Volume 43 Issue 8
Jul.  2022
Turn off MathJax
Article Contents
Guimei ZHANG, Shu CHEN, Yunhua SONG, Yang WU, Hongyuan ZHOU. Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model[J]. Journal of Kunming Medical University, 2022, 43(8): 184-190. doi: 10.12259/j.issn.2095-610X.S20220830
Citation: Guimei ZHANG, Shu CHEN, Yunhua SONG, Yang WU, Hongyuan ZHOU. Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model[J]. Journal of Kunming Medical University, 2022, 43(8): 184-190. doi: 10.12259/j.issn.2095-610X.S20220830

Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model

doi: 10.12259/j.issn.2095-610X.S20220830
  • Received Date: 2022-04-19
  • Publish Date: 2022-08-25
  •   Objective   To explore the risk factors of readmission in patients with AECOPD and develop a disease risk prediction model, aiming to provide an evaluation tool for early identification and screening of patients at high risk of readmission with AECOPD.   Methods   A total of 414 patients diagnosed with AECOPD in a tertiary hospital in Yunnan Province from January 1, 2016 to January 1, 2021 and met the criteria for inclusion and exclusion were selected as the study subjects. 70% (307) of these patients were included as the modeling group and the remaining 30% (107) patients were included as the validation group. According to whether patients have readmission as an outcome indicator, the risk factors for readmission of patients with AECOPD are analyzed and a disease risk prediction model is constructed.   Results   Age (OR = 0.958), nebulized inhaled hormone (OR = 1.893), predicted value of FEF75 (OR = 0.583), actual value of FEV1 (OR = 1.947) and combined respiratory failure (OR = 0.501) were included. Prediction model formula: P = 1/{1 + exp [− (3.361 + (−0.043)×age + 0.638×type of inhaled nebulized hormone + (−0.539)×predicted value of FEF75 + 0.666 × actual value of FEV1 + (−0.691)×respiratory failure)]}. The area under ROC curve (AUC) of the modeling group was 0.777, and the sensitivity and specificity were 0.898 and 0.549, respectively. The area under ROC curve (AUC) of the verification group was 0.821, and the sensitivity and specificity were 0.857 and 0.7, respectively.   Conclusion   The risk prediction model for readmission of AECOPD patients established in this study has good predictive efficacy, providing an evaluation tool for early identification and screening of high-risk patients with AECOPD readmission, and provides a reference for medical staff to adjust the treatment and care of high-risk patients.
  • loading
  • [1]
    张丽,范忠杰,周凡. 慢性阻塞性肺疾病急性加重期肺部感染患者的病原菌分布、耐药性及危险因素分析[J]. 中国病原生物学杂志,2019,14(12):1456-1459. doi: 10.13350/j.cjpb.191219
    [2]
    Landrum L,Weinrich S. Readmission data for outcomes measurement:Identifying and strengthening the empirical base[J]. Qual Manag Health Care,2006,15(2):83-95. doi: 10.1097/00019514-200604000-00003
    [3]
    Hartl S,Lopez-Campos J L,Pozo-Rodriguez F,et al. Risk of death and readmission of hospital-admitted COPD exacerbations:European COPD audit[J]. Eur Respir,2016,47(1):113-121. doi: 10.1183/13993003.01391-2014
    [4]
    Jacobs D M,Noyes K,Zhao J,et al. Early hospital readmissions after an acute exacerbation of chronic obstructive pulmonary disease in the nationwide readmissions database[J]. Ann Am Thorac Soc,2018,15(7):837-845. doi: 10.1513/AnnalsATS.201712-913OC
    [5]
    Vogelmeier C F,Criner G J,Martinez F J,et al. Global strategy for the diagnosis,management,and prevention of chronic obