Volume 42 Issue 6
Jul.  2021
Turn off MathJax
Article Contents
Xing LIU, Yuan LIU, Xiang-fang LIU, Jie CHEN, Yong-gang CHEN, Hui SUN, Ling MA. Adverse Reactions Analysis and Prediction Model of Cefoperazone Sodium Sulbactam Sodium[J]. Journal of Kunming Medical University, 2021, 42(6): 139-145. doi: 10.12259/j.issn.2095-610X.S20210622
Citation: Xing LIU, Yuan LIU, Xiang-fang LIU, Jie CHEN, Yong-gang CHEN, Hui SUN, Ling MA. Adverse Reactions Analysis and Prediction Model of Cefoperazone Sodium Sulbactam Sodium[J]. Journal of Kunming Medical University, 2021, 42(6): 139-145. doi: 10.12259/j.issn.2095-610X.S20210622

Adverse Reactions Analysis and Prediction Model of Cefoperazone Sodium Sulbactam Sodium

doi: 10.12259/j.issn.2095-610X.S20210622
  • Received Date: 2021-03-26
    Available Online: 2021-07-03
  • Publish Date: 2021-07-21
  •   Objective  To analyze the safety of cefoperazone Sodium and Sulbactam Sodiumfor injection in Kunming medical institutions, explore the influencing factors of adverse reactions (ADR) and the correlation between the factors, so as to construct the prediction model of adverse reactions, and provide reference for the rational application ofcefoperazone Sodium and Sulbactam Sodium in clinical practice.  Methods  From January 2015 to June 2020, 222 adverse reaction reports of cefoperazone sodium and sulbactam sodium for injection in the Kunming City Adverse Drug Reaction Report Monitoring Database were extracted as the observation group. During the same period, no adverse reaction occurred when using cefoperazone sodium and sulbactam sodium for injection, The 250 responding cases were used as the control group. The clinical data of the two groups of patients were collected, and the relationship between the factors was analyzed through correlation; the related factors of adverse reactions were analyzed by multivariate logistic regression, and the prediction of adverse reactions was constructed according to the results Model. Evaluate the effectiveness of predictive models through receiver operating characteristic (ROC) curves.  Results  Correlation analysis showed that age was positively correlated with the number of primary diseases (Kendall’ s tau-b = 0.764, P < 0.05). There was a negative correlation between medication time and hospital stay (r = -0.124, P < 0.05). Multivariate logistic regression analysis showed that retirees, patients with liver and kidney dysfunction, and medication time (11-15) days were related factors for the adverse reactions of cefoperazone sodium and sulbactam sodium. The prediction model is logit (P)= 1.357 + 1.739 × retirees + 3.485 × liver and kidney damage + 2.681 × days of medication (11-15). The area under the ROC curve of this model is 0.877, and the sensitivity and specificity are 91.8% and 77.4%, respectively.  Conclusion  Liver and kidney dysfunction patients, medication time (11~15) d are the related factors of adverse reactions of Cefoperazone Sodium and Sulbactam Sodiumand the prediction model has high clinical value.
