留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载PRP的水凝胶治疗KOA的机制与应用现状

张锡华 易红赤 刘盾 赵文韬 齐保闯 彭中钰 李具宝 陈涛

张锡华, 易红赤, 刘盾, 赵文韬, 齐保闯, 彭中钰, 李具宝, 陈涛. 负载PRP的水凝胶治疗KOA的机制与应用现状[J]. 昆明医科大学学报, 2025, 46(8): 115-126. doi: 10.12259/j.issn.2095-610X.S20250816
引用本文: 张锡华, 易红赤, 刘盾, 赵文韬, 齐保闯, 彭中钰, 李具宝, 陈涛. 负载PRP的水凝胶治疗KOA的机制与应用现状[J]. 昆明医科大学学报, 2025, 46(8): 115-126. doi: 10.12259/j.issn.2095-610X.S20250816
Xihua ZHANG, Hongchi YI, Dun LIU, Wentao ZHAO, Baochuang QI, Zhongyu PENG, Jubao LI, Tao CHEN. Mechanism and Application Status of PRP-loaded Hydrogels in the Treatment of KOA[J]. Journal of Kunming Medical University, 2025, 46(8): 115-126. doi: 10.12259/j.issn.2095-610X.S20250816
Citation: Xihua ZHANG, Hongchi YI, Dun LIU, Wentao ZHAO, Baochuang QI, Zhongyu PENG, Jubao LI, Tao CHEN. Mechanism and Application Status of PRP-loaded Hydrogels in the Treatment of KOA[J]. Journal of Kunming Medical University, 2025, 46(8): 115-126. doi: 10.12259/j.issn.2095-610X.S20250816

负载PRP的水凝胶治疗KOA的机制与应用现状

doi: 10.12259/j.issn.2095-610X.S20250816
基金项目: 国家自然科学基金(81860862);云南省郭卫专家工作站项目(202305AF150151);云南省“兴滇英才支持计划”医疗卫生人才专项(XDYC-YLWS-2023-0085,XYLH202347)。
详细信息
    作者简介:

    张锡华(1986~),男,山东菏泽人,医学硕士,主治医师,主要从事骨伤、骨病的中西医结合治疗及教学工作

    通讯作者:

    李具宝,E-mail:354964077@qq.com

    陈涛,E-mail:henpao@126.com

  • 中图分类号: R684.3;R318.08

Mechanism and Application Status of PRP-loaded Hydrogels in the Treatment of KOA

  • 摘要: 膝骨关节炎(knee osteoarthritis,KOA)是一种常见于中老年的慢性退行性骨关节病,主要特征是膝关节软骨退化和磨损,严重影响下肢活动和生活质量。目前,对于早、中期KOA的治疗主要依赖口服药物、关节注射、外用贴剂和中医药方法等保守方法。富血小板血浆(platelet-rich plasma,PRP)作为一种自体来源的血小板浓缩物,富含多种生长因子且无免疫排斥风险,近年来在骨关节和软组织损伤的修复中得到广泛应用。然而,PRP中生长因子的生物半衰期较短和注射部位的流动性,在关节腔内存在结合力不足、作用时间短、靶位治疗效果差、需要重复注射等问题,也增加了医源性感染的风险。水凝胶是含水的交联聚合物网络,其高组织相容性和药物缓释性备受关注。将PRP负载于水凝胶实现了药物的缓慢、持续释放,其独特的黏附性降低了药物在关节内的流动,从而延长了PRP局部作用时间,减少了重复注射的需求。本文通过综述PRP、水凝胶的生物学特性及负载PRP的水凝胶治疗KOA的作用机制、临床应用现状,并分析了存在的问题及面临的挑战,旨在通过对这一新兴治疗方法的深入探讨,为KOA患者提供更为有效的治疗选择。
  • 图  1  负载PRP的水凝胶缓释生长因子协同促进软骨再生的可能的分子通路

    Figure  1.  Possible molecular pathways of PRP loaded hydrogel sustained-release growth factor synergistically promoting cartilage regeneration

    图  2  动物实验设计流程图

    Figure  2.  Flow chart of animal experiment design

    图  3  PRP通过TGF-β/SMAD信号通路促进MSC-胶原水凝胶软骨再生的可能机制

    Figure  3.  The possible mechanism of PRP promoting MSc-collagen hydrogel cartilage regeneration through TGF-β/SMAD signaling pathway

