留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

APOE4调控LRP1对Aβ25-35诱导的星形胶质细胞氧化应激和炎症反应的作用

李妍平 Fariha Tasnim Efty 陆志星 朱灵英

李妍平, Fariha Tasnim Efty, 陆志星, 朱灵英. APOE4调控LRP1对Aβ25-35诱导的星形胶质细胞氧化应激和炎症反应的作用[J]. 昆明医科大学学报, 2025, 46(11): 18-25. doi: 10.12259/j.issn.2095-610X.S20251103
引用本文: 李妍平, Fariha Tasnim Efty, 陆志星, 朱灵英. APOE4调控LRP1对Aβ25-35诱导的星形胶质细胞氧化应激和炎症反应的作用[J]. 昆明医科大学学报, 2025, 46(11): 18-25. doi: 10.12259/j.issn.2095-610X.S20251103
Yanping LI, Efty Fariha Tasnim, Zhixing LU, Lingying ZHU. The Role of APOE4 in Regulating LRP1 on Aβ25-35-Induced Oxidative Stress and Inflammatory Response in Astrocytes[J]. Journal of Kunming Medical University, 2025, 46(11): 18-25. doi: 10.12259/j.issn.2095-610X.S20251103
Citation: Yanping LI, Efty Fariha Tasnim, Zhixing LU, Lingying ZHU. The Role of APOE4 in Regulating LRP1 on Aβ25-35-Induced Oxidative Stress and Inflammatory Response in Astrocytes[J]. Journal of Kunming Medical University, 2025, 46(11): 18-25. doi: 10.12259/j.issn.2095-610X.S20251103

APOE4调控LRP1对Aβ25-35诱导的星形胶质细胞氧化应激和炎症反应的作用

doi: 10.12259/j.issn.2095-610X.S20251103
基金项目: 云南省科技厅重点研发计划项目(202303AC100027);云南省张勇民院士工作站(202305AF150024)
详细信息
    作者简介:

    李妍平(1981~),女,山西阳泉人,医学硕士,副主任医师,主要从事脑血管疾病、痴呆、神经肌肉疾病的研究工作

    通讯作者:

    朱灵英,E-mail: zhuly20200803@163.com

  • 中图分类号: R749.1+6

The Role of APOE4 in Regulating LRP1 on Aβ25-35-Induced Oxidative Stress and Inflammatory Response in Astrocytes

  • 摘要:   目的   探讨载脂蛋白E4(apolipoprotein E4,APOE4)调控脂蛋白受体相关蛋白1(lipoprotein receptor-related protein-1,LRP1)对β-淀粉样蛋白(amyloid β-protein,Aβ)25-35诱导的星形胶质细胞氧化应激和炎症反应的作用。   方法   在细胞中转染sh-NC、sh-APOE4、sh-LRP1、pcDNA-NC和pcDNA-LRP1,利用10 μM Aβ25-35诱导人星形胶质细胞24 h构建阿尔兹海默病(Alzheimer's disease,AD)细胞模型,经Western blot、DCFH-DA荧光探针和MDA、SOD和GSH检测试剂盒、TNF-α、IL-6和IL-1β酶联免疫吸附试剂盒探讨APOE4和LRP1对Aβ25-35诱导的星形胶质细胞氧化应激和炎症反应的作用。通过免疫共沉淀和Western blot实验检测APOE4与LRP1的蛋白-蛋白相互作用。   结果   Aβ25-35诱导上调APOE4表达(P < 0.01),促进星形胶质细胞中ROS( P < 0.001)、MDA( P < 0.001)和炎性细胞因子TNF-α、IL-6和IL-1β的水平( P < 0.001),抑制SOD、GSH和LRP1表达( P < 0.001)。敲降APOE4或过表达LRP1可抑制Aβ 25-35诱导的细胞中ROS、氧化应激和炎性细胞因子(P < 0.05)。APOE4通过蛋白-蛋白相互作用负调控LRP1蛋白表达。同时敲降APOE4和LRP1组细胞中ROS、MDA和炎性细胞因子浓度高于仅敲降APOE4组( P < 0.05),抑制SOD和GSH浓度( P < 0.001)。   结论   敲降APOE4通过上调LRP1抑制Aβ25-35诱导的星形胶质细胞的氧化应激和炎症反应。
  • 图  1  敲降APOE4抑制Aβ25-35诱导星形胶质细胞的炎症和氧化应激( $\bar x \pm s $,n = 3)

    A:APOE4的免疫印迹和相对表达统计图;B:转染sh-APOE4的星形胶质细胞中APOE4的免疫印迹和相对表达统计图;C~D:DCFH-DA探针法检测细胞中的ROS水平;E~G:试剂盒分别检测细胞中MDA、SOD和GSH水平;H~J:ELISA检测细胞中的炎性细胞因子TNF-α、IL-6、IL-1β水平;Aβ:Aβ25-35*P < 0.05;**P < 0.01;***P < 0.001。

    Figure  1.  Knockdown of APOE4 inhibits Aβ25-35-induced inflammation and oxidative stress in astrocytes ( $\bar x \pm s $,n = 3)

    图  2  APOE4调控LRP1蛋白表达( $\bar x \pm s $,n = 3)

    A~B:STRING数据库预测APOE4与LRP1具有蛋白-蛋白相互作用;C~D:CO-IP实验验证APOE4与LRP1的相互作用;E~F:LRP1的免疫印记和相对表达统计图;G~H:LRP1的免疫印记和相对表达统计图;Aβ:Aβ25-35**P < 0.01;***P < 0.001。

    Figure  2.  APOE4 regulates LRP1 protein expression ( $\bar x \pm s $,n = 3)

    图  3  过表达LRP1抑制星形胶质细胞的炎症和氧化应激( $\bar x \pm s $,n = 3)

    A~B:DCFH-DA探针法检测细胞中的ROS水平;C~E:试剂盒分别检测细胞中MDA、SOD和GSH水平;F~H:ELISA检测细胞中的炎性细胞因子TNF-α、IL-6、IL-1β水平;Aβ:Aβ25-35*P < 0.05;**P < 0.01;***P < 0.001。

    Figure  3.  Overexpression of LRP1 inhibits inflammation and oxidative stress in astrocytes ( $\bar x \pm s $,n = 3)

    图  4  敲降APOE4通过上调LRP1抑制星形胶质细胞的炎症和氧化应激( $\bar x \pm s $,n = 3)

    A~B:APOE4和LRP1的免疫印记图和蛋白相对表达统计;C~D:DCFH-DA荧光探针法检测细胞中ROS水平;E~G:试剂盒检测MDA、SOD和GSH水平;H~J:ELISA试剂盒检测细胞上清液中TNF-α、IL-6和IL-1β浓度;Aβ:Aβ25-35*P < 0.05;***P < 0.001。

    Figure  4.  Knockdown of APOE4 inhibits inflammation and oxidative stress in astrocytes by upregulating LRP1 ( $\bar x \pm s $,n = 3)