  • loading
  • [1]
    金晶,李青,冷光. 头孢哌酮/他唑巴坦不良反应风险因素分析[J]. 药物流行病学杂志,2016,25(6):346-349.
    [2]
    刘宪军,付娜. 109例头孢哌酮钠舒巴坦钠不良反应报告分析[J]. 中国药物警戒,2014,11(6):355-357.
    [3]
    胡新春,邓超英. 呼吸内科抗菌药物的临床应用与分析研究[J]. 国际呼吸杂志,2015,35(21):1617-1619. doi: 10.3760/cma.j.issn.1673-436X.2015.21.004
    [4]
    陈菲,王璐,王静. 肺炎克雷伯菌耐药与抗菌药物使用强度现况及其关联分析[J]. 蚌埠医学院学报,2019,44(8):1091-1096.
    [5]
    程英,段菲,权晨. 注射用头孢哌酮钠他唑巴坦钠配伍禁忌临床分析[J]. 中国药业,2019,28(3):73-75. doi: 10.3969/j.issn.1006-4931.2019.03.024
    [6]
    栗啸阳,郭代红,刘思源,等. 13458例头孢菌素类药品不良反应报告分析[J]. 药物流行病学杂志,2020,29(3):166-169.
    [7]
    张士洋,程军,陈志武. 350例头孢菌素类抗生素不良反应报告分析[J]. 安徽医药,2011,15(4):516-518. doi: 10.3969/j.issn.1009-6469.2011.04.053
    [8]
    何云开,刘产明,曾晓辉. 头孢哌酮钠/舒巴坦钠致喉头水肿及过敏性休克各1例[J]. 江苏药学与临床研究,2004,12(S1):76-76.
    [9]
    王全一,李彦博,傅蓉. 高效凝胶色谱法测定注射用头孢哌酮钠他唑巴坦钠中的高聚物[J]. 中国药业,2013,22(12):83-84. doi: 10.3969/j.issn.1006-4931.2013.12.053
    [10]
    钟雪,刘田,冯婉玉. 他唑巴坦致过敏反应案例报道及文献复习[J]. 中国新药杂志,2019,28(14):1784-1788. doi: 10.3969/j.issn.1003-3734.2019.14.020
    [11]
    石姗平,吴雪,农杰昌,等. 头孢哌酮/舒巴坦致凝血功能异常的影响因素分析[J]. 药物流行病学杂志,2019,28(9):578-580.
    [12]
    庞立峰. 注射用头孢哌酮钠舒巴坦钠致凝血功能异常1例[J]. 中国药物警戒,2018,15(5):62-63.
    [13]
    田艳平,朱燕,尹红,等. 46例注射用头孢哌酮/舒巴坦致过敏性休克分析[J]. 中国药物警戒,2010,7(4):246-248. doi: 10.3969/j.issn.1672-8629.2010.04.019
    [14]
    代蓉,邹玲,赵丽,李晓华,等. 1例头孢哌酮钠他唑巴坦钠过敏性休克病人的急救护理[J]. 护理研究,2015,29(23):2939-2939. doi: 10.3969/j.issn.1009-6493.2015.23.057
    [15]
    宋明辉,张建伟,张荣厚. 注射用头孢哌酮钠他唑巴坦钠静脉滴注致过敏性休克1例[J]. 海峡药学,2020,32(1):210-211. doi: 10.3969/j.issn.1006-3765.2020.01.090
    [16]
    施毅,李培. 根据药代动力学/药效动力学理论合理使用氨基糖苷类抗生素[J]. 中华结核和呼吸杂志,2012,35(10):726-728. doi: 10.3760/cma.j.issn.1001-0939.2012.10.004
    [17]
    马亚松,李敏,贾玉捷,孙燕,杨宏硕. 注射用头孢哌酮钠他唑巴坦钠与输液配伍稳定性研究[J]. 化工管理,2020,10(4):95-96. doi: 10.3969/j.issn.1008-4800.2020.04.061
    [18]
    金晶,李青,冷光. 山西省头孢哌酮钠他唑巴坦钠不良反应报告分析[J]. 山西医药杂志,2016,45(10):1159-1161.
    [19]
    张扣兴,唐英春,毕筱刚,等. 头孢哌酮钠/他唑巴坦钠体外抗菌活性和影响因素[J]. 中国临床药理学杂志,2001,17(3):195-198. doi: 10.3969/j.issn.1001-6821.2001.03.010
    [20]
    朱芸. 浅析静脉滴注头孢哌酮/他唑巴坦所致不良反应的特点[J]. 健康必读,2019(23):16-17.
    [21]
    范晓. 浅析静脉滴注头孢哌酮/他唑巴坦所致不良反应的特点[J]. 当代医药论丛,2017,15(3):8-9. doi: 10.3969/j.issn.2095-7629.2017.03.006
    [22]
    张楠,郭晓昕,贾海忠. 避免药物不良反应发生的方法学研究进展[J]. 中国药物警戒,2020,17(1):56-62.
  • Relative Articles

    [1] Wenxiu XU, Xiaofeng MO, Xiangmin YANG, Silu YANG, Fan WU, Te LI. Application of Logistic Regression and Decision Tree Model in Prediction of Adverse Reactions of Iodinated Contrast Medium. Journal of Kunming Medical University, 2024, 45(9): 70-75.  doi: 10.12259/j.issn.2095-610X.S20240911
    [2] Yanmei JI, Wenjun LI, Qingyun LI, Ni GUO, Ni MENG, Dan ZHOU, Qiuyu LI, Xingfang JIN. The Analysis of Related Factors of Cognitive Impairment after the Acute Ischemic Stroke and Construction of Nomogram Model. Journal of Kunming Medical University, 2024, 45(5): 73-81.  doi: 10.12259/j.issn.2095-610X.S20240511
    [3] Huijuan ZENG, Bo TIAN, Hongling YUAN, Jie HE, Guanxi LI, Guojia RU, Min XU, Dong ZHAN. Predictive Modeling of Chronic Kidney Disease with Hypertension or Diabetes Based on Machine Learning Algorithms. Journal of Kunming Medical University, 2024, 45(3): 99-105.  doi: 10.12259/j.issn.2095-610X.S20240315
    [4] Jingyu YANG, Ning XU, Yutao ZHANG, Fengchang HUANG, Yuanming JIANG, Liang YIN. Comparative Study of Multiple Models Based on Baseline T2WI Images for Predicting Pathological Complete Remission of Progressive Rectal Cancer after Neo-adjuvant Chemoradiotherapy. Journal of Kunming Medical University, 2023, 44(5): 117-124.  doi: 10.12259/j.issn.2095-610X.S20230512
    [5] Min ZHOU, Zhihui MA, Jiayan LI, Jianhua FAN, Ling LIN, Tingying YU, Huifang ZHANG, Li LIU. Predictive Model of Risk Factors for the Recurrence of Liver Cirrhosis with Pleural Effusion. Journal of Kunming Medical University, 2022, 43(5): 149-154.  doi: 10.12259/j.issn.2095-610X.S20220524
    [6] Ji JIA, Siming TAO. Development of A Plasma Osmolality Prediction Model for the Risk of In-hospital Death in Critically Ill Patients with Acute ST-segment Elevation Myocardial Infarction. Journal of Kunming Medical University, 2022, 43(12): 58-65.  doi: 10.12259/j.issn.2095-610X.S20221212
    [7] Hong WANG, Dexing YANG, Qiang WANG, Weiyu ZHOU, Jiefu TANG, Zhenfang WANG, Kai FU, Shengzhe LIU, Rong LIU. Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis. Journal of Kunming Medical University, 2022, 43(11): 44-51.  doi: 10.12259/j.issn.2095-610X.S20221102
    [8] Guimei ZHANG, Shu CHEN, Yunhua SONG, Yang WU, Hongyuan ZHOU. Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model. Journal of Kunming Medical University, 2022, 43(8): 184-190.  doi: 10.12259/j.issn.2095-610X.S20220830
    [9] Na LI, Jie CHEN, Ji LUO, Yong-gang CHEN, Jiang-li PENG, Ming-li YU, Sheng-hao LI. Retrospective Analysis of 376 Cases of Adverse Reactions to Antituberculosis Drug. Journal of Kunming Medical University, 2021, 42(4): 117-121.  doi: 10.12259/j.issn.2095-610X.S20210422
    [10] Jing-rong DAI, Jie LI, Xu HE, Yang LI, Yan LI. Risk Factors Analysis and Risk Prediction Model Construction of Depression in Inpatients of Geriatrics Department of a Hospital in Yunnan. Journal of Kunming Medical University, 2021, 42(11): 20-26.  doi: 10.12259/j.issn.2095-610X.S20211104
    [11] Li De Ying , Wang Yu Ming , Chai Hua Xiang , Dong Wei Qun . . Journal of Kunming Medical University, 2019, 40(11): 59-62.
    [12] Wang Li Li . . Journal of Kunming Medical University, 2019, 40(05): 117-121.
    [13] Shi Xiao Qing , Feng Ji Hong . . Journal of Kunming Medical University, 2019, 40(02): 86-91.
    [14] Sun Jian Ming , Dong Fang . Adverse Reactions in Children with Acute Lymphoblastic Leukemia after Chemotherapy. Journal of Kunming Medical University, 2017, 38(10): 107-111.
    [15] Liu Qing Hua . The Effect of Propofor Combined with Shufen on Analgesia,Analepsia and Adverse Reactions of Laparoscopic Myomectomy. Journal of Kunming Medical University,
    [16] Liu Ping . Effect of Intravenous Injection of Dezocine on the Incidence of Adverse Reactions during the Operation of Cesarean Delivery. Journal of Kunming Medical University,
    [17] Li Fan. . Journal of Kunming Medical University,
    [18] Xing Wen Zhong . . Journal of Kunming Medical University,
    [19] Xu Ying Fang . . Journal of Kunming Medical University,
    [20] . The Clinical Analysis of 60 Cases of Adverse Reactions caused by Blood Transfusion. Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(6)

    Article Metrics

    Article views (3751) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return