.0×109 CFU/d 人群 12周 ↓ALT、γ-GT、TNF-α、肝脂肪变性 Abhari et al[57] 嗜黏蛋白阿克曼菌 1.0×109 CFU/
200 µL/d小鼠 4周 ↓TNF-α、IL-6、ALT、AST、Glu、TC、
TG、LDL-C、VLDL-C;↑IL-10Raftar et al[58] 嗜黏蛋白阿克曼菌 108 ~109 CFU/d 小鼠 10周 ↓TG、ALT、IL-6 Kim et al[59] 普拉梭菌 1.0×109 CFU/d 小鼠 12周 ↓体重、FFA、TC、TG、LDL-C、附睾脂肪指数、TNF-α、IL-6、MDA、IL-1β、Glu、HOMA-IR;↑HDL-C、SOD、GSH-Px Hu et al[60] 嗜黏蛋白阿克曼菌 2.0×108 CFU/d 大鼠 9周 ↓TG、脂肪变性、MASLD评分、
HOMA-IR;↑LeptinJuárez-Fernández
et al[61]嗜黏蛋白阿克曼菌 0.2×109 CFU/mL,每周3次 小鼠 20周 ↓体重、HOMA-IR、Glu、TC、TG、ALT、AST、肝脏指数、TNF-α、IL-6、IL-17A;↑IL-10 Fulin Nian et al[62] 嗜黏蛋白阿克曼菌 1.0×1010 CFU/d 人群 3月 ↓HOMA-IR、DPP-IV活性、TC、γ-GT、AST、LPS、LDH、CK、体重、脂肪量 Clara Depommier et al[63] 嗜黏蛋白阿克曼菌 1.0×109 CFU/
200 µL/d小鼠 4周 ↓TNF-α、IL-6、ALT、AST;↑IL-10 Raftar et al[64] 嗜黏蛋白阿克曼菌 2.0×109 CFU/d 小鼠 10周 ↓脂肪变性、MASLD活性评分、Glu、ALT Li et al[65] 嗜黏蛋白阿克曼菌 1.0×109 CFU/d 小鼠 20周 ↓体重、Glu、TC、ALT、AST、
肝脂肪变性、MASLD活性评分Han et al[66] 普拉梭菌 1.0× 108 CFU/d 小鼠 16周 ↓Glu、TG、TC、ALT、AST Shin et al[67] 注:ISI:胰岛素敏感指数,GLP-1:胰高血糖素样肽-1,TBIL:总胆红素,DBIL:直接胆红素,PIIIP:前胶原III肽,C-IV:胶原-IV,HA:透明质酸,LN:层粘连蛋白,VLDL- C:极低密度脂蛋白,DPP-IV:二肽基肽酶- IV,LDH:乳酸脱氢酶,CK:肌酸激酶。 表 4 联合益生菌辅助治疗MASLD的变量分析
Table 4. Variable analysis of combined probiotic adjunctive therapy for MASLD
类型 剂量 对象 时长 效果 文献来源 6个乳酸杆菌+3个双歧杆菌 6.0×1010 CFU/d 大鼠 16周 ↓FFA、TG、IL-1β、
IL-18、ALTLiang et al[68] 干酪乳杆菌、鼠李糖乳杆菌、
嗜酸乳杆菌、长双歧杆菌和短双歧杆菌5.0×1010 CFU/d 人群 12周 ↓TG、ALT、AST、γ-GT、ALP、Hs-CRP Behrouz et al[69] MCP®BCMC®(嗜酸乳杆菌BCMC、
干酪乳杆菌BCMC、两歧双歧杆菌BCMC、
婴儿双歧杆菌BCMC、长双歧杆菌BCMC)2.0×107 CFU/g,
3 g/d人群 3月 ↓BMI、Glu、肝脂肪变性 Mohamad Nor
et al[70]MCP®BCMC® 2.0×107 CFU/g,
3 g/d人群 6月 ↓TC、TNF-α、IFN-γ、
ZO-1;↑IL-6Ayob et al[71] 双歧杆菌、乳酸杆菌、肠球菌 1 g/次,2次/d 人群 3月 ↓ALT 、AST、γ-GT、
TC、TG、HOMA-IR、MASLD评分Cai et al[72] 嗜酸乳杆菌、双歧双歧杆菌、长双歧杆菌、
德氏乳杆菌保加利亚亚种、瑞氏乳杆菌、
植物乳杆菌、鼠李糖乳杆菌、干酪乳杆菌、
乳酸乳球菌、嗜热链球菌3粒/d 人群 12周 ↓TG、ALT、MASLD
纤维化评分、
内脏肥胖指数Crommen et al[73] 嗜酸乳杆菌+双歧杆菌 1.0×109 CFU/d 人群 6月 ↓AST;APRI评分 Escouto et al[74] 鼠李糖乳杆菌HN001、嗜酸乳杆菌NCFM、
乳双歧杆菌HN019、副干酪乳杆菌LPC-374.0×109 CFU/g,
1 g/d人群 24周 ↓miR-122 Barcelos et al[75] VSL#3®(嗜热链球菌、长双歧杆菌、
短双歧杆菌、婴儿双歧杆菌、嗜酸乳杆菌、
植物乳杆菌、副干酪乳杆菌)2包/d 人群 3月 ↓TG、Hs-CRP、ALT、AST、γ-GT、AST/ALT、脂肪肝变性/改善/消失 Derosa et al[76] VSL#3® 2包/次,2次/d 人群 10周 ↑模式ASQ评分 Chong et al[77] 索氏厌氧丁酸菌、嗜黏蛋白阿克曼菌、
动物双歧杆菌、低聚果糖+FMT2粒/d、109、
1010、3×1010人群 24周 无 Quinten J J Augustijn et al[78] 注:Hs-CRP 为超敏C反应蛋白,IFN-γ为干扰素-γ,ZO-1为闭锁小带蛋白1,ASQ为纤维化评分声学结构量化。 -
[1] Poniachik J,Roblero J P,Urzúa A,et al. A new definition for non-alcoholic fatty liver disease[J]. J Hepatol,2021,74(4):982-983. doi: 10.1016/j.jhep.2020.09.002 [2] Cotter T G,Rinella M. Nonalcoholic fatty liver disease 2020: The state of the disease[J]. Gastroenterology,2020,158(7):1851-1864. doi: 10.1053/j.gastro.2020.01.052 [3] Scapaticci S,D’ Adamo E,Mohn A,et al. Non-alcoholic fatty liver disease in obese youth with insulin resistance and type 2 diabetes[J]. Front Endocrinol(Lausanne),2021,12:639548. doi: 10.3389/fendo.2021.639548 [4] Pafili K,Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans[J]. Mol Metab,2021,50:101122. [5] Wang C,Zhu C,Shao L,et al. Role of bile acids in dysbiosis and treatment of nonalcoholic fatty liver disease[J]. Mediators Inflamm,2019,2019:7659509. [6] De Munck T J I,Xu P,Verwijs H J A,et al. Intestinal permeability in human nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Liver Int,2020,40(12):2906-2916. doi: 10.1111/liv.14696 [7] Han H,Jiang Y,Wang M,et al. Intestinal dysbiosis in nonalcoholic fatty liver disease (NAFLD): Focusing on the gut-liver axis[J]. Crit Rev Food Sci Nutr,2023,63(12):1689-1706. doi: 10.1080/10408398.2021.1966738 [8] Quek J,Chan K E,Wong Z Y,et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol,2023,8(1):20-30. doi: 10.1016/S2468-1253(22)00317-X [9] Vilar-Gomez E,Martinez-Perez Y,Calzadilla-Bertot L,et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis [J]. Gastroenterology,2015,149(2): 367-378. e5. [10] Kandel A,Pant P,Todi S,et al. Effect of exercise and pharmacotherapy on non-alcoholic fatty liver disease[J]. SAGE Open Med,2024,12:20503121241227090. [11] Abdel-Razik A,Mousa N,Shabana W,et al. Rifaximin in nonalcoholic fatty liver disease: Hit multiple targets with a single shot[J]. Eur J Gastroenterol Hepatol,2018,30(10):1237-1246. doi: 10.1097/MEG.0000000000001232 [12] Li K P,Yu Y,Yuan M,et al. Tian-Huang formula,a traditional Chinese medicinal prescription,improves hepatosteatosis and glucose intolerance targeting AKT-SREBP nexus in diet-induced obese rats[J]. Evid Based Complement Alternat Med,2021,2021:6617586. [13] Ji L,Li Q,He Y,et al. Therapeutic potential of traditional Chinese medicine for the treatment of NAFLD: A promising drug Potentilla discolor Bunge[J]. Acta Pharm Sin B,2022,12(9):3529-3547. doi: 10.1016/j.apsb.2022.05.001 [14] Shou D,Luo Q,Tang W,et al. Hepatobiliary and pancreatic: Multi-donor fecal microbiota transplantation attenuated high-fat diet-induced hepatic steatosis in mice by remodeling the gut microbiota[J]. J Gastroenterol Hepatol,2023,38(12):2195-2205. doi: 10.1111/jgh.16359 [15] Witjes J J,Smits L P,Pekmez C T,et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis[J]. Hepatol Commun,2020,4(11):1578-1590. doi: 10.1002/hep4.1601 [16] Craven L,Rahman A,Nair Parvathy S,et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: A randomized control trial[J]. Am J Gastroenterol,2020,115(7):1055-1065. doi: 10.14309/ajg.0000000000000661 [17] Xue L,Deng Z,Luo W,et al. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: A randomized clinical trial[J]. Front Cell Infect Microbiol,2022,12:759306. doi: 10.3389/fcimb.2022.759306 [18] Yu Q,Wu L,Ji J,et al. Gut microbiota,peroxisome proliferator-activated receptors,and hepatocellular carcinoma[J]. J Hepatocell Carcinoma,2020,7:271-288. doi: 10.2147/JHC.S277870 [19] Zaharuddin L,Mokhtar N M,Muhammad Nawawi K N,et al. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer[J]. BMC Gastroenterol,2019,19(1):131. doi: 10.1186/s12876-019-1047-4 [20] Yan Y,Liu C,Zhao S,et al. Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease[J]. AMB Express,2020,10(1):101. doi: 10.1186/s13568-020-01038-y [21] Lv H,Tao F,Peng L,et al. In vitro probiotic properties of Bifidobacterium animalis subsp. lactis SF and its alleviating effect on non-alcoholic fatty liver disease[J]. Nutrients,2023,15(6):1355. doi: 10.3390/nu15061355 [22] Meybodi S M,Rezazadeh Khabaz M J,Vojdani A,et al. Bifidobacterium adolescentis prevents diabetes-induced liver injury via pyroptosis attenuation[J]. Exp Cell Res,2025,447(2):114518. doi: 10.1016/j.yexcr.2025.114518 [23] Tian C,Deng S,Zhang Z,et al. Bifidobacterium bifidum 1007478 derived indole-3-lactic acid alleviates NASH via an aromatic hydrocarbon receptor-dependent pathway in zebrafish[J]. Life Sci,2025,369:123557. doi: 10.1016/j.lfs.2025.123557 [24] Machado A S,Oliveira J R,Lelis D F,et al. Oral probiotic Bifidobacterium longum supplementation improves metabolic parameters and alters the expression of the renin-angiotensin system in obese mice liver[J]. Biol Res Nurs,2021,23(1):100-108. doi: 10.1177/1099800420942942 [25] Do M H,Oh M J,Lee H B,et al. Bifidobacterium animalis ssp. lactis MG741 reduces body weight and ameliorates nonalcoholic fatty liver disease via improving the gut permeability and amelioration of inflammatory cytokines[J]. Nutrients,2022,14(9):1965. doi: 10.3390/nu14091965 [26] Song Q,Zhang X,Liu W,et al. Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma[J]. J Hepatol,2023,79(6):1352-1365. doi: 10.1016/j.jhep.2023.07.005 [27] Bakhshimoghaddam F,Shateri K,Sina M,et al. Daily consumption of synbiotic yogurt decreases liver steatosis in patients with nonalcoholic fatty liver disease: A randomized controlled clinical trial[J]. J Nutr,2018,148(8):1276-1284. doi: 10.1093/jn/nxy088 [28] Malaguarnera M,Vacante M,Antic T,et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis[J]. Dig Dis Sci,2012,57(2):545-553. doi: 10.1007/s10620-011-1887-4 [29] Scorletti E,Afolabi P R,Miles E A,et al. Synbiotics alter fecal microbiomes,but not liver fat or fibrosis,in a randomized trial of patients with nonalcoholic fatty liver disease [J]. Gastroenterology,2020,158(6): 1597-1610. e7. [30] Luo M,Yan J,Wu L,et al. Probiotics alleviated nonalcoholic fatty liver disease in high-fat diet-fed rats via gut microbiota/FXR/FGF15 signaling pathway[J]. J Immunol Res,2021,2021:2264737. [31] Wang W,Li Q,Chai W,et al. Lactobacillus paracasei Jlus66 extenuate oxidative stress and inflammation via regulation of intestinal flora in rats with non alcoholic fatty liver disease[J]. Food Sci Nutr,2019,7(8):2636-2646. doi: 10.1002/fsn3.1118 [32] Kim S W,Park K Y,Kim B,et al. Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production[J]. Biochem Biophys Res Commun,2013,431(2):258-263. doi: 10.1016/j.bbrc.2012.12.121 [33] Kim B,Park K Y,Ji Y,et al. Protective effects of Lactobacillus rhamnosus GG against dyslipidemia in high-fat diet-induced obese mice[J]. Biochem Biophys Res Commun,2016,473(2):530-536. doi: 10.1016/j.bbrc.2016.03.107 [34] Bajaj J S,Heuman D M,Hylemon P B,et al. Randomised clinical trial: Lactobacillus GG modulates gut microbiome,metabolome and endotoxemia in patients with cirrhosis[J]. Aliment Pharmacol Ther,2014,39(10):1113-1125. doi: 10.1111/apt.12695 [35] Li C,Nie S P,Zhu K X,et al. Lactobacillus plantarum NCU116 improves liver function,oxidative stress and lipid metabolism in rats with high fat diet induced non-alcoholic fatty liver disease[J]. Food Funct,2014,5(12):3216-3223. doi: 10.1039/C4FO00549J [36] Chen M,Guo W L,Li Q Y,et al. The protective mechanism of Lactobacillus plantarum FZU3013 against non-alcoholic fatty liver associated with hyperlipidemia in mice fed a high-fat diet[J]. Food Funct,2020,11(4):3316-3331. doi: 10.1039/C9FO03003D [37] Yao F,Jia R,Huang H,et al. Effect of Lactobacillus paracasei N1115 and fructooligosaccharides in nonalcoholic fatty liver disease[J]. Arch Med Sci,2019,15(5):1336-1344. doi: 