Guixuan ZHANG, Xin SHI, Wei LI, Shuhua YE. Research Progress of Radiomics in Adrenal Tumors[J]. Journal of Kunming Medical University, 2022, 43(3): 142-147. doi: 10.12259/j.issn.2095-610X.S20220324
Citation: Guixuan ZHANG, Xin SHI, Wei LI, Shuhua YE. Research Progress of Radiomics in Adrenal Tumors[J]. Journal of Kunming Medical University, 2022, 43(3): 142-147. doi: 10.12259/j.issn.2095-610X.S20220324

Research Progress of Radiomics in Adrenal Tumors

doi: 10.12259/j.issn.2095-610X.S20220324
  • Received Date: 2020-01-01
    Available Online: 2022-02-18
  • Publish Date: 2022-03-22
  • With the development of medical diagnostic technology, the detection rate of adrenal tumor is increasing year by year. As a new technology, radiomics can mine, predict and analyze the deep-seated data which is difficult for human eyes to recognize. It has been widely concerned in the field of oncology. This article mainly introduces the research progress of radiomics in the diagnosis and treatment of adrenal tumors, including the adrenal tumor diagnosis and differential diagnosis, clinical decision-making and risk assessment, prognosis prediction and forecasting tumor biological behavior and so on. Finally, the problems existing in radiomics at the present stage are summarized and the future development direction is prospected, in order to provide reference for clinical diagnosis and treatment.
  • [1]
    Low G,Sahi K. Clinical and imaging overview of functional adrenal neoplasms[J]. Int J Urol,2012,19(8):697-708. doi: 10.1111/j.1442-2042.2012.03014.x
    [2]
    Lam A K. Update on adrenal tumours in 2017 World Health Organization (WHO) of endocrine tumours[J]. Endocr Pathol,2017,28(3):213-227. doi: 10.1007/s12022-017-9484-5
    [3]
    Zheng X,Yao Z,Huang Y,et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nat Commun,2020,11(1):1-9. doi: 10.1038/s41467-019-13993-7
    [4]
    Gillies R J,Schabath M B. Radiomics improves cancer screening and early detection[J]. Cancer Epidemiol Biomarkers Prev,2020,29(12):2556-2567. doi: 10.1158/1055-9965.EPI-20-0075
    [5]
    Ji G W,Zhu F P,Xu Q,et al. Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma:A multi-institutional study[J]. Radiology,2020,294(3):568-579. doi: 10.1148/radiol.2020191470
    [6]
    Huang Y,Liu Z,He L,et al. Radiomics signature:A potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer[J]. Radiology,2016,281(3):947-957. doi: 10.1148/radiol.2016152234
    [7]
    Hectors S J,Cherny M,Yadav K K,et al. Radiomics features measured with multiparametric magnetic resonance imaging predict prostate cancer aggressiveness[J]. J Urol,2019,202(3):498-505. doi: 10.1097/JU.0000000000000272
    [8]
    Lambin P,Rios-Velazquez E,Leijenaar R,et al. Radiomics:Extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer,2012,48(4):441-446. doi: 10.1016/j.ejca.2011.11.036
    [9]
    Kumar V,Gu Y,Basu S,et al. Radiomics:The process and the challenges[J]. Magn Reson Imaging,2012,30(9):1234-1248. doi: 10.1016/j.mri.2012.06.010
    [10]
    Mackin D,Fave X,Zhang L,et al. Measuring computed tomography scanner variability of radiomics features[J]. Invest Radiol,2015,50(11):757-765. doi: 10.1097/RLI.0000000000000180
    [11]
    Chaddad A,Kucharczyk M J,Daniel P,et al. Radiomics in glioblastoma:Current status and challenges facing clinical implementation[J]. Frontiers in Oncology,2019,9(5):1-9.
    [12]
    Wu Y P,Lin Y S,Wu W G,et al. Semiautomatic segmentation of glioma on mobile devices[J]. Journal of Healthcare Engineering,2017,2017(6):1-10.
    [13]
    Gillies R J,Kinahan P E,Hricak H. Radiomics:images are more than pictures,they are data[J]. Radiology,2016,278(2):563-577. doi: 10.1148/radiol.2015151169
    [14]
    Cardenas C E,Yang J,Anderson B M,et al. Advances in auto-segmentation[J]. Semin Radiat Oncol,2019,29(3):185-197. doi: 10.1016/j.semradonc.2019.02.001
    [15]
    Spuhler K D,Ding J,Liu C,et al. Task-based assessment of a convolutional neural network for segmenting breast lesions for radiomic analysis[J]. Magn Reson Med,2019,82(2):786-795. doi: 10.1002/mrm.27758
    [16]
    Liu Z,Wang S,Dong D,et al. The applications of radiomics in precision diagnosis and treatment of oncology:opportunities and challenges[J]. Theranostics,2019,9(5):1303-1322. doi: 10.7150/thno.30309
    [17]
    Lin Y C,Lin C H,Lu H Y,et al. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer[J]. Eur Radiol,2020,30(3):1297-1305. doi: 10.1007/s00330-019-06467-3
    [18]
    Traverso A,Wee L,Dekker A,et al. Repeatability and reproducibility of radiomic features:a systematic review[J]. Int J Radiat Oncol Biol Phys,2018,102(4):1143-1158. doi: 10.1016/j.ijrobp.2018.05.053
    [19]
    Braman N M,Etesami M,Prasanna P,et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J]. Breast Cancer Res,2017,19(1):1-14. doi: 10.1186/s13058-016-0797-y
    [20]
    Avanzo M,Wei L,Stancanello J,et al. Machine and deep learning methods for radiomics[J]. Med Phys,2020,47(5):185-202.
    [21]
    Park J E,Park S Y,Kim H J,et al. Reproducibility and generalizability in radiomics modeling:possible strategies in radiologic and statistical perspectives[J]. Korean J Radiol,2019,20(7):1124-1137. doi: 10.3348/kjr.2018.0070
    [22]
    Parmar C,Grossmann P,Bussink J,et al. Machine learning methods for quantitative radiomic biomarkers[J]. Sci Rep,2015,5(1):1-11.
    [23]
    Coroller T P,Agrawal V,Narayan V,et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer[J]. Radiother Oncol,2016,119(3):480-486. doi: 10.1016/j.radonc.2016.04.004
    [24]
    Gnep K,Fargeas A,Gutiérrez-Carvajal R E,et al. Haralick textural features on T(2) -weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer[J]. J Magn Reson Imaging,2017,45(1):103-117. doi: 10.1002/jmri.25335
    [25]
    Fassnacht M,Arlt W,Bancos I,et al. Management of adrenal incidentalomas:European society of endocrinology clinical practice guideline in collaboration with the European network for the study of adrenal tumors[J]. Eur J Endocrinol,2016,175(2):G1-G34. doi: 10.1530/EJE-16-0467
    [26]
    Torresan F,Crimì F,Ceccato F,et al. Radiomics:a new tool to differentiate adrenocortical adenoma from carcinoma[J]. BJS Open,2021,5(1):1-7.
    [27]
    Seo J M,Park B K,Park S Y,et al. Characterization of lipid-poor adrenal adenoma:chemical-shift MRI and washout CT[J]. AJR Am J Roentgenol,2014,202(5):1043-1050. doi: 10.2214/AJR.13.11389
    [28]
    Umanodan T,Fukukura Y,Kumagae Y,et al. ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating adrenal adenoma from pheochromocytoma[J]. J Magn Reson Imaging,2017,45(4):1195-1203. doi: 10.1002/jmri.25452
    [29]
    Gaujoux S,Mihai R. European Society of Endocrine Surgeons (ESES) and European Network for the Study of Adrenal Tumours (ENSAT) recommendations for the surgical management of adrenocortical carcinoma[J]. Br J Surg,2017,104(4):358-376. doi: 10.1002/bjs.10414
    [30]
    Yi X,Guan X,Zhang Y,et al. Radiomics improves efficiency for differentiating subclinical pheochromocytoma from lipid-poor adenoma:a predictive,preventive and personalized medical approach in adrenal incidentalomas[J]. Epma Journal,2018,9(4):421-429. doi: 10.1007/s13167-018-0149-3
    [31]
    Moawad A W,Ahmed A,Fuentes D T,et al. Machine learning-based texture analysis for differentiation of radiologically indeterminate small adrenal tumors on adrenal protocol CT scans[J]. Abdominal Radiology,2021,46(10):4853-4863. doi: 10.1007/s00261-021-03136-2
    [32]
    Young W F,Stanson A W,Thompson G B,et al. Role for adrenal venous sampling in primary aldosteronism[J]. Surgery,2004,136(6):1227-1235. doi: 10.1016/j.surg.2004.06.051
    [33]
    He K,Zhang ZT,Wang ZH,et al. A clinical-radiomic nomogram based on unenhanced computed tomography for predicting the risk of aldosterone-producing adenoma[J]. Frontiers in Oncology,2021,11(7):1-9.