    图  4  PRP通过TGF-β/SMAD信号通路促进MSC-胶原水凝胶软骨再生的可能机制

    Figure  4.  The possible mechanism of PRP promoting cartilage regeneration of MSC-collagen hydrogel through TGF-β/SMAD signaling pathway

    图  5  PRP-GelMA水凝胶促进骨软骨缺损修复的可能机制

    Figure  5.  The possible mechanism of PRP-GelMA hydrogel in promoting the repair of osteochondral defects

    图  6  PRP/m-HA复合支架缓释生长因子促进模型猪股骨髁软骨再生的动物实验设计

    A:自体PRP制备示意图;B:m-HA水凝胶的扫描电镜;C:实验程序示意图;D:股骨内侧髁浅层软骨缺损(FT)和全层骨软骨缺损(底部)。

    Figure  6.  Animal experimental design of PRP/m-HA composite scaffold slow-release growth factor promoting the regeneration of femoral condylar cartilage in model pigs

    表  1  用于软骨组织工程的天然和合成水凝胶生物特性和理化性质及其优缺点

    Table  1.   Biological and physicochemical properties,advantages and disadvantages of natural and synthetic hydrogels for cartilage tissue engineering

    材料优点缺点
    透明质酸良好的生物相容性和生物降解性,
    润滑性能、水溶性、低免疫原性
    机械强度差,保留时间短,细胞黏附性差
    明胶由于具有RGD序列而促进细胞黏附凝胶化时间长,热稳定性差
    聚乙二醇良好的机械性能,易于改性生物惰性
    壳聚糖良好的生物相容性和生物降解性,
    抗菌特性、促进细胞增殖
    机械强度差,水溶性差
    海藻酸盐良好的孔隙率和生物相容性,成胶迅速机械强度差,缺乏细胞锚定位点,
    细胞黏附性差,生物降解性差
    硫酸软骨素软骨细胞外基质的主要成分,抗炎特性,
    可维持干细胞生态位,调节酶活性
    机械强度差,降解迅速
    胶原蛋白良好的生物相容性和生物降解性机械强度差
    丝素蛋白结构与胶原蛋白相似,机械强度高,
    生物相容性,促进细胞黏附
    生物降解性差
    聚N-异丙基丙烯酰胶热敏性生物降解性差,机械强度差
    聚乙烯醇良好的生物相容性和机械性能,压缩模量、
    剪切模量、拉伸模量和渗透性更接近软骨
    细胞黏附性差、不可降解
    聚丙烯酰胺三维多孔结构,良好的生物相容性机械强度差,细胞相互作用不良
    下载: 导出CSV
  • [1] Zeng C Y, Zhang Z R, Tang Z M, et al. Benefits and mecha nisms of exercise training for knee osteoarthritis[J]. Frontiers in Physiology, 2021, 12(12): 794062.
    [2] Gu Y G, Jiang H. Correlation between synovitis and traditional Chinese medicine syndromes of knee osteoarthritis in WORMS score[J]. Zhongguo Gu Shang, 2019, 32(12): 1108-1111.
    [3] Yeon J K, Hyun J K, Hyuk B G, et al. Quality assessment of conventional and traditional oriental medicine clinical practice guidelines for knee osteoarthritis using AGREE II instrument[J]. Medicine, 2021, 100(51): e28426. doi: 10.1097/MD.0000000000028426
    [4] Guven Kose S, Kirac Unal Z, Kose H C, et al. Ultrasound-guided genicular nerve radiofrequency treatment: Prospective randomized comparative trial of a 3-nerve protocol versus a 5-nerve protocol[J]. Pain Med, 2023, 24(7): 758-767. doi: 10.1093/pm/pnad025
    [5] Du J, Sun X, Ao L, et al. Impact of abnormal mechanical stress on chondrocyte death in osteoarthritis[J]. Med Sci Monit, 2025, 31(6): e948290.
    [6] Xu F, Zhang J, Wu I, et al. Does intra-articular injection of PRP help patients with temporomandibular joint osteoarthritis after joint puncture? A systematic review and meta-analysis of randomized controlled trials[J]. BMC Oral Health, 2025, 25(1): 475. doi: 10.1186/s12903-025-05826-5
    [7] Yan Y, Liu X, Chen Y, et al. Effects of platelet-rich plasma combined with physical therapy on IL-1β, TGF-β1, and MMP-3 in patients with knee osteoarthritis[J]. Mol Biotechnol, 2025, 67(5): 1991-2001. doi: 10.1007/s12033-024-01177-8
    [8] Britto M, Dawood S, Lu S, et al. Use of ultrasound-guided platelet-rich plasma in the treatment of carpometacarpal osteoarthritis[J]. HCA Healthc J Med, 2021, 2(4): 257-262.
    [9] Elin S, Maria W. Effects of intra-articular PRP injections on osteoarthritis in the thumb basal joint and scaphoidtrapeziotrapezoidal joint[J]. PloS One, 2022, 17(3): e0264203. doi: 10.1371/journal.pone.0264203
    [10] Vincent H K, Johnson A J, Sibille K, et al. Weight-cycling over 6 years is associated with pain, physical function and depression in the osteoarthritis initiative cohort[J]. Scientific Reports, 2023, 13(1): 17045. doi: 10.1038/s41598-023-44052-3
    [11] Shumnalieva R, Kotov G, Ermencheva P, et al. Pathogenic mechanisms and therapeutic approaches in obesity-related knee osteoarthritis[J]. Biomedicines, 2023, 12(1): 9. doi: 10.3390/biomedicines12010009
    [12] Olansen J, Aaron K R. Similar pathophysiological mechanisms between osteoarthritis and vascular disease[J]. Frontiers In Bioscience-Landmark, 2024, 29(9): 320. doi: 10.31083/j.fbl2909320
    [13] 陈云修, 雷蕾, 纪刚, 等. 富血小板血浆治疗膝骨关节炎的研究进展[J]. 现代养生, 2025, 25(5): 321-325.
    [14] Zhang K, Zhang C, Ren Q, et al. Effects of leukocyte-rich platelet-rich plasma and leukocyte-poor platelet-rich plasma on cartilage in a rabbit osteoarthritis model[J]. Cell Mol Biol (Noisy-le-grand), 2024, 70(2): 217-226.
    [15] Hangyu Z, Zihang Z, Dailuo L, et al. Effect study of exosomes derived from platelet-rich plasma in the treatment of knee cartilage defects in rats[J]. Journal of Orthopaedic Surgery And Research, 2023, 18(1): 160. doi: 10.1186/s13018-023-03576-0
    [16] Haruka T, Takayuki O, Tokito T, et al. The preventive effects of platelet-rich plasma against knee osteoarthritis progression in rats[J]. Cureus, 2023, 15(11): e48825.
    [17] Keiji K, Akemi M, Takashi H, et al. Transcriptomic profiling analysis of human endometrial stromal cells treated with autologous platelet-rich plasma[J]. Reproductive Medicine And Biology, 2023, 22(1): e12498. doi: 10.1002/rmb2.12498
    [18] Du G, Sun X, He S, et al. The Nrf2/HO-1 pathway participates in the antiapoptotic and anti-inflammatory effects of platelet-rich plasma in the treatment of osteoarthritis[J]. Immunity, Inflammation and Disease, 2024, 12(6): e1169.
    [19] Kamada K, Matsushita T, Yamashita T, et al. Factors affecting the therapeutic effects of multiple intra-articular injections of platelet-rich-plasma for knee osteoarthritis[J]. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology, 2024, 38(9): 43-48.
    [20] Chen Y, Sang H, Wu S, et al. Inadequate anticoagulation and hyperuricemia cause knee pain after platelet-rich plasma injection: A retrospective study[J]. Journal of Orthopaedic Surgery (Hong Kong), 2024, 32(2): 1-11.
    [21] Xingzhen L, Fang Z, Qin L, et al. Comparing the efficacy of different intra-articular injections for knee osteoarthritis: A network analysis[J]. Medicine, 2022, 101(31): e29655. doi: 10.1097/MD.0000000000029655
    [22] Baria M, George R, Barker T, et al. Relationship of body mass index on patient-reported outcomes after platelet-rich plasma versus microfragmented adipose tissue for knee osteoarthritis: A secondary analysis of a randomized controlled trial[J]. American Journal of Physical Medicine & Rehabilitation, 2024, 103(11): 1006-1011.
    [23] Evgeniy T, Ivana Š, Martin P, et al. Enzymatically cross-linked hyaluronic acid hydrogels as in situ forming carriers of platelet-rich plasma: Mechanical properties and bioactivity levels evaluation[J]. Journal of The Mechanical Behavior of Biomedical Materials, 2023, 143(7): 105916.
    [24] Shukur A F M, Makhijani S, Ingle R, et al. Natural hydrogel-based drug delivery system: A global scenario, current development, and future prospective[J]. Current Drug Delivery, 2025, 22(8): 1154-1170.
    [25] Song X, Xiao J, Ai X, et al. An injectable thermosensitive hydrogel delivering M2 macrophage-derived exosomes alleviates osteoarthritis by promoting synovial lymphangiogenesis[J]. Acta Biomaterialia, 2024, 189(9): 130-142.
    [26] Yao S, Xu Y, Zhou Y, et al. Calcium phosphate nanocluster-loaded injectable hydrogel for bone regeneration[J]. ACS Applied Bio Materials, 2019, 2(10): 4408-4417. doi: 10.1021/acsabm.9b00270
    [27] Yu H, Chen G, Li L, et al. Spider minor ampullate silk protein nanoparticles: an effective protein delivery system capable of enhancing systemic immune responses[J]. Med Comm, 2024, 5(7): e573. doi: 10.1002/mco2.573
    [28] Xu Z, Liu J, Hu H, et al. Recent applications of stimulus-responsive smart hydrogels for osteoarthritis therapy[J]. Frontiers in Bioengineering and Biotechnology, 2025, 13(2): 1539566.
    [29] Marina K, Anoop V N, Anish J, et al. Thermosensitive in situ gels for joint disorders: Pharmaceutical considerations in intra-articular delivery[J]. Gels(Basel, Switzerland), 2022, 8(11): 723.
    [30] Rong Z, Haiyang L, Yichen H, et al. Application of injectable hydrogels as delivery systems in osteoarthritis and rheumatoid arthritis[J]. British Journal of Hospital Medicine, 2024, 85(8): 1-41.
    [31] Kang Y, Guan Y, Li S. Innovative hydrogel solutions for articular cartilage regeneration: A comprehensive review[J]. International Journal of Surgery, 2024, 110(12): 7984-8001. doi: 10.1097/JS9.0000000000002076
    [32] Salama A M, Hardy J G, Yessuf A M, et al. Injectable hydrogel technologies for bone disease treatments[J]. ACS Appl Bio Mater, 2025, 8(4): 2691-2715. doi: 10.1021/acsabm.4c01968
    [33] Tianhao Z, Zhanqi W, Wei Z, et al. Recent developments and current applications of hydrogels in osteoarthritis[J]. Bioengineering, 2022, 9(4): 132. doi: 10.3390/bioengineering9040132
    [34] Akkaş E, Esen A. Which of the autologous blood products administered simultaneously with arthrocentesis is more effective in terms of clinical outcomes?[J]. Journal of Stomatology, Oral and Maxillofacial Surgery, 2024, 125(5S1): 101998.
    [35] Elle K, Raili K, Julia M, et al. Cellulase-assisted platelet-rich plasma release from nanofibrillated cellulose hydrogel enhances wound healing[J]. Journal of Controlled Release, 2024, 368(2): 397-412.
    [36] Peng Z, Long Z, Lei W, et al. A novel nanofiber hydrogel loaded with platelet-rich plasma promotes wound healing through enhancing the survival of fibroblasts[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2019, 25(18): 8712-8721.
    [37] Jie Z, Yufei L, Xiangsheng L, et al. Hyaluronic acid-based dual network hydrogel with sustained release of platelet-rich plasma as a diabetic wound dressing[J]. Carbohydrate Polymers, 2023, 314(8): 120924.
    [38] Cao B, Lin J, Tan J, et al. 3D-printed vascularized biofunctional scaffold for bone regeneration[J]. International Journal of Bioprinting, 2023, 9(3): 185-199.
    [39] Censi R, Casadidio C, Deng S, et al. Interpenetrating hydrogel networksenhance mechanical stability, rheological properties, release behavior and adhesiveness of platelet-rich plasma[J]. International Journal of Molecular Sciences, 2020, 21(4): 1399. doi: 10.3390/ijms21041399