  • [1] Luo J, Thomassen J Q, Bellenguez C, et al. Genetic associations between modifiable risk factors and Alzheimer disease[J]. JAMA Netw Open, 2023, 6(5): e2313734. doi: 10.1001/jamanetworkopen.2023.13734
    [2] De Strooper B, Karran E. The cellular phase of Alzheimer’ s disease[J]. Cell, 2016, 164(4): 603-615. doi: 10.1016/j.cell.2015.12.056
    [3] Sofroniew M V. Molecular dissection of reactive astrogliosis and glial scar formation[J]. Trends Neurosci, 2009, 32(12): 638-647. doi: 10.1016/j.tins.2009.08.002
    [4] Deng Q, Wu C, Parker E, et al. Microglia and astrocytes in Alzheimer’ s disease: Significance and summary of recent advances[J]. Aging Dis, 2024, 15(4): 1537-1564.
    [5] Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: A roadway to neuroinflammation and Alzheimer’ s disease[J]. Inflammopharmacology, 2019, 27(4): 663-677. doi: 10.1007/s10787-019-00580-x
    [6] Liu C C, Kanekiyo T, Xu H, et al. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy[J]. Nat Rev Neurol, 2013, 9(2): 106-118. doi: 10.1038/nrneurol.2012.263
    [7] Kurkinen M. Lecanemab (Leqembi) is not the right drug for patients with Alzheimer’ s disease[J]. Adv Clin Exp Med, 2023, 32(9): 943-947. doi: 10.17219/acem/171379
    [8] Shinohara M, Tachibana M, Kanekiyo T, et al. Role of LRP1 in the pathogenesis of Alzheimer’ s disease: Evidence from clinical and preclinical studies[J]. J Lipid Res, 2017, 58(7): 1267-1281. doi: 10.1194/jlr.R075796
    [9] Rauch J N, Luna G, Guzman E, et al. LRP1 is a master regulator of tau uptake and spread[J]. Nature, 2020, 580(7803): 381-385. doi: 10.1038/s41586-020-2156-5
    [10] Chen K, Martens Y A, Meneses A, et al. LRP1 is a neuronal receptor for α-synuclein uptake and spread[J]. Mol Neurodegener, 2022, 17(1): 57. doi: 10.1186/s13024-022-00560-w
    [11] Hillen A E J, Burbach J P H, Hol E M. Cell adhesion and matricellular support by astrocytes of the tripartite synapse[J]. Prog Neurobiol, 2018, 165-167: 66-86.
    [12] Kim M, Choi W, Choi S, et al. In vivo reactive astrocyte imaging in patients with schizophrenia using fluorine 18-labeled THK5351[J]. JAMA Netw Open, 2024, 7(5): e2410684. doi: 10.1001/jamanetworkopen.2024.10684
    [13] Verkhratsky A, Zorec R, Rodríguez J J, et al. Astroglia dynamics in ageing and Alzheimer’ s disease[J]. Curr Opin Pharmacol, 2016, 26: 74-79. doi: 10.1016/j.coph.2015.09.011
    [14] Preman P, Alfonso-Triguero M, Alberdi E, et al. Astrocytes in Alzheimer’ s disease: Pathological significance and molecular pathways[J]. Cells, 2021, 10(3): 540. doi: 10.3390/cells10030540
    [15] Kim S, Chun H, Kim Y, et al. Astrocytic autophagy plasticity modulates Aβ clearance and cognitive function in Alzheimer’ s disease[J]. Mol Neurodegener, 2024, 19(1): 55. doi: 10.1186/s13024-024-00740-w
    [16] Tang Z, Chen Z, Guo M, et al. NRF2 deficiency promotes ferroptosis of astrocytes mediated by oxidative stress in Alzheimer’ s disease[J]. Mol Neurobiol, 2024, 61(10): 7517-7533. doi: 10.1007/s12035-024-04023-9
    [17] Koutsodendris N, Nelson M R, Rao A, et al. Apolipoprotein E and Alzheimer’ s disease: Findings, hypotheses, and potential mechanisms[J]. Annu Rev Pathol, 2022, 17: 73-99. doi: 10.1146/annurev-pathmechdis-030421-112756
    [18] Koutsodendris N, Blumenfeld J, Agrawal A, et al. Neuronal APOE4 removal protects against tau-mediated gliosis, neurodegeneration and myelin deficits[J]. Nat Aging, 2023, 3(3): 275-296. doi: 10.1038/s43587-023-00368-3
    [19] Pires M, Rego A C. Apoe4 and Alzheimer’ s disease pathogenesis-mitochondrial deregulation and targeted therapeutic strategies[J]. Int J Mol Sci, 2023, 24(1): 778. doi: 10.3390/ijms24010778
    [20] Xiong M, Wang C, Gratuze M, et al. Astrocytic APOE4 removal confers cerebrovascular protection despite increased cerebral amyloid angiopathy[J]. Mol Neurodegener, 2023, 18(1): 17. doi: 10.1186/s13024-023-00610-x
    [21] Litvinchuk A, Suh J H, Guo J L, et al. Amelioration of Tau and ApoE4-linked glial lipid accumulation and neurodegeneration with an LXR agonist[J]. Neuron, 2024, 112(3): 384-403. e8.
    [22] Zhou J, Zhang L, Peng J, et al. Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation[J]. Cell Metab, 2024, 36(9): 2054-2068. e14.
    [23] Li A, Zhang J, Chen K, et al. Donepezil attenuates inflammation and apoptosis in ulcerative colitis via regulating LRP1/AMPK/NF-κB signaling[J]. Pathol Int, 2023, 73(11): 549-559. doi: 10.1111/pin.13380
    [24] Ponchel T, Loeffler E, Ancel J, et al. LRP1 involvement in FHIT-regulated HER2 signaling in non-small cell lung cancer[J]. Eur J Cell Biol, 2025, 104(1): 151475. doi: 10.1016/j.ejcb.2024.151475
    [25] Danis C, Dupré E, Bouillet T, et al. Inhibition of tau neuronal internalization using anti-tau single domain antibodies[J]. Nat Commun, 2025, 16(1): 3162. doi: 10.1038/s41467-025-58383-4
    [26] Kang S, Lee J, Ali D N, et al. Low to moderate ethanol exposure reduces astrocyte-induced neuroinflammatory signaling and cognitive decline in presymptomatic APP/PS1 mice[J]. Sci Rep, 2024, 14(1): 23989. doi: 10.1038/s41598-024-75202-w
    [27] Van Gool B, Storck S E, Reekmans S M, et al. LRP1 has a predominant role in production over clearance of aβ in a mouse model of Alzheimer’ s disease[J]. Mol Neurobiol, 2019, 56(10): 7234-7245. doi: 10.1007/s12035-019-1594-2
    [28] Zhou R, Wang L, Chen L, et al. Bone marrow-derived GCA+ immune cells drive Alzheimer’ s disease progression[J]. Adv Sci (Weinh), 2023, 10(36): e2303402. doi: 10.1002/advs.202303402
  • [1] 夏梦甜, 李蓓蕾, 陈倩, 靳夏飞, 魏峰, 王凯旋.  基于线粒体功能障碍探讨菌群代谢产物对艾滋病免疫功能重建的影响, 昆明医科大学学报.
    [2] 韩志萍, 陈静, 马涛, 王少兰, 吕建东.  帕金森病患者血清miR-21、miR-23a水平与认知功能、炎症反应的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20251115
    [3] 周晓娟, 杨立斌, 杨鹏, 龚浩, 杨旭.  微体外循环对冠状动脉搭桥术后全身炎症反应和输血需求的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250310
    [4] 槐楠, 李睿, 宋广荣, 匡安仁.  雷帕霉素诱导氧化应激对甲状腺炎大鼠的影响, 昆明医科大学学报.
    [5] 贺红侠, 陈婷婷, 黄菲, 刘军武, 周鸿丽, 胥磊.  γ-氨基丁酸A型受体的激活减轻氧糖剥夺/复氧诱导的星形胶质细胞损伤, 昆明医科大学学报.
    [6] 李智勇, 陈政刚, 彭俊, 梁大中.  miR-16-5p通过介导GPR30表达促进OGD模型小胶质细胞的炎症反应和凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20251003
    [7] 杨曼, 赵兴安, 葛芸娜, 秦娟, 王玺雅, 陶四明.  基于综合生物信息分析鉴定心房颤动相关炎症基因及其与免疫细胞浸润的关联, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240303
    [8] 谭莹, 秦海燕, 孙翔, 苏彦伊, 王英宝.  丙泊酚调节MPP+诱导的SH-SY5Y细胞线粒体氧化应激和凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240305
    [9] 赵亚玲, 武坤, 王凯, 黄蓉, 何根娅, 纳玉辉, 何苗, 丁臻博, 张彩营.  妊娠期糖尿病宫内高血糖环境对子代外周炎症反应的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231110
    [10] 董丽, 孙士波, 孙曙光.  灯盏花乙素抗氧化应激机制在防治心脑血管疾病中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220423
    [11] 铁金杉, 刘垚, 陈绍春.  星形胶质细胞-神经元转化体内诱导研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210333
    [12] 李俊杰, 蒋海燕, 白文娅, 霍思颖, 孙志生, 邵建林.  沉默RND3表达对氧糖缺失/复氧复糖损伤海马神经细胞炎症反应和细胞凋亡的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211012
    [13] 曾庆菊, 李慧, 王晋文.  褪黑素对糖尿病大鼠氧化应激及足细胞凋亡的影响及作用机制, 昆明医科大学学报.
    [14] 曾柏瑞.  甲基苯丙胺与HIV-Tat蛋白协同改变大鼠血脑屏障通透性的氧化应激作用机制, 昆明医科大学学报.
    [15] 刘松.  1 800 MHz电磁波对大鼠心肌氧化应激的影响, 昆明医科大学学报.
    [16] 丁艳杰.  类风湿合并颈动脉硬化患者血清氧化应激状态与MMPs相关性分析, 昆明医科大学学报.
    [17] 张媛.  1 800 MHz电磁辐射对大鼠皮肤组织氧化应激的影响, 昆明医科大学学报.
    [18] 李棋.  抗神经生长因子抗体对大鼠慢性坐骨神经压迫损伤模型的脊髓胶质细胞激活的抑制作用, 昆明医科大学学报.
    [19] 闫庆峰.  木犀草素对冷保存大鼠心脏心功能及氧化应激反应的影响, 昆明医科大学学报.
    [20] 桂莉.  2型糖尿病大鼠骨骼肌氧化应激与胰岛素抵抗的关系, 昆明医科大学学报.
  • 加载中
图(4)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-29
  • 刊出日期:  2025-11-25

目录

    /

    返回文章
    返回