Mechanism and Application Status of PRP-loaded Hydrogels in the Treatment of KOA
-
摘要: 膝骨关节炎(knee osteoarthritis,KOA)是一种常见于中老年的慢性退行性骨关节病,主要特征是膝关节软骨退化和磨损,严重影响下肢活动和生活质量。目前,对于早、中期KOA的治疗主要依赖口服药物、关节注射、外用贴剂和中医药方法等保守方法。富血小板血浆(platelet-rich plasma,PRP)作为一种自体来源的血小板浓缩物,富含多种生长因子且无免疫排斥风险,近年来在骨关节和软组织损伤的修复中得到广泛应用。然而,PRP中生长因子的生物半衰期较短和注射部位的流动性,在关节腔内存在结合力不足、作用时间短、靶位治疗效果差、需要重复注射等问题,也增加了医源性感染的风险。水凝胶是含水的交联聚合物网络,其高组织相容性和药物缓释性备受关注。将PRP负载于水凝胶实现了药物的缓慢、持续释放,其独特的黏附性降低了药物在关节内的流动,从而延长了PRP局部作用时间,减少了重复注射的需求。本文通过综述PRP、水凝胶的生物学特性及负载PRP的水凝胶治疗KOA的作用机制、临床应用现状,并分析了存在的问题及面临的挑战,旨在通过对这一新兴治疗方法的深入探讨,为KOA患者提供更为有效的治疗选择。Abstract: Knee osteoarthritis (KOA) is a common chronic degenerative bone and joint disease characterized by degeneration and wear of knee cartilage. It is commonly found in middle-aged and elderly people and seriously impacts on their lower limb activity and quality of life. At present, the treatment of early and middle stage KOA mainly relies on the conservative methods such as oral medication, joint injection, topical patches and traditional Chinese medicine. Platelet rich plasma (PRP), as an autologous platelet concentrate, is rich in various growth factors and has no risk of immune rejection. In recent years, it has been widely used in the repair of bone, joint, and soft tissue injuries. However, the short biological half-life of growth factors in PRP and the fluidity of injection sites can result in insufficient binding force, short action time, poor target therapy efficacy, and the need for repeated injections in the joint cavity, which will increase the risk of iatrogenic infections. Hydrogels are cross-linked polymer networks containing water, and their high histocompatibility and drug release have attracted much attention. The slow and continuous release of drug is achieved by loading PRP onto hydrogel. Its unique adhesion reduces the flow of drug in the joint, thus extending the local action time of PRP and reducing the need for repeated injection. This article reviews the biological characteristics of PRP and hydrogel, the mechanism of action and clinical application of PRP loaded hydrogel in the treatment of KOA, and analyzes the existing problems and challenges, aiming to provide more effective treatment options for KOA patients through the in-depth discussion of this new treatment method.
-
Key words:
- Knee osteoarthritis /
- Platelet-rich plasma /
- Hydrogel /
- Mechanisms /
- Applications
-
表 1 用于软骨组织工程的天然和合成水凝胶生物特性和理化性质及其优缺点
Table 1. Biological and physicochemical properties,advantages and disadvantages of natural and synthetic hydrogels for cartilage tissue engineering
材料 优点 缺点 透明质酸 良好的生物相容性和生物降解性,
润滑性能、水溶性、低免疫原性机械强度差,保留时间短,细胞黏附性差 明胶 由于具有RGD序列而促进细胞黏附 凝胶化时间长,热稳定性差 聚乙二醇 良好的机械性能,易于改性 生物惰性 壳聚糖 良好的生物相容性和生物降解性,
抗菌特性、促进细胞增殖机械强度差,水溶性差 海藻酸盐 良好的孔隙率和生物相容性,成胶迅速 机械强度差,缺乏细胞锚定位点,
细胞黏附性差,生物降解性差硫酸软骨素 软骨细胞外基质的主要成分,抗炎特性,
可维持干细胞生态位,调节酶活性机械强度差,降解迅速 胶原蛋白 良好的生物相容性和生物降解性 机械强度差 丝素蛋白 结构与胶原蛋白相似,机械强度高,
生物相容性,促进细胞黏附生物降解性差 聚N-异丙基丙烯酰胶 热敏性 生物降解性差,机械强度差 聚乙烯醇 良好的生物相容性和机械性能,压缩模量、
剪切模量、拉伸模量和渗透性更接近软骨细胞黏附性差、不可降解 聚丙烯酰胺 三维多孔结构,良好的生物相容性 机械强度差,细胞相互作用不良 -