10.5114/aoms.2019.86611 [38] Nguyen H T,Gu M,Werlinger P,et al. Lactobacillus sakei MJM60958 as a potential probiotic alleviated non-alcoholic fatty liver disease in mice fed a high-fat diet by modulating lipid metabolism,inflammation,and gut microbiota[J]. Int J Mol Sci,2022,23(21):13436. doi: 10.3390/ijms232113436 [39] Song W,Wang T,Cui X,et al. Lactobacillus coryniformis subsp. torquens T3 alleviates non-alcoholic fatty liver disease via reconstruction of the gut microbiota and redox system[J]. J Sci Food Agric,2023,103(14):6814-6825. doi: 10.1002/jsfa.12774 [40] Ferolla S M,Couto C A,Costa-Silva L,et al. Beneficial effect of synbiotic supplementation on hepatic steatosis and anthropometric parameters,but not on gut permeability in a population with nonalcoholic steatohepatitis[J]. Nutrients,2016,8(7):E397. doi: 10.3390/nu8070397 [41] Jang H R,Park H J,Kang D,et al. A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption[J]. Exp Mol Med,2019,51(8):1-14. [42] Mu J,Tan F,Zhou X,et al. Lactobacillus fermentum CQPC06 in naturally fermented pickles prevents non-alcoholic fatty liver disease by stabilizing the gut-liver axis in mice[J]. Food Funct,2020,11(10):8707-8723. doi: 10.1039/D0FO01823F [43] Yoon Y,Kim G,Noh M G,et al. Lactobacillus fermentum promotes adipose tissue oxidative phosphorylation to protect against diet-induced obesity[J]. Exp Mol Med,2020,52(9):1574-1586. doi: 10.1038/s12276-020-00502-w [44] Zhu C,Guan Q,Song C,et al. Regulatory effects of Lactobacillus fermented black barley on intestinal microbiota of NAFLD rats[J]. Food Res Int,2021,147:110467. doi: 10.1016/j.foodres.2021.110467 [45] Lee N Y,Shin M J,Youn G S,et al. Lactobacillus attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steatosis[J]. Clin Mol Hepatol,2021,27(1):110-124. doi: 10.3350/cmh.2020.0125 [46] Werlinger P,Nguyen H T,Gu M,et al. Lactobacillus reuteri MJM60668 prevent progression of non-alcoholic fatty liver disease through anti-adipogenesis and anti-inflammatory pathway[J]. Microorganisms,2022,10(11):2203. doi: 10.3390/microorganisms10112203 [47] Choi S I,You S,Kim S,et al. Weissella cibaria MG5285 and Lactobacillus reuteri MG5149 attenuated fat accumulation in adipose and hepatic steatosis in high-fat diet-induced C57BL/6J obese mice[J]. Food Nutr Res,2021,65:8087. [48] Zhou L,Gong L,Liu Z,et al. Probiotic interventions with highly acid-tolerant Levilactobacillus brevis strains improve lipid metabolism and gut microbial balance in obese mice[J]. Food Funct,2025,16(1):112-132. doi: 10.1039/D4FO03417A [49] Kim H,Jeon H J,Jeong J W,et al. Lactobacillus helveticus HY7804 modulates the gut-liver axis to improve metabolic dysfunction-associated steatotic liver disease in a mouse model[J]. Int J Mol Sci,2025,26(8):3557. [50] Abdel Monem S M. Probiotic therapy in patients with nonalcoholic steatohepatitis in zagazig university hospitals[J]. Euroasian J Hepatogastroenterol,2017,7(1):101-106. [51] Vajro P,Mandato C,Licenziati M R,et al. Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease[J]. J Pediatr Gastroenterol Nutr,2011,52(6):740-743. doi: 10.1097/MPG.0b013e31821f9b85 [52] Endo H,Niioka M,Kobayashi N,et al. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: New insight into the probiotics for the gut-liver axis[J]. PLoS One,2013,8(5):e63388. doi: 10.1371/journal.pone.0063388 [53] Zhou D,Pan Q,Liu X L,et al. Clostridium butyricum B1 alleviates high-fat diet-induced steatohepatitis in mice via enterohepatic immunoregulation[J]. J Gastroenterol Hepatol,2017,32(9):1640-1648. doi: 10.1111/jgh.13742 [54] Yang T,Yang H,Heng C,et al. Amelioration of non-alcoholic fatty liver disease by sodium butyrate is linked to the modulation of intestinal tight junctions in db/db mice[J]. Food Funct,2020,11(12):10675-10689. doi: 10.1039/D0FO01954B [55] Zhu W,Yan M,Cao H,et al. Effects of Clostridium butyricum capsules combined with rosuvastatin on intestinal flora,lipid metabolism,liver function and inflammation in NAFLD patients[J]. Cell Mol Biol(Noisy-le-grand),2022,68(2):64-69. doi: 10.14715/cmb/2022.68.2.10 [56] Kim B,Kwon J,Kim M S,et al. Protective effects of Bacillus probiotics against high-fat diet-induced metabolic disorders in mice[J]. PLoS One,2018,13(12):e0210120. doi: 10.1371/journal.pone.0210120 [57] Abhari K,Saadati S,Yari Z,et al. The effects of Bacillus coagulans supplementation in patients with non-alcoholic fatty liver disease: A randomized,placebo-controlled,clinical trial[J]. Clin Nutr ESPEN,2020,39:53-60. doi: 10.1016/j.clnesp.2020.06.020 [58] Keshavarz Azizi Raftar S,Ashrafian F,Yadegar A,et al. The protective effects of live and pasteurized Akkermansia muciniphila and its extracellular vesicles against HFD/CCl4-induced liver injury[J]. Microbiol Spectr,2021,9(2):e0048421. doi: 10.1128/Spectrum.00484-21 [59] Kim S,Lee Y,Kim Y,et al. Akkermansia muciniphila prevents fatty liver disease,decreases serum triglycerides,and maintains gut homeostasis[J]. Appl Environ Microbiol,2020,86(7):e03004-19. [60] Hu W,Gao W,Liu Z,et al. Specific strains of Faecalibacterium prausnitzii ameliorate nonalcoholic fatty liver disease in mice in association with gut microbiota regulation[J]. Nutrients,2022,14(14):2945. doi: 10.3390/nu14142945 [61] Juárez-Fernández M,Porras D,Petrov P,et al. The synbiotic combination of Akkermansia muciniphila and quercetin ameliorates early obesity and NAFLD through gut microbiota reshaping and bile acid metabolism modulation[J]. Antioxidants(Basel),2021,10(12):2001. doi: 10.3390/antiox10122001 [62] Nian F,Wu L,Xia Q,et al. Akkermansia muciniphila and Bifidobacterium bifidum prevent NAFLD by regulating FXR expression and gut microbiota[J]. J Clin Transl Hepatol,2023,11(4):763-776. [63] Depommier C,Everard A,Druart C,et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study[J]. Nat Med,2019,25(7):1096-1103. [64] Raftar S K A,Ashrafian F,Abdollahiyan S,et al. The anti-inflammatory effects of Akkermansia muciniphila and its derivates in HFD/CCL4-induced murine model of liver injury[J]. Sci Rep,2022,12(1):2453. doi: 10.1038/s41598-022-06414-1 [65] Li T,Lin X,Shen B,et al. Akkermansia muciniphila suppressing nonalcoholic steatohepatitis associated tumorigenesis through CXCR6+ natural killer T cells[J]. Front Immunol,2022,13:1047570. doi: 10.3389/fimmu.2022.1047570 [66] Han Y,Ling Q,Wu L,et al. Akkermansia muciniphila inhibits nonalcoholic steatohepatitis by orchestrating TLR2-activated γδT17 cell and macrophage polarization[J]. Gut Microbes,2023,15(1):2221485. doi: 10.1080/19490976.2023.2221485 [67] Shin J H,Lee Y,Song E J,et al. Faecalibacterium prausnitzii prevents hepatic damage in a mouse model of NASH induced by a high-fructose high-fat diet[J]. Front Microbiol,2023,14:1123547. doi: 10.3389/fmicb.2023.1123547 [68] Liang Y,Lin C,Zhang Y,et al. Probiotic mixture of Lactobacillus and Bifidobacterium alleviates systemic adiposity and inflammation in non-alcoholic fatty liver disease rats through Gpr109a and the commensal metabolite butyrate[J]. Inflammopharmacology,2018,26(4):1051-1055. doi: 10.1007/s10787-018-0479-8 [69] Behrouz V,Aryaeian N,Zahedi M J,et al. Effects of probiotic and prebiotic supplementation on metabolic parameters,liver aminotransferases,and systemic inflammation in nonalcoholic fatty liver disease: A randomized clinical trial[J]. J Food Sci,2020,85(10):3611-3617. doi: 10.1111/1750-3841.15367 [70] Mohamad Nor M H,Ayob N,Mokhtar N M,et al. The effect of probiotics (MCP® BCMC® strains) on hepatic steatosis,small intestinal mucosal immune function,and intestinal barrier in patients with non-alcoholic fatty liver disease[J]. Nutrients,2021,13(9):3192. doi: 10.3390/nu13093192 [71] Ayob N,Muhammad Nawawi K N,Mohamad Nor M H,et al. The effects of probiotics on small intestinal microbiota composition,inflammatory cytokines and intestinal permeability in patients with non-alcoholic fatty liver disease[J]. Biomedicines,2023,11(2):640. doi: 10.3390/biomedicines11020640 [72] Cai G S,Su H,Zhang J. Protective effect of probiotics in patients with non-alcoholic fatty liver disease[J]. Medicine(Baltimore),2020,99(32):e21464. doi: 10.1097/MD.0000000000021464 [73] Crommen S,Rheinwalt K P,Plamper A,et al. A specifically tailored multistrain probiotic and micronutrient mixture affects nonalcoholic fatty liver disease-Related markers in patients with obesity after mini gastric bypass surgery[J]. J Nutr,2022,152(2):408-418. doi: 10.1093/jn/nxab392 [74] Escouto G S,Port G Z,Tovo C V,et al. Probiotic supplementation,hepatic fibrosis,and the microbiota profile in patients with nonalcoholic steatohepatitis: A randomized controlled trial[J]. J Nutr,2023,153(7):1984-1993. doi: 10.1016/j.tjnut.2023.05.019 [75] Barcelos S T A,Silva-Sperb A S,Moraes H A,et al. Oral 24-week probiotics supplementation did not decrease cardiovascular risk markers in patients with biopsy proven NASH: A double-blind placebo-controlled randomized study[J]. Ann Hepatol,2023,28(1):100769. doi: 10.1016/j.aohep.2022.100769 [76] Derosa G,Guasti L,D'Angelo A,et al. Probiotic therapy with VSL#3® in patients with NAFLD: A randomized clinical trial[J]. Front Nutr,2022,9:846873. doi: 10.3389/fnut.2022.846873 [77] Chong P L,Laight D,Aspinall R J,et al. A randomised placebo controlled trial of VSL#3® probiotic on biomarkers of cardiovascular risk and liver injury in non-alcoholic fatty liver disease[J]. BMC Gastroenterol,2021,21(1):144. doi: 10.1186/s12876-021-01660-5 [78] Augustijn Q J J,Grefhorst A,de Groen P,et al. Randomised double-blind placebo-controlled trial protocol to evaluate the therapeutic efficacy of lyophilised faecal microbiota capsules amended with next-generation beneficial bacteria in individuals with metabolic dysfunction-associated steatohepatitis[J]. BMJ Open,2025,15(1):e088290. doi: 10.1136/bmjopen-2024-088290 -
下载: