Volume 43 Issue 8
Jul.  2022
Turn off MathJax
Article Contents
Hao FAN, Xing LIU, Lingjun SHEN, Haiwen LI, Chunhong YU, Jingwei LI. Constructing A Nomogram Prediction Model for Active Pulmonary Tuberculosis Based on AAT and Cytokines[J]. Journal of Kunming Medical University, 2022, 43(8): 106-112. doi: 10.12259/j.issn.2095-610X.S20220816
Citation: Hao FAN, Xing LIU, Lingjun SHEN, Haiwen LI, Chunhong YU, Jingwei LI. Constructing A Nomogram Prediction Model for Active Pulmonary Tuberculosis Based on AAT and Cytokines[J]. Journal of Kunming Medical University, 2022, 43(8): 106-112. doi: 10.12259/j.issn.2095-610X.S20220816

Constructing A Nomogram Prediction Model for Active Pulmonary Tuberculosis Based on AAT and Cytokines

doi: 10.12259/j.issn.2095-610X.S20220816
  • Received Date: 2022-04-12
  • Publish Date: 2022-08-25
  •   Objective   To construct a predictive model of AAT and cytokines in the diagnosis of active pulmonary tuberculosis.   Methods   A total of 96 patients with active pulmonary tuberculosis admitted to the Third People’s Hospital of Kunming from March 2020 to March 2021 were collected as the experimental group, and 82 healthy subjects during the same period were selected as the control group. HAP, CRP, AAT and cytokines were compared between the two groups. Based on the results of Logistic regression analysis, a Nomogram prediction model was constructed, and the model was verified and evaluated.   Results   Multivariate logistic regression analysis showed that AAT (OR = 0.983, 95% CI = 0.968-0.999, P = 0.039), IFN-γ (OR = 0.783, 95% CI = 0.659-0.931, P = 0.006), TNF-α (OR = 1.495, 95% CI = 1.106-2.020, P = 0.009) are predictors of active pulmonary tuberculosis (P < 0.05).   Conclusion   The fit of the model and the area under the ROC curve were good, which confirmed that the model had a high prediction accuracy. The Nomogram model established based on the above predictors has good predictive performance and can provide a certain reference value for the laboratory diagnosis of active pulmonary tuberculosis.
  • loading
  • [1]
    邓国防,路希维. 肺结核活动性判断规范及临床应用专家共识[J]. 中国防痨杂志,2020,42(4):301-307. doi: 10.3969/j.issn.1000-6621.2020.04.001
    [2]
    毛佳斌,孙培英,徐金田. 初治肺结核患者药物性肝损伤的危险因素分析及对策[J]. 中华全科医学,2016,14(11):1867-1869. doi: 10.16766/j.cnki.issn.1674-4152.2016.11.024
    [3]
    Zhang Q,Wu Z,Zhang Z,et al. Efficacy and effect of free treatment on multidrug-resistant tuberculosis[J]. Exp Ther Med,2016,11(3):777-782. doi: 10.3892/etm.2015.2966
    [4]
    路希伟,伍建林,张国庆,等. 涂阴、涂阳活动性肺结核CT征象的对照研究[J]. 中国医学影像技术,2007,23(9):1337-1341. doi: 10.3321/j.issn:1003-3289.2007.09.021
    [5]
    温保江,陈栋军,志勇,等. 不同检测方法对肺结核诊断价值的分析[J]. 结核病与肺部健康杂志,2018,7(2):133-136.
    [6]
    Wu Y B,Ye Z J,Qin S M,et al. Combined detections of interleukin 27,interferon-γ,and adenosine deaminase in pleural effusion for diagnosis of tuberculous pleurisy[J]. Chin Med J,2013,126(17):3215-3221.
    [7]
    Han M,Xiao H,Yan L. Diagnostic performance of nucleic acid tests in tuberculous pleurisy[J]. BMC Infect Dis,2020,20(1):242. doi: 10.1186/s12879-020-04974-z
    [8]
    Vasil’Eva E V,Verbov V N,Ivanovskii V B,et al. Combined determination of spontaneous and antigen-induced production of cytokines for differential diagnostics of active tuberculosis of lungs and latent tuberculosis infection[J]. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii,2013,4(4):77-85.
    [9]
    Zellweger J P,Sotgiu G,Corradi M,et al. The diagnosis of latent tuberculosis infection (LTBI):Currently available tests,future developments,and perspectives to eliminate tuberculosis (TB)[J]. Med Lav,2020,111(3):170-183.
    [10]
    侯杏芳,孟娟,张国良,等. 肺结核患者外周血单个核细胞中miRNA-150的表达及意义[J]. 临床肺科杂志,2016,21(3):501-504. doi: 10.3969/j.issn.1009-6663.2016.03.033
    [11]
    中华人民共和国国家卫生和计划生育委员会. 肺结核诊断标准(WS 288—2017)[J]. 新发传染病电子杂志,2018,3(1):59-61. doi: 10.3877/j.issn.2096-2738.2018.01.017
    [12]
    Halliday A,Masonou T,Tolosa-Wright M,et al. Immunodiagnosis of active tuberculosis[J]. Expert Rev Respir Med,2019,13(6):521-532. doi: 10.1080/17476348.2019.1615888
    [13]
    陈科帆,熊域皎,焦家欢,等. CD44及相关细胞因子水平对活动性肺结核诊断及预后评估价值[J]. 中国防痨杂志,2021,43(5):513-515. doi: 10.3969/j.issn.1000-6621.2021.05.018
    [14]
    陈志,林明贵,梁建琴,等. 活动性肺结核患者血清炎性因子变化特点及与免疫状态的关系[J]. 第三军医大学学报,2006,28(11):1234-1236. doi: 10.3321/j.issn:1000-5404.2006.11.034
    [15]
    程静,马乐,苏春芳. 活动性肺结核患者肺泡灌洗液中细胞因子的水平变化及意义[J]. 广东医学,2016,37(3):415-417. doi: 10.13820/j.cnki.gdyx.2016.03.027
    [16]
    牛文一,李明瑛,万勇敢. 活动性肺结核患者外周血CD4~+T细胞中TLR4与血清IFN-γ、IL-4的关系[J]. 临床肺科杂志,2018,23(8):1509-1512. doi: 10.3969/j.issn.1009-6663.2018.08.040
    [17]
    黄德东,刘庭贵,张云,等. γ-干扰素释放试验在活动性肺结核诊断中的价值[J]. 中华肺部疾病杂志(电子版),2020,13(3):329-333. doi: 10.3877/cma.j.issn.1674-6902.2020.03.008
    [18]
    许敏殷,刘银,刘丽蓉,等. γ干扰素释放试验联合IL-6检测对活动性肺结核的诊断价值[J]. 中国现代医学杂志,2020,30(10):18-21. doi: 10.3969/j.issn.1005-8982.2020.10.004
    [19]
    郑梓坤,谢舒颖,陈为铠,等. CD_3~+、CD_4~+细胞亚群与细胞因子IL-17水平在活动性肺结核治疗转归中的诊断价值[J]. 华夏医学,2020,33(1):7-10.
    [20]
    Cardona P J. Pathogenesis of tuberculosis and other mycobacteriosis[J]. Enferm Infecc Microbiol Clin (Engl Ed),2018,36(1):38-46. doi: 10.1016/j.eimc.2017.10.015
    [21]
    陈超蕾,林雨婷,张桑桑,等. GPC3-WNT-JNK通路介导脂多糖诱导肺局部细胞炎症[J]. 温州医科大学学报,2019,49(10):703-711. doi: 10.3969/j.issn.2095-9400.2019.10.001
    [22]
    Su W L,Perng W C,Huang C H,et al. Association of reduced tumor necrosis factoralpha,gamma interferon,and interleukin-1beta (IL-1beta) but increased IL-10 expression with improved chest radiography in patients with pulmonary tuberculosis[J]. Clin Vaccine Immunol,2010,17(2):223-231. doi: 10.1128/CVI.00381-09
    [23]
    Mily A,Sarker P,Taznin I,et al. Slow radiological improvement and persistent low-grade inflammation after chemotherapy in tuberculosis patients with type 2 diabetes[J]. BMC Infect Dis,2020,20(1):933. doi: 10.1186/s12879-020-05473-x
    [24]
    中华医学会结核病学分会. 结核分枝杆菌γ-干扰素释放试验及临床应用专家意见(2021年版)[J]. 中华结核和呼吸杂志,2022,45(2):143-150. doi: 10.3760/cma.j.cn112147-20211110-00794
    [25]
    Suzukawa M,Takeda K,Akashi S,et al. Evaluation of cytokine levels using quantiFERON-TB gold plus in patients with active tuberculosis[J]. J Infect,2020,80(5):547-553. doi: 10.1016/j.jinf.2020.02.007
    [26]
    赵鸿鹏,路希维. 影像学检查在肺结核诊治中的应用现状与展望[J]. 结核病与肺部健康杂志,2019,8(1):5-8.
  • Relative Articles

    [1] Xiao CHEN. Development of Predictive Scale for Diabetic Kidney Disease Progression Based on Decision Tree Classification Model. Journal of Kunming Medical University, 2024, 45(8): 109-116.  doi: 10.12259/j.issn.2095-610X.S20240816
    [2] Wenxiu XU, Xiaofeng MO, Xiangmin YANG, Silu YANG, Fan WU, Te LI. Application of Logistic Regression and Decision Tree Model in Prediction of Adverse Reactions of Iodinated Contrast Medium. Journal of Kunming Medical University, 2024, 45(9): 70-75.  doi: 10.12259/j.issn.2095-610X.S20240911
    [3] Huijuan ZENG, Bo TIAN, Hongling YUAN, Jie HE, Guanxi LI, Guojia RU, Min XU, Dong ZHAN. Predictive Modeling of Chronic Kidney Disease with Hypertension or Diabetes Based on Machine Learning Algorithms. Journal of Kunming Medical University, 2024, 45(3): 99-105.  doi: 10.12259/j.issn.2095-610X.S20240315
    [4] Fan ZHANG, Weichang GUO, Hong TAN, Hejia YIN, Luping PENG, Yan ZHAO, Huifang LI. Development and Validation of Risk Predicting Model for Severe Diabetic Peripheral Neuropathy Based on Glucose Variability Parameters. Journal of Kunming Medical University, 2023, 44(5): 53-59.  doi: 10.12259/j.issn.2095-610X.S20230526
    [5] Zhengmei ZI, Li HAO, Nan WANG, Guobing CHEN. The Diagnostic Value of Combined Prediction Model for Acute Type A Aortic Dissection Rupture. Journal of Kunming Medical University, 2023, 44(1): 35-40.  doi: 10.12259/j.issn.2095-610X.S20230128
    [6] Hao FAN, Xing LIU, Le ZHANG, Weixian LI, Xuejiao WU, Yi HAN, Xiaodie YAO. Applications of Decision Tree Models and Logistic Regression in the Prediction of Active Tuberculosis. Journal of Kunming Medical University, 2023, 44(9): 25-31.  doi: 10.12259/j.issn.2095-610X.S20230916
    [7] Hong WANG, Dexing YANG, Qiang WANG, Weiyu ZHOU, Jiefu TANG, Zhenfang WANG, Kai FU, Shengzhe LIU, Rong LIU. Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis. Journal of Kunming Medical University, 2022, 43(11): 44-51.  doi: 10.12259/j.issn.2095-610X.S20221102
    [8] Guijun LI, Peng WEN, Lixia HUANG, Lian XIANG. Exploring the Efficacy of Different Mathematical Models with Multi-b Value DWI in Predicting Lymphatic Vascular Invasion of Endometrial Cancer. Journal of Kunming Medical University, 2022, 43(4): 118-124.  doi: 10.12259/j.issn.2095-610X.S20220411
    [9] Guimei ZHANG, Shu CHEN, Yunhua SONG, Yang WU, Hongyuan ZHOU. Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model. Journal of Kunming Medical University, 2022, 43(8): 184-190.  doi: 10.12259/j.issn.2095-610X.S20220830
    [10] Rong WAN, Guangmei LI, Meng MA, Minghong LAI, Cai LIU, Mingwu LI. Clinical Features of Tuberculosis with Negative T Cell Spot Test in Peripheral Blood. Journal of Kunming Medical University, 2022, 43(4): 132-136.  doi: 10.12259/j.issn.2095-610X.S20220420
    [11] Lingjun SHEN, Lin WANG, Zhiqiang MA, Xing LIU, Haiwen LI, Ge WANG, Wenming LI, Pengju LUO. Immunological Characteristics of Patients with Active and Nonactive Pulmonary Tuberculosis. Journal of Kunming Medical University, 2022, 43(8): 122-126.  doi: 10.12259/j.issn.2095-610X.S20220821
    [12] Xing LIU, Yuan LIU, Xiang-fang LIU, Jie CHEN, Yong-gang CHEN, Hui SUN, Ling MA. Adverse Reactions Analysis and Prediction Model of Cefoperazone Sodium Sulbactam Sodium. Journal of Kunming Medical University, 2021, 42(6): 139-145.  doi: 10.12259/j.issn.2095-610X.S20210622
    [13] Shen Ling Jun , Zhu Hui Qiong . . Journal of Kunming Medical University, 2020, 41(02): 100-103.
    [14] Jiang En Yan , Yang Bo Wei , Liu Jian He . . Journal of Kunming Medical University, 2020, 41(08): 100-104.
    [15] Wan Rong , Li Ming Wu , Li Guang Mei , Zhu Hui Qiong , Ma Meng , Liu Cai . . Journal of Kunming Medical University, 2020, 41(09): 102-106.
    [16] Rong WAN, Ming-wu LI, Meng MA, Ming-hong LAI, Guang-mei Li. Efficacy of T-SPOT.TB in Treatment of Active Tuberculosis. Journal of Kunming Medical University, 2020, 41(12): 133-137.  doi: 10.12259/j.issn.2095-610X.S20201237
    [17] Hong Xu Hua . Effects of Tuberculosis Drugs Combined with Rifapentine on the Immune Function, Inflammatory Factors, VEGF and MMP-9 of TB Patients. Journal of Kunming Medical University,
    [18] Lu Ni Hong . . Journal of Kunming Medical University,
    [19] Hu Wan Qin . . Journal of Kunming Medical University,
    [20] Wan Rong . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (2863) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return