[1] Zeng C Y, Zhang Z R, Tang Z M, et al. Benefits and mecha nisms of exercise training for knee osteoarthritis[J]. Frontiers in Physiology, 2021, 12(12): 794062. [2] Gu Y G, Jiang H. Correlation between synovitis and traditional Chinese medicine syndromes of knee osteoarthritis in WORMS score[J]. Zhongguo Gu Shang, 2019, 32(12): 1108-1111. [3] Yeon J K, Hyun J K, Hyuk B G, et al. Quality assessment of conventional and traditional oriental medicine clinical practice guidelines for knee osteoarthritis using AGREE II instrument[J]. Medicine, 2021, 100(51): e28426. doi: 10.1097/MD.0000000000028426 [4] Guven Kose S, Kirac Unal Z, Kose H C, et al. Ultrasound-guided genicular nerve radiofrequency treatment: Prospective randomized comparative trial of a 3-nerve protocol versus a 5-nerve protocol[J]. Pain Med, 2023, 24(7): 758-767. doi: 10.1093/pm/pnad025 [5] Du J, Sun X, Ao L, et al. Impact of abnormal mechanical stress on chondrocyte death in osteoarthritis[J]. Med Sci Monit, 2025, 31(6): e948290. [6] Xu F, Zhang J, Wu I, et al. Does intra-articular injection of PRP help patients with temporomandibular joint osteoarthritis after joint puncture? A systematic review and meta-analysis of randomized controlled trials[J]. BMC Oral Health, 2025, 25(1): 475. doi: 10.1186/s12903-025-05826-5 [7] Yan Y, Liu X, Chen Y, et al. Effects of platelet-rich plasma combined with physical therapy on IL-1β, TGF-β1, and MMP-3 in patients with knee osteoarthritis[J]. Mol Biotechnol, 2025, 67(5): 1991-2001. doi: 10.1007/s12033-024-01177-8 [8] Britto M, Dawood S, Lu S, et al. Use of ultrasound-guided platelet-rich plasma in the treatment of carpometacarpal osteoarthritis[J]. HCA Healthc J Med, 2021, 2(4): 257-262. [9] Elin S, Maria W. Effects of intra-articular PRP injections on osteoarthritis in the thumb basal joint and scaphoidtrapeziotrapezoidal joint[J]. PloS One, 2022, 17(3): e0264203. doi: 10.1371/journal.pone.0264203 [10] Vincent H K, Johnson A J, Sibille K, et al. Weight-cycling over 6 years is associated with pain, physical function and depression in the osteoarthritis initiative cohort[J]. Scientific Reports, 2023, 13(1): 17045. doi: 10.1038/s41598-023-44052-3 [11] Shumnalieva R, Kotov G, Ermencheva P, et al. Pathogenic mechanisms and therapeutic approaches in obesity-related knee osteoarthritis[J]. Biomedicines, 2023, 12(1): 9. doi: 10.3390/biomedicines12010009 [12] Olansen J, Aaron K R. Similar pathophysiological mechanisms between osteoarthritis and vascular disease[J]. Frontiers In Bioscience-Landmark, 2024, 29(9): 320. doi: 10.31083/j.fbl2909320 [13] 陈云修, 雷蕾, 纪刚, 等. 富血小板血浆治疗膝骨关节炎的研究进展[J]. 现代养生, 2025, 25(5): 321-325. [14] Zhang K, Zhang C, Ren Q, et al. Effects of leukocyte-rich platelet-rich plasma and leukocyte-poor platelet-rich plasma on cartilage in a rabbit osteoarthritis model[J]. Cell Mol Biol (Noisy-le-grand), 2024, 70(2): 217-226. [15] Hangyu Z, Zihang Z, Dailuo L, et al. Effect study of exosomes derived from platelet-rich plasma in the treatment of knee cartilage defects in rats[J]. Journal of Orthopaedic Surgery And Research, 2023, 18(1): 160. doi: 10.1186/s13018-023-03576-0 [16] Haruka T, Takayuki O, Tokito T, et al. The preventive effects of platelet-rich plasma against knee osteoarthritis progression in rats[J]. Cureus, 2023, 15(11): e48825. [17] Keiji K, Akemi M, Takashi H, et al. Transcriptomic profiling analysis of human endometrial stromal cells treated with autologous platelet-rich plasma[J]. Reproductive Medicine And Biology, 2023, 22(1): e12498. doi: 10.1002/rmb2.12498 [18] Du G, Sun X, He S, et al. The Nrf2/HO-1 pathway participates in the antiapoptotic and anti-inflammatory effects of platelet-rich plasma in the treatment of osteoarthritis[J]. Immunity, Inflammation and Disease, 2024, 12(6): e1169. [19] Kamada K, Matsushita T, Yamashita T, et al. Factors affecting the therapeutic effects of multiple intra-articular injections of platelet-rich-plasma for knee osteoarthritis[J]. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology, 2024, 38(9): 43-48. [20] Chen Y, Sang H, Wu S, et al. Inadequate anticoagulation and hyperuricemia cause knee pain after platelet-rich plasma injection: A retrospective study[J]. Journal of Orthopaedic Surgery (Hong Kong), 2024, 32(2): 1-11. [21] Xingzhen L, Fang Z, Qin L, et al. Comparing the efficacy of different intra-articular injections for knee osteoarthritis: A network analysis[J]. Medicine, 2022, 101(31): e29655. doi: 10.1097/MD.0000000000029655 [22] Baria M, George R, Barker T, et al. Relationship of body mass index on patient-reported outcomes after platelet-rich plasma versus microfragmented adipose tissue for knee osteoarthritis: A secondary analysis of a randomized controlled trial[J]. American Journal of Physical Medicine & Rehabilitation, 2024, 103(11): 1006-1011. [23] Evgeniy T, Ivana Š, Martin P, et al. Enzymatically cross-linked hyaluronic acid hydrogels as in situ forming carriers of platelet-rich plasma: Mechanical properties and bioactivity levels evaluation[J]. Journal of The Mechanical Behavior of Biomedical Materials, 2023, 143(7): 105916. [24] Shukur A F M, Makhijani S, Ingle R, et al. Natural hydrogel-based drug delivery system: A global scenario, current development, and future prospective[J]. Current Drug Delivery, 2025, 22(8): 1154-1170. [25] Song X, Xiao J, Ai X, et al. An injectable thermosensitive hydrogel delivering M2 macrophage-derived exosomes alleviates osteoarthritis by promoting synovial lymphangiogenesis[J]. Acta Biomaterialia, 2024, 189(9): 130-142. [26] Yao S, Xu Y, Zhou Y, et al. Calcium phosphate nanocluster-loaded injectable hydrogel for bone regeneration[J]. ACS Applied Bio Materials, 2019, 2(10): 4408-4417. doi: 10.1021/acsabm.9b00270 [27] Yu H, Chen G, Li L, et al. Spider minor ampullate silk protein nanoparticles: an effective protein delivery system capable of enhancing systemic immune responses[J]. Med Comm, 2024, 5(7): e573. doi: 10.1002/mco2.573 [28] Xu Z, Liu J, Hu H, et al. Recent applications of stimulus-responsive smart hydrogels for osteoarthritis therapy[J]. Frontiers in Bioengineering and Biotechnology, 2025, 13(2): 1539566. [29] Marina K, Anoop V N, Anish J, et al. Thermosensitive in situ gels for joint disorders: Pharmaceutical considerations in intra-articular delivery[J]. Gels(Basel, Switzerland), 2022, 8(11): 723. [30] Rong Z, Haiyang L, Yichen H, et al. Application of injectable hydrogels as delivery systems in osteoarthritis and rheumatoid arthritis[J]. British Journal of Hospital Medicine, 2024, 85(8): 1-41. [31] Kang Y, Guan Y, Li S. Innovative hydrogel solutions for articular cartilage regeneration: A comprehensive review[J]. International Journal of Surgery, 2024, 110(12): 7984-8001. doi: 10.1097/JS9.0000000000002076 [32] Salama A M, Hardy J G, Yessuf A M, et al. Injectable hydrogel technologies for bone disease treatments[J]. ACS Appl Bio Mater, 2025, 8(4): 2691-2715. doi: 10.1021/acsabm.4c01968 [33] Tianhao Z, Zhanqi W, Wei Z, et al. Recent developments and current applications of hydrogels in osteoarthritis[J]. Bioengineering, 2022, 9(4): 132. doi: 10.3390/bioengineering9040132 [34] Akkaş E, Esen A. Which of the autologous blood products administered simultaneously with arthrocentesis is more effective in terms of clinical outcomes?[J]. Journal of Stomatology, Oral and Maxillofacial Surgery, 2024, 125(5S1): 101998. [35] Elle K, Raili K, Julia M, et al. Cellulase-assisted platelet-rich plasma release from nanofibrillated cellulose hydrogel enhances wound healing[J]. Journal of Controlled Release, 2024, 368(2): 397-412. [36] Peng Z, Long Z, Lei W, et al. A novel nanofiber hydrogel loaded with platelet-rich plasma promotes wound healing through enhancing the survival of fibroblasts[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2019, 25(18): 8712-8721. [37] Jie Z, Yufei L, Xiangsheng L, et al. Hyaluronic acid-based dual network hydrogel with sustained release of platelet-rich plasma as a diabetic wound dressing[J]. Carbohydrate Polymers, 2023, 314(8): 120924. [38] Cao B, Lin J, Tan J, et al. 3D-printed vascularized biofunctional scaffold for bone regeneration[J]. International Journal of Bioprinting, 2023, 9(3): 185-199. [39] Censi R, Casadidio C, Deng S, et al. Interpenetrating hydrogel networksenhance mechanical stability, rheological properties, release behavior and adhesiveness of platelet-rich plasma[J]. International Journal of Molecular Sciences, 2020, 21(4): 1399. doi: 10.3390/ijms21041399 [40] Xie X, Ao X, Xu R, et al. Injectable, stable, and biodegradable hydrogel with platelet-rich plasma induced by l-serine and sodium alginate for effective treatment of intrauterine adhesions[J]. International Journal of Biological Macromolecules, 2024, 270(Pt 1): 132363. [41] Guangyao J, Sihao L, Kang Y, et al. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model[J]. Acta Biomaterialia, 2021, 128(4): 150-162. [42] Depeng F, Pan J, Quanxin H, et al. Platelet-rich plasma promotes the regeneration of cartilage engineered by mesenchymal stem cells and collagen hydrogel via the TGF-β/SMAD signaling pathway[J]. Journal of Cellular Physiology, 2019, 234(9): 15627-15637. doi: 10.1002/jcp.28211 [43] Alexandre P, Paula G, Annick J, et al. Thermo-responsive hyaluronan-based hydrogels combined with allogeneic cytotherapeutics for the treatment of osteoarthritis[J]. Pharmaceutics, 2023, 15(5): 1528. doi: 10.3390/pharmaceutics15051528 [44] Dong C, Pengbo C, Peng D, et al. MSCs-laden silk Fibroin/GelMA hydrogels with incorporation of platelet-rich plasma for chondrogenic construct[J]. Heliyon, 2023, 9(3): e14349. doi: 10.1016/j.heliyon.2023.e14349 [45] Saito M, Takahashi K A, Arai Y, et al. Intraarticular administration of platelet-rich plasma with biodegradable gelatin hydrogel microspheres prevents osteoarthritis progression in the rabbit knee[J]. Clinical and Experimental Rheumatology, 2009, 27(2): 201-207. [46] Kim Y, Furuya H, Tabata Y. Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels[J]. Biomaterials, 2014, 35(1): 214-224. doi: 10.1016/j.biomaterials.2013.09.103 [47] Lu H T, Chang W T, Tsai M L, et al. Development of injectable fucoidan and biological macromolecules hybrid hydrogels for intra-articular delivery of platelet-rich plasma[J]. Mar Drugs, 2019, 17(4): 236. doi: 10.3390/md17040236 [48] Sihang L, Jingyi T, Fangqin J, et al. Recent advances in zwitterionic hydrogels: Preparation, property, and biomedical application[J]. Gels, 2022, 8(1): 46. doi: 10.3390/gels8010046 [49] Sanchez Armengol E, Unterweger A, Laffleur F. PEGylated drug delivery systems in the pharmaceutical field: Past, present and future perspective[J]. Drug Dev Ind Pharm, 2022, 48(4): 129-139. doi: 10.1080/03639045.2022.2101062 [50] Era J, Nobuaki C, Alexandra B, et al. Platelet-rich plasma released from polyethylene glycol hydrogels exerts beneficial effects on human chondrocytes[J]. Journal of Orthopaedic Oesearch: Official Publication of The Orthopaedic Research Society, 2019, 37(11): 2401. doi: 10.1002/jor.24404 [51] Dhillon S M, Patel S, Bansal T. Improvising PRP for use in osteoarthritis knee-upcoming trends and futuristic view[J]. Journal of Clinical Orthopaedics And Trauma, 2018, 10(1): 32-35. [52] Kung Y, Chien WC, Shen HH, et al. Potential of thermoresponsive hydrogel as an alternative therapy for rat knee osteoarthritis[J]. Journal of Biomaterials Applications, 2023, 38(5): 707-718. doi: 10.1177/08853282231208506 [53] Wenqiang Y, Xingquan X, Qian X, et al. Platelet-rich plasma combined with injectable hyaluronic acid hydrogel for porcine cartilage regeneration: A 6-month follow-up[J]. Regenerative Biomaterials, 2020, 7(1): 77-90. doi: 10.1093/rb/rbz039 [54] Nadieh K, Aliasghar B, Taghi M K, et al. Platelet‐rich plasma‐hyaluronic acid/chondrotin sulfate/carboxymethyl chitosan hydrogel for cartilage regeneration[J]. Biotechnology and Applied Biochemistry, 2022, 69(2): 534-547. doi: 10.1002/bab.2130 [55] Kuntal C, Amrita S, Hirotaka I, et al. Aging affects the efficacy of platelet-rich plasma treatment for osteoarthritis[J]. American Journal of Physical Medicine & Rehabilitation, 2023, 102(7): 597-604. [56] Speidel A T, Chivers P R A, Wood C S, et al. Tailored biocompatible polyurethane-poly(ethylene glycol) hydrogels as a versatile nonfouling biomaterial[J]. Advanced Healthcare Materials, 2022, 11(21): e2201378. doi: 10.1002/adhm.202201378 [57] Kaiwen Z, Zengping L, Qianyu L, et al. Injectable PTHF-based thermogelling polyurethane implants for long-term intraocular application[J]. Biomaterials Research, 2022, 26(1): 70. doi: 10.1186/s40824-022-00316-z [58] 叶鼒, 陈永锋, 杜天舒, 等. 功能化水凝胶在治疗骨关节炎软骨损伤中的研究进展[J]. 生物骨科材料与临床研究, 2025, 22(2): 81-86+96. [59] Lian S, Mu Z, Yuan Z, et al. Methacrylated gelatin and platelet-rich plasma based hydrogels promote regeneration of critical-sized bone defects[J]. Regen Biomater, 2024, 11: rbae022. doi: 10.1093/rb/rbae022 [60] Xavier J, Jerome W, Zaslav K, et al. Exosome-laden scaffolds for treatment of post-traumatic cartilage injury and osteoarthritis of the knee: A systematic review[J]. International Journal of Molecular Sciences, 2023, 24(20): 15178. doi: 10.3390/ijms242015178 [61] Arias-Vázquez P I, Ramírez-Wakamatzu M A, Legorreta-Ramírez B G. Biopuncture, a multitarget therapy in the treatment of individuals with knee osteoarthritis: State of the art[J]. Journal of Pharmacopuncture., 2024, 27(3): 190-198. doi: 10.3831/KPI.2024.27.3.190 -
下载: