Volume 43 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Zhenghong YANG, Mingjie NING, Daqian HE, Mengzhe YANG, Yongping HUANG, Yunchao HUANG. Effect of Surface Topography on Staphylococcus Epidermidis Biofilm Formation by Different 3D Printing Thickness of Biomaterials[J]. Journal of Kunming Medical University, 2022, 43(2): 12-17. doi: 10.12259/j.issn.2095-610X.S20220228
Citation: Zhenghong YANG, Mingjie NING, Daqian HE, Mengzhe YANG, Yongping HUANG, Yunchao HUANG. Effect of Surface Topography on Staphylococcus Epidermidis Biofilm Formation by Different 3D Printing Thickness of Biomaterials[J]. Journal of Kunming Medical University, 2022, 43(2): 12-17. doi: 10.12259/j.issn.2095-610X.S20220228

Effect of Surface Topography on Staphylococcus Epidermidis Biofilm Formation by Different 3D Printing Thickness of Biomaterials

doi: 10.12259/j.issn.2095-610X.S20220228
  • Received Date: 2022-01-18
  • Publish Date: 2022-02-25
  •   Objective   To investigate the effect of surface topography on staphylococcus epidermidis biofilm formation by different 3D printing Thickness of biomaterials.   Methods   Medical 3D printing raw material, photosensitive resin MED610 was used as the material and samples were made according to 16 μm, 30 μm and 100 μm layer thicknesses using light-curing molding technology, respectively. Measure the sample surface roughness contour arithmetic mean deviation Ra, contour maximum height Rz, static angular contact method to detect sample hydrophobicity. The samples were co-cultured with Staphylococcus epidermidis standard strain RP62A on an oscillator, and the material surface was removed at 2 h, 6 h, 12 h, 24 h and 30 h, respectively. The number of bacterial communities per field of view was measured by laser confocal microscopy and the biofilm formation on the material surface was observed by scanning electron microscopy.   Results   The Ra and Rz values on the surface of the 16-μm layer thickness fabricated biomaterial were smaller than those of the 30-μm layer thickness and 60-μm fabricated samples, and there was no significant difference in the hydrophobicity of the surface of the fabricated materials with different layer thicknesses. When co-cultured with Staphylococcus epidermidis for 2 h and 6 h, a small amount of Staphylococcus epidermidis was scattered on the surface of the material in the 16 μm group without bacterial aggregation, and the number of bacterial communities per unit field of view was significantly lower than that in the 30 μm and 100 μm groups (P < 0.05). Biofilm formation could be observed on the material surface of each group at 12 h, 24 h and 30 h of incubation and there was no significant difference in the number of bacterial communities per unit field of view ( P > 0.05).   Conclusions   Different precision fabrication has a large effect on the surface roughness of 3D printing materials, but has no significant effect on hydrophobicity. The 16-μm layer thickness fabrication material is less favorable for Staphylococcus epidermidis adhesion in the early stage of infection than the 30-μm and 100-μm layer thickness fabrication materials.
  • loading
  • [1]
    Chen Y,Wang X Y,Huang Y C,et al. Study on the Structure of Candida Albicans-Staphylococcus Epidermidis Mixed Species Biofilm on Polyvinyl Chloride Biomaterial[J]. Cell Biochem Biophys,2015,73(2):461-468. doi: 10.1007/s12013-015-0672-y
    [2]
    Zhang J,Wehrle E,Rubert M,et al. 3D Bioprinting of Human Tissues:Biofabrication,Bioinks,and Bioreactors[J]. Int J Mol Sci,2021,22(8):3971.
    [3]
    张慧,孟桐辉,刘琳,等. 3D生物打印材料在生物医学领域中的应用及研究进展[J]. 中华临床医师杂志(电子版),2019,13(02):157-160. doi: 10.3877/cma.j.issn.1674-0785.2019.02.015
    [4]
    Liaw C Y,Guvendiren M. Current and emerging applications of 3D printing in medicine[J]. Biofabrication,2017,9(2):024102. doi: 10.1088/1758-5090/aa7279
    [5]
    车柯达,陈颖,雷玉洁. 3D打印技术在抗感染生物材料制作中的研究进展[J]. 重庆医学,2019,48(19):3359-3362. doi: 10.3969/j.issn.1671-8348.2019.19.029
    [6]
    Niklason L E, Lawson J H. Bioengineered human blood vessels[J]. Science, 2020, 370: e6934. doi: 10.1155/202122083971.
    [7]
    Wang Z,Yang Y. Application of 3D Printing in Implantable Medical Devices[J]. Biomed Res Int,2021,2021:6653967.
    [8]
    Lei Y,Xu Y,Jing P,et al. The effects of TGF-beta1 on staphylococcus epidermidis biofilm formation in a tree shrew biomaterial-centered infection model[J]. Ann Transl Med,2021,9(1):57. doi: 10.21037/atm-20-4526
    [9]
    Ensikat H J,Ditsche-Kuru P,Neinhuis C,et al. Superhydrophobicity in perfection:the outstanding properties of the lotus leaf[J]. Beilstein J Nanotechnol,2011,2:152-161. doi: 10.3762/bjnano.2.19
    [10]
    陈雅,叶联华,黄云超. 葡萄球菌生物膜形成影响因素的研究进展[J]. 中国医药导报,2017,14(36):37-34.
    [11]
    Engel A S,Kranz H T,Schneider M,et al. Biofilm formation on different dental restorative materials in the oral cavity[J]. BMC Oral Health,2020,20(1):162. doi: 10.1186/s12903-020-01147-x
    [12]
    Montelongo-Jauregui D,Srinivasan A,Ramasubramanian A K,et al. An in vitro model for oral mixed biofilms of Candida albicans and Streptococcus gordonii in synthetic saliva[J]. Frontiers in microbiology,2016,7:686.
    [13]
    De-La-Pinta I,Cobos M,Ibarretxe J,et al. Effect of biomaterials hydrophobicity and roughness on biofilm development[J]. J Mater Sci Mater Med,2019,30(7):77. doi: 10.1007/s10856-019-6281-3
    [14]
    Kligman S,Ren Z,Chung C H,et al. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation[J]. J Clin Med,2021,10(8):1641.
    [15]
    Linklater D P,Baulin V A,Juodkazis S,et al. Mechano-bactericidal actions of nanostructured surfaces[J]. Nat Rev Microbiol,2021,19(1):8-22. doi: 10.1038/s41579-020-0414-z
    [16]
    Tripathy A,Sen P,Su B,et al. Natural and bioinspired nanostructured bactericidal surfaces[J]. Adv Colloid Interface Sci,2017,248:85-104. doi: 10.1016/j.cis.2017.07.030
    [17]
    Ismail H S,Ali A I,Abo El-Ella M A,et al. Effect of different polishing techniques on surface roughness and bacterial adhesion of three glass ionomer-based restorative materials:In vitro study[J]. J Clin Exp Dent,2020,12(7):e620-e625.
    [18]
    Singh T,Hook A L,Luckett J,et al. Discovery of hemocompatible bacterial biofilm-resistant copolymers[J]. Biomaterials,2020,260:120312. doi: 10.1016/j.biomaterials.2020.120312
    [19]
    Mccarthy R R,Ullah M W,Pei E,et al. Antimicrobial Inks:The Anti-Infective Applications of Bioprinted Bacterial Polysaccharides[J]. Trends Biotechnol,2019,37(11):1155-1159. doi: 10.1016/j.tibtech.2019.05.004
    [20]
    Liu J,Yao X,Ye J,et al. A printing-spray-transfer process for attaching biocompatible and antibacterial coatings to the surfaces of patient-specific silicone stents[J]. Biomed Mater,2020,15(5):1748. doi: 10.1088/1748-605X/ab99d6
    [21]
    Zhang Y,Zhai D,Xu M,et al. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity[J]. Biofabrication,2017,9(2):1758-5090. doi: 10.1088/1758-5090/aa6ed6
  • Relative Articles

    [1] Hao HUANG, Xuelin LI, Fei SONG, Xiuling JI, Yingying XIANG. Applications of Biologically Oriented Preparation Technique in Prosthodontics. Journal of Kunming Medical University, 2024, 45(1): 168-171.  doi: 10.12259/j.issn.2095-610X.S20240128
    [2] Jia WANG, Lei FENG, Yulei ZHENG, Yong YUAN, Yao YAO, Zidang HU, Ni SHENG, Yan YU, Jiawei DING. Study on the Correlation Between Multiple Drug Resistance of Acinetobacter baumannii with Efflux Pump and Biofilm Formation. Journal of Kunming Medical University, 2024, 45(12): 1-7.
    [3] Danyan SU, Wentian TANG, Jinxu YANG, Hua LIU, Bangsheng LI, Yingding ZHAO, Yunchao HUANG. Research Progress of Indole in E. coli Biofilms on the Surface of Biomaterials. Journal of Kunming Medical University, 2023, 44(12): 184-190.  doi: 10.12259/j.issn.2095-610X.S20231229
    [4] Chaosheng ZENG, Shu LIU, Pengxiang LI, Min CHEN, Lin CHEN. Application of 3D Animation and Traditional Teaching in Neurotomy. Journal of Kunming Medical University, 2022, 43(1): 163-166.  doi: 10.12259/j.issn.2095-610X.S20220102
    [5] Jing ZHOU, Li-jun HUO, Ya-yan LEI, Hong-bing HE. Advances in Extracellular Polymeric Substances in Biofilm. Journal of Kunming Medical University, 2021, 42(4): 150-154.  doi: 10.12259/j.issn.2095-610X.S20210429
    [6] Qian JIANG, Yu SUN, Li-jun HUO, Ya-yan LEI, Luo-wei PEI. Antibacterial Effect of Slightly Acidic Electrolyzed Water on Enterococcus faecalis Biofilm in Root Canal in Vitro. Journal of Kunming Medical University, 2021, 42(3): 5-9.  doi: 10.12259/j.issn.2095-610X.S20210303
    [7] Xiang Ying Ying , Yu Hong Bin , Zhou Jing , Yang Xiang Hong , Song Fei , Wei Yun Lin , Ji Xiu Ling . . Journal of Kunming Medical University, 2020, 41(05): 46-51.
    [8] Zhao Song Ling , Wang Yu Lin , Wang Wei , Li Yue Hua , Li Xiao , Zou Hao . . Journal of Kunming Medical University, 2019, 40(11): 123-126.
    [9] Yang Jia , Yang Yi , Zhao Yun Hong , Zhang Zheng Xue , Yang Qing , Yang Liu , Xi Ying Long , Duan Yu Ping , Li Biao . Application of 3D Printing Combined with S-ROM Total Hip Arthroplasty in the Treatment of Adult Crowe Ⅳ DDH. Journal of Kunming Medical University, 2018, 39(05): 83-89.
    [10] Ni Hui Xia , Zhao Wei , Hu Ji Hong , Wang Tao . Application Effects of Three-dimensional Printing Technology Based on CT Angiography in the Education of Interventional Neuroradiology. Journal of Kunming Medical University, 2018, 39(01): 136-139.
    [11] Zhang Ya Juan , Pan Hong , Du Jia Hui , Wu Jie , Qiu Xiu Qin , Liu Song Bai , Jia Bei Bei . The Effect of Cinnamaldehyde and Vancomycin on Biofilm Inhibition of Methicillin-Resistant Staphylococcus Aureus. Journal of Kunming Medical University, 2018, 39(04): 52-55.
    [12] Dong Zhi Xu , Wang Ning Shan , Li Peng Hui , Li Zhi Peng . Synthesis of Gastrodin Derivatives. Journal of Kunming Medical University, 2017, 38(11): 45-48.
    [13] He Li Ming , He Yong Wen . . Journal of Kunming Medical University, 2017, 38(03): 31-34.
    [14] Zhang Le , Tang Li Bin , Jiang Jian Jie , Xia Jia Wei , Lv Zheng Xuan , Li Yun Zhen , Han Liu Xin , Bai Bin . 非生物型人工肝技术治疗肝衰竭合并肝肾综合征. Journal of Kunming Medical University, 2017, 38(06): 36-39.
    [15] Hu Xin Yi . Radical Cystectomy and Orthotopic Urinary Diversion with 3D Laparoscopy. Journal of Kunming Medical University,
    [16] Liu Li Xin . . Journal of Kunming Medical University,
    [17] Qin Ya Hui . . Journal of Kunming Medical University,
    [18] Li Xiao Fei . . Journal of Kunming Medical University,
    [19] Yang Yin Feng . . Journal of Kunming Medical University,
    [20] Ren Xu . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (2699) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return