    [40] Xie X, Ao X, Xu R, et al. Injectable, stable, and biodegradable hydrogel with platelet-rich plasma induced by l-serine and sodium alginate for effective treatment of intrauterine adhesions[J]. International Journal of Biological Macromolecules, 2024, 270(Pt 1): 132363.
    [41] Guangyao J, Sihao L, Kang Y, et al. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model[J]. Acta Biomaterialia, 2021, 128(4): 150-162.
    [42] Depeng F, Pan J, Quanxin H, et al. Platelet-rich plasma promotes the regeneration of cartilage engineered by mesenchymal stem cells and collagen hydrogel via the TGF-β/SMAD signaling pathway[J]. Journal of Cellular Physiology, 2019, 234(9): 15627-15637. doi: 10.1002/jcp.28211
    [43] Alexandre P, Paula G, Annick J, et al. Thermo-responsive hyaluronan-based hydrogels combined with allogeneic cytotherapeutics for the treatment of osteoarthritis[J]. Pharmaceutics, 2023, 15(5): 1528. doi: 10.3390/pharmaceutics15051528
    [44] Dong C, Pengbo C, Peng D, et al. MSCs-laden silk Fibroin/GelMA hydrogels with incorporation of platelet-rich plasma for chondrogenic construct[J]. Heliyon, 2023, 9(3): e14349. doi: 10.1016/j.heliyon.2023.e14349
    [45] Saito M, Takahashi K A, Arai Y, et al. Intraarticular administration of platelet-rich plasma with biodegradable gelatin hydrogel microspheres prevents osteoarthritis progression in the rabbit knee[J]. Clinical and Experimental Rheumatology, 2009, 27(2): 201-207.
    [46] Kim Y, Furuya H, Tabata Y. Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels[J]. Biomaterials, 2014, 35(1): 214-224. doi: 10.1016/j.biomaterials.2013.09.103
    [47] Lu H T, Chang W T, Tsai M L, et al. Development of injectable fucoidan and biological macromolecules hybrid hydrogels for intra-articular delivery of platelet-rich plasma[J]. Mar Drugs, 2019, 17(4): 236. doi: 10.3390/md17040236
    [48] Sihang L, Jingyi T, Fangqin J, et al. Recent advances in zwitterionic hydrogels: Preparation, property, and biomedical application[J]. Gels, 2022, 8(1): 46. doi: 10.3390/gels8010046
    [49] Sanchez Armengol E, Unterweger A, Laffleur F. PEGylated drug delivery systems in the pharmaceutical field: Past, present and future perspective[J]. Drug Dev Ind Pharm, 2022, 48(4): 129-139. doi: 10.1080/03639045.2022.2101062
    [50] Era J, Nobuaki C, Alexandra B, et al. Platelet-rich plasma released from polyethylene glycol hydrogels exerts beneficial effects on human chondrocytes[J]. Journal of Orthopaedic Oesearch: Official Publication of The Orthopaedic Research Society, 2019, 37(11): 2401. doi: 10.1002/jor.24404
    [51] Dhillon S M, Patel S, Bansal T. Improvising PRP for use in osteoarthritis knee-upcoming trends and futuristic view[J]. Journal of Clinical Orthopaedics And Trauma, 2018, 10(1): 32-35.
    [52] Kung Y, Chien WC, Shen HH, et al. Potential of thermoresponsive hydrogel as an alternative therapy for rat knee osteoarthritis[J]. Journal of Biomaterials Applications, 2023, 38(5): 707-718. doi: 10.1177/08853282231208506
    [53] Wenqiang Y, Xingquan X, Qian X, et al. Platelet-rich plasma combined with injectable hyaluronic acid hydrogel for porcine cartilage regeneration: A 6-month follow-up[J]. Regenerative Biomaterials, 2020, 7(1): 77-90. doi: 10.1093/rb/rbz039
    [54] Nadieh K, Aliasghar B, Taghi M K, et al. Platelet‐rich plasma‐hyaluronic acid/chondrotin sulfate/carboxymethyl chitosan hydrogel for cartilage regeneration[J]. Biotechnology and Applied Biochemistry, 2022, 69(2): 534-547. doi: 10.1002/bab.2130