    [34]
    Hasegawa T,Yamakado K,Nakatsuka A,et al. Unresectable adrenal metastases:clinical outcomes of radiofrequency ablation[J]. Radiology,2015,277(2):584-593. doi: 10.1148/radiol.2015142029
    [35]
    Lam K Y,Lo C Y. Metastatic tumours of the adrenal glands:a 30-year experience in a teaching hospital[J]. Clin Endocrinol (Oxf),2002,56(1):95-101. doi: 10.1046/j.0300-0664.2001.01435.x
    [36]
    Abrams H L,Spiro R,Goldstein N. Metastases in carcinoma; analysis of 1000 autopsied cases[J]. Cancer,1950,3(1):74-85. doi: 10.1002/1097-0142(1950)3:1<74::AID-CNCR2820030111>3.0.CO;2-7
    [37]
    Huang J,Xie X,Lin J,et al. Percutaneous radiofrequency ablation of adrenal metastases from hepatocellular carcinoma:a single-center experience[J]. Cancer Imaging,2019,19(1):1-8. doi: 10.1186/s40644-018-0187-z
    [38]
    Welch B T,Callstrom M R,Carpenter P C,et al. A single-institution experience in image-guided thermal ablation of adrenal gland metastases[J]. J Vasc Interv Radiol,2014,25(4):593-598. doi: 10.1016/j.jvir.2013.12.013
    [39]
    Wolf F J,Dupuy D E,Machan J T,et al. Adrenal neoplasms:effectiveness and safety of CT-guided ablation of 23 tumors in 22 patients[J]. Eur J Radiol,2012,81(8):1717-1723. doi: 10.1016/j.ejrad.2011.04.054
    [40]
    Welch B T,Atwell T D,Nichols D A,et al. Percutaneous image-guided adrenal cryoablation:procedural considerations and technical success[J]. Radiology,2011,258(1):301-307. doi: 10.1148/radiol.10100631
    [41]
    Daye D,Staziaki P V,Furtado V F,et al. CT texture analysis and machine learning improve post-ablation prognostication in patients with adrenal metastases:a proof of concept[J]. Cardiovascular and Interventional Radiology,2019,42(12):1771-1776. doi: 10.1007/s00270-019-02336-0
    [42]
    De Cubas A A,Leandro-García L J,Schiavi F,et al. Integrative analysis of miRNA and mRNA expression profiles in pheochromocytoma and paraganglioma identifies genotype-specific markers and potentially regulated pathways[J]. Endocr Relat Cancer,2013,20(4):477-493. doi: 10.1530/ERC-12-0183
    [43]
    Ansquer C,Drui D,Mirallie E,et al. Usefulness of FDG-PET/CT-based radiomics for the characterization and genetic orientation of pheochromocytomas before surgery[J]. Cancers,2020,12(9):1-15.
    [44]
    Plouin P F,Amar L,Dekkers O M,et al. European Society of Endocrinology Clinical Practice Guideline for long-term follow-up of patients operated on for a phaeochromocytoma or a paraganglioma[J]. European Journal of Endocrinology,2016,174(5):G1-G10. doi: 10.1530/EJE-16-0033
  • Relative Articles

    [1] Dongyan ZHAO, Runxu YANG. Research Progress in Genetics of Bipolar Disorder. Journal of Kunming Medical University, 2024, 44(1B): 1-6.
    [2] Li DENG, Linhai CONG, Hongli FANG, Huifang GAO, Jiazhi YIN. Research Progress on Common Deafness Gene Screening in Chinese Newborns. Journal of Kunming Medical University, 2024, 44(1B): 1-3.
    [3] Yiwen ZHANG, Ximing WANG, Zilong LI, Xinzhang ZHANG, Changxian CHEN, Weijun LIU, Zhenyong ZHANG. Research Progress of Artificial Intelligence in the Diagnosis and Treatment of Anorectal Diseases. Journal of Kunming Medical University, 2024, 45(2): 1-6.  doi: 10.12259/j.issn.2095-610X.S20240201
    [4] Zhaoyang CAO, Sijia LIU, Yaying YANG. Advancements of Radiomics in Coloractal Cancer. Journal of Kunming Medical University, 2024, 44(1B): 1-7.
    [5] Chenglu HE, Ya LI, Min ZHU, Min ZHONG, Yong DUAN. Research Progress of ACSM Protein Family in Tumor. Journal of Kunming Medical University, 2023, 44(3): 149-154.  doi: 10.12259/j.issn.2095-610X.S20230307
    [6] Yixuan CHEN, Lin WANG, Xiuhong XIA, Zaikun PENG, Yi DING, Runjiao SHI, Xuefen LEI. Research Progress on the Mechanisms of Autophagy in Hepatocellular Carcinoma. Journal of Kunming Medical University, 2023, 44(4): 159-164.  doi: 10.12259/j.issn.2095-610X.S20230416
    [7] Jingyu YANG, Ning XU, Yutao ZHANG, Fengchang HUANG, Yuanming JIANG, Liang YIN. Comparative Study of Multiple Models Based on Baseline T2WI Images for Predicting Pathological Complete Remission of Progressive Rectal Cancer after Neo-adjuvant Chemoradiotherapy. Journal of Kunming Medical University, 2023, 44(5): 117-124.  doi: 10.12259/j.issn.2095-610X.S20230512
    [8] Qianting DUAN, Guanshun WANG, Rong DING, Na WANG, Hongli CUN, Ling YANG. Application of CT Radiomics in the Short-Term Prognosis of Combined Therapy for Hepatocellular Carcinoma. Journal of Kunming Medical University, 2023, 44(1): 128-134.  doi: 10.12259/j.issn.2095-610X.S20220818
    [9] Chen Xin , Bi Shan , Li Guo Ping . . Journal of Kunming Medical University, 2020, 41(07): 170-174.
    [10] Qi Xiao , Zhong Zhao Ming , Sun Chuan Zheng . . Journal of Kunming Medical University, 2020, 41(05): 140-144.
    [11] Fan Xu , Feng Yu Ran , Zhu Mei . . Journal of Kunming Medical University, 2019, 40(11): 1-5.
    [12] Xue Feng Lin , Hong Shi Jun , Zeng Xiao Feng , Yang Jing , Yang Gen Meng , Zhou Yi Qing , Li Li Hua . Progress of Functional Imaging in Brain Structure and Functional Changes in People with Amphetamine Addiction. Journal of Kunming Medical University, 2018, 39(08): 129-133.
    [13] Shi Bao Sheng , Shao Ya Ting , Chen Li Jun , Zhang Liang , Pu Dong , Wen Xiao Ling , Chen Ya Ping , Li Yu Peng . Research Progress of Dendrobium in the Treatment and Prevention of Diabetes. Journal of Kunming Medical University, 2018, 39(07): 129-132.
    [14] Yu Shan , Wang Bo . 糖尿病健康教育研究进展. Journal of Kunming Medical University, 2018, 39(04): 130-134.
    [15] Wang Chun Long , Han Dan , Wen Liang . Research Progress of Mesothelin in Tumor Diagnosis and Treatment. Journal of Kunming Medical University, 2017, 38(09): 134-139.
    [16] Hu Zhu Fei , He Yong Wen . . Journal of Kunming Medical University, 2017, 38(05): 133-137.
    [17] Wang Zhi Qiang , Li Rong Qing , Zhang Yong . Progress in Research of Adaptive Radiation Therapy for Head and Heck Cancer. Journal of Kunming Medical University, 2016, 37(12): 131-134.
    [18] Dong Chao . . Journal of Kunming Medical University,
    [19] Zeng Hong Jing . . Journal of Kunming Medical University,
    [20] . . Journal of Kunming Medical University,
  • Cited by

    Periodical cited type(8)

    1. 郑一,刘继伟,于喜红,何燕斐,王建军,杨瑞. 不同表型COPD患者HRCT参数与T淋巴细胞亚群水平、肺功能参数的相关性. 分子诊断与治疗杂志. 2023(01): 43-47 .
    2. 白金录,刘照龙,杨丽娜,卞海艳,李侠. 血清SERPINA1、CTGF、T-AOC在子宫肌瘤患者中的表达水平及临床意义. 河北医科大学学报. 2023(04): 434-438 .
    3. 葛进男,张晓风,葛蕾蕾,许晓霞. 早期肺康复对慢性阻塞性肺疾病急性加重期患者的影响. 当代护士(中旬刊). 2023(03): 27-30 .
    4. 宋丽英. 慢性阻塞性肺疾病急性加重的影响因素分析及预测模型的构建与验证. 南昌大学学报(医学版). 2023(06): 67-71 .
    5. 蒲小娟,彭芳,赵启全,陈远婷,刘梅婷. 多索茶碱联合噻托溴铵对COPD患者血清APN、NE及α1-AT水平的影响. 保健医学研究与实践. 2023(10): 38-42 .
    6. 鄞晓斌,邱名耀,吴海琴,林明霞,林芳崇. 血清α1-AT和NE水平变化与AECOPD患者病情程度关系及预测呼吸衰竭的价值. 临床急诊杂志. 2022(06): 390-394 .
    7. 卢亚茹. 血嗜酸性粒细胞与慢性阻塞性肺疾病对糖皮质激素治疗反应的关系. 慢性病学杂志. 2022(09): 1418-1420 .
    8. 李琼,张庭秀,胡绳,周宏. 支气管扩张患者TNF-α、IL-6、中性粒细胞百分比与疾病严重程度的关系. 中华肺部疾病杂志(电子版). 2022(05): 649-652 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3923) PDF downloads(108) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return