|
[1]
|
Tang F, Li X, Chen Y, et al. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome[J]. Biomed Pharmacother, 2024, 178: 117180. doi: 10.1016/j.biopha.2024.117180
|
|
[2]
|
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021[J]. Crit Care Med, 2021, 49(11): e1063-e1143. doi: 10.1097/CCM.0000000000005337
|
|
[3]
|
郝翠平, 李雪梅, 王静, 等. 重症监护病房脓毒症存活者生活质量现状及其影响因素分析[J]. 中华危重病急救医学, 2024, 36(1): 23-27. doi: 10.3760/cma.j.cn121430-20230814-00632
|
|
[4]
|
Gourd N M, Nikitas N. Multiple organ dysfunction syndrome[J]. J Intensive Care Med, 2020, 35(12): 1564-1575. doi: 10.1177/0885066619871452
|
|
[5]
|
Liao Z, Chen B, Yang T, et al. Lactylation modification in cardio-cerebral diseases: Astate-of-the-art review[J]. Ageing Res Rev, 2025, 104: 102631. doi: 10.1016/j.arr.2024.102631
|
|
[6]
|
黄丽娜, 张明辉, 陈志强. 蛋白质乳酸化修饰调控机制的研究进展[J]. 中国病理生理杂志, 2023, 39(3): 559-564. doi: 10.3969/j.issn.1000-4718.2023.03.023
|
|
[7]
|
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580. doi: 10.1038/s41586-019-1678-1
|
|
[8]
|
Tang F, Liu S, Gao H, et al. The roles of lactate and the interplay with m(6)A modification in diseases[J]. Cell Biol Toxicol, 2024, 40(1): 107. doi: 10.1007/s10565-024-09951-9
|
|
[9]
|
Wu D, Chen Y, Sun Y, et al. Epigenetic mechanisms of immune remodeling in sepsis: Trgeting histone modification[J]. Cell Death Dis, 2023, 14(2): 112. doi: 10.1038/s41419-023-05656-9
|
|
[10]
|
Liu S, Yang K, Zhang T, et al. Lactate and lactylation in sepsis: A comprehensive review[J]. J Inflamm Res, 2024, 17(1): 4405-4417.
|
|
[11]
|
An S, Li H, Wang Y, et al. PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury via Fis1 lactylation[J]. Cell Death Dis, 2023, 14(7): 457. doi: 10.1038/s41419-023-05952-4
|
|
[12]
|
Yang K, Fan M, Zhu X, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis[J]. Cell Death Differ, 2022, 29(1): 133-146. doi: 10.1038/s41418-021-00841-9
|
|
[13]
|
Zhao Q, Li J, Wang X, et al. Nonenzymatic lysine D-lactylation induced by glyoxalase II substrate SLG dampens inflammatory immune responses[J]. Cell Res, 2025, 35(2): 97-116. doi: 10.1038/s41422-024-01060-w
|
|
[14]
|
范风江. 脓毒症继发急性肺损伤的临床特征及预后影响因素分析[J]. 中国实用医刊, 2021, 48(1): 43-46. doi: 10.3760/cma.j.cn115689-20200925-04586
|
|
[15]
|
Lu Z, Chen L, Wang Y, et al. Lactylation of histone H3k18 and egr1 promotes endothelial glycocalyx degradation in sepsis-induced acute lung injury[J]. Adv Sci (Weinh), 2025, 12(7): e2407064. doi: 10.1002/advs.202407064
|
|
[16]
|
Manosalva C, Quiroga J, Hidalgo A I, et al. Role of lactate in inflammatory processes: friend or foe[J]. Front Immunol, 2021, 12: 808799.
|
|
[17]
|
甘宇婧, 刘伟, 王芳, 等. 老年脓毒症患者早期炎症因子水平及预后的相关性分析[J]. 南京医科大学学报(自然科学版), 2023, 43(9): 1208-1215.
|
|
[18]
|
Wang Y, Zhang X, Liu T, et al. Characterization of lactylation-based phenotypes and molecular biomarkers in sepsis-associated acute respiratory distress syndrome[J]. Sci Rep, 2025, 15(1): 13831. doi: 10.1038/s41598-025-96969-6
|
|
[19]
|
Hoste E A, Bagshaw S M, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study[J]. Intensive Care Med, 2015, 41(8): 1411-1423. doi: 10.1007/s00134-015-3934-7
|
|
[20]
|
Wang Y, Li D, Wu H, et al. The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation[J]. Kidney Int, 2024, 106(2): 226-240. doi: 10.1016/j.kint.2024.04.016
|
|
[21]
|
Qiao J, Wei Y, Chen J, et al. Histone H3K18 and ezrin lactylation promote renal dysfunction in sepsis-associated acute kidney injury[J]. Adv Sci (Weinh), 2024, 11(28): e2307216. doi: 10.1002/advs.202307216
|
|
[22]
|
Cheng Y, Guo L. Lactate metabolism and lactylation in kidney diseases: Insights into mechanisms and therapeutic opportunities[J]. Ren Fail, 2025, 47(1): 2469746. doi: 10.1080/0886022X.2025.2469746
|
|
[23]
|
Li H, Wang X, Zhang P, et al. Lactate metabolism and acute kidney injury[J]. Chin Med J (Engl), 2025, 138(8): 916-924. doi: 10.1097/CM9.0000000000003142
|
|
[24]
|
Li D, Liu S, Zhang L, et al. Complement factor B production in renal tubular cells and its role in sodium transporter expression during polymicrobial sepsis[J]. Crit Care Med, 2016, 44(5): e289-e299. doi: 10.1097/CCM.0000000000001566
|
|
[25]
|
Strickson S, Campbell D G, Emmerich C H, et al. The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system[J]. Biochem J, 2013, 451(3): 427-437. doi: 10.1042/BJ20121651
|
|
[26]
|
Şahin N, Özkan H, Aydin S, et al. Rho-associated kinase inhibitor fasudil protects from sepsis-induced acute kidney injury in rat via suppressing STAT-3 and NLRP-3 pathway[J]. Curr Issues Mol Biol, 2025, 47(5): 3739-3750.
|
|
[27]
|
Zhang T N, Li X Y, Wang Y, et al. Lactylation of HADHA promotes sepsis-induced myocardial depression[J]. Circ Res, 2025, 137(2): 263-278.
|
|
[28]
|
Yu H, Chen W, Zhang G, et al. Gastrodin regulates H3K14la through the CDT2-KAT2A axis to treat sepsis-induced myocardial dysfunction[J]. Int Immunopharmacol, 2025, 161: 115065. doi: 10.1016/j.intimp.2025.115065
|
|
[29]
|
Weng W, Liu Y, Li H, et al. Tufm lactylation regulates neuronal apoptosis by modulating mitophagy in traumatic brain injury[J]. Cell Death Differ, 2025, 32(3): 530-545. doi: 10.1038/s41418-024-01408-0
|
|
[30]
|
张霞, 李媛, 赵明, 等. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J]. 中华危重症医学杂志(电子版), 2024, 17(4): 275-284. doi: 10.3877/cma.j.issn.1674-6880.2024.04.002
|
|
[31]
|
Jiang X, Wang L, Zhang Y, et al. Global profiling of protein lactylation in microglia in experimental high-altitude cerebral edema[J]. Cell Commun Signal, 2024, 22(1): 374. doi: 10.1186/s12964-024-01748-x
|
|
[32]
|
Dong Q, Li J, Wang X, et al. Lactylation of Hdac1 regulated by Ldh prevents the pluripotent-to-2C state conversion[J]. Stem Cell Res Ther, 2024, 15(1): 415. doi: 10.1186/s13287-024-04027-1
|
|
[33]
|
Hagihara H, Shoji H, Otabi H, et al. Protein lactylation induced by neural excitation[J]. Cell Rep, 2021, 37(2): 109820. doi: 10.1016/j.celrep.2021.109820
|
|
[34]
|
Wu S, Li J, Zhan Y. H3K18 lactylation accelerates liver fibrosis progression through facilitating SOX9 transcription[J]. Exp Cell Res, 2024, 440(2): 114135. doi: 10.1016/j.yexcr.2024.114135
|
|
[35]
|
Zhao L, Wang Y, Zhang X, et al. Lactylation in health and disease: Physiological or pathological?[J]. Theranostics, 2025, 15(5): 1787-1821. doi: 10.7150/thno.105353
|
|
[36]
|
Xu R, Li T, Wu H, et al. Functional mechanisms and potential therapeutic strategies for lactylation in liver diseases[J]. Life Sci, 2025, 363(1): 123395.
|
|
[37]
|
Hong , Zhang X, Li J, et al. PGC-1α loss promotes mitochondrial protein lactylation in acetaminophen-induced liver injury via the LDHB-lactate axis[J]. Pharmacol Res, 2024, 205: 107228.
|
|
[38]
|
Li Q, ang X, Chen Y, et al. NEDD4 lactylation promotes APAP induced liver injury through Caspase11 dependent non-canonical pyroptosis[J]. Int J Biol Sci, 2024, 20(4): 1413-1435. doi: 10.7150/ijbs.91284
|
|
[39]
|
Pan L, Wan S, Zhang T, et al. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells[J]. Pharmacol Res, 2022, 181: 106270. doi: 10.1016/j.phrs.2022.106270
|