    [55] Kuntal C, Amrita S, Hirotaka I, et al. Aging affects the efficacy of platelet-rich plasma treatment for osteoarthritis[J]. American Journal of Physical Medicine & Rehabilitation, 2023, 102(7): 597-604.
    [56] Speidel A T, Chivers P R A, Wood C S, et al. Tailored biocompatible polyurethane-poly(ethylene glycol) hydrogels as a versatile nonfouling biomaterial[J]. Advanced Healthcare Materials, 2022, 11(21): e2201378. doi: 10.1002/adhm.202201378
    [57] Kaiwen Z, Zengping L, Qianyu L, et al. Injectable PTHF-based thermogelling polyurethane implants for long-term intraocular application[J]. Biomaterials Research, 2022, 26(1): 70. doi: 10.1186/s40824-022-00316-z
    [58] 叶鼒, 陈永锋, 杜天舒, 等. 功能化水凝胶在治疗骨关节炎软骨损伤中的研究进展[J]. 生物骨科材料与临床研究, 2025, 22(2): 81-86+96.
    [59] Lian S, Mu Z, Yuan Z, et al. Methacrylated gelatin and platelet-rich plasma based hydrogels promote regeneration of critical-sized bone defects[J]. Regen Biomater, 2024, 11: rbae022. doi: 10.1093/rb/rbae022
    [60] Xavier J, Jerome W, Zaslav K, et al. Exosome-laden scaffolds for treatment of post-traumatic cartilage injury and osteoarthritis of the knee: A systematic review[J]. International Journal of Molecular Sciences, 2023, 24(20): 15178. doi: 10.3390/ijms242015178
    [61] Arias-Vázquez P I, Ramírez-Wakamatzu M A, Legorreta-Ramírez B G. Biopuncture, a multitarget therapy in the treatment of individuals with knee osteoarthritis: State of the art[J]. Journal of Pharmacopuncture., 2024, 27(3): 190-198. doi: 10.3831/KPI.2024.27.3.190
  • [1] 陈笑天, 丁振飞, 宋宜宁, 蒋邦红, 张帆, 高艺, 官建中.  miR-21-5p抑制SIRT2/AKT轴促进骨关节炎进展机制, 昆明医科大学学报.
    [2] 谢飞飞, 辛隐子, 徐敏, 李景涵, 王伟.  长链非编码RNA在软骨发育及骨关节炎中作用机制的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241001
    [3] 陈一晗, 张善勇, 丁昱, 张莉.  颞下颌关节骨关节炎分子致病机制的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240701
    [4] 张露, 李叶, 王晴晴, 李生浩.  肝硬化对心血管系统的影响及相关机制研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240601
    [5] 邓绍友, 李蓉, 李进涛, 赵玉兰, 王佩锦, 郑红.  基于网络药理学探讨恒古骨伤愈合剂治疗骨关节炎的机制及动物实验初步验证, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230701
    [6] 张雪, 陈伟伟, 李翠花, 曹海涛.  基于力学理念的康复训练联合Ilizarov技术矫形对老年膝骨关节炎患者膝关节稳定性和下肢负重的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230326
    [7] 谭晋殿, 胡华明, 杨松, 林坚平, 吴巨峰.  影响富血小板血浆联合关节镜治疗III度半月板损伤膝关节功能恢复时间的因素分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230507
    [8] 王晓寒, 牟善茂, 郝翠芳, 任琳琳, 王敏, 赵彤.  富血小板血浆促进人子宫内膜间充质干细胞(EnMSCs)增殖的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220126
    [9] 刘光顺, 向旭东, 吕志勇, 周敏, 汪亚宏.  阿托品在保留自主呼吸无痛纤维支气管镜检查中的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210912
    [10] 李雪武.  依托芬那酯凝胶与双氯芬酸钠治疗膝骨关节炎的临床比较, 昆明医科大学学报.
    [11] 唐帮丽.  脐带间充质干细胞移植治疗狼疮性肾炎的疗效与机制, 昆明医科大学学报.
    [12] 杨佳儒.  CRISPR-Cas9的原理及其应用进展, 昆明医科大学学报.
    [13] 董忠礼.  单核巨噬细胞促进静脉血栓机化再通的机制及研究进展, 昆明医科大学学报.
    [14] 贾楠楠.  Gnaq对SH-SY5Y细胞增殖的作用及机制, 昆明医科大学学报.
    [15] 孙华.  F-FDG PET/CT在肝内胆管细胞癌诊断中的应用, 昆明医科大学学报.
    [16] 邵建林.  HO-1对氧糖剥夺海马神经元线粒体运动调节蛋白的影响, 昆明医科大学学报.
    [17] 吴安玥.  艾滋病患者生存质量简体中文版MOS-HIV量表应用评价, 昆明医科大学学报.
    [18] 动静脉足泵在大隐静脉曲张抽剥术后病人中的应用, 昆明医科大学学报.
    [19] ADAMTS-4在膝骨关节炎关节液中的表达和意义, 昆明医科大学学报.
    [20] 杨顺秋.  《护士长工作手册》创新设计与应用效果评价, 昆明医科大学学报.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  268
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-04
  • 网络出版日期:  2025-08-12
  • 刊出日期:  2025-08-30

目录

    /

    返回文章
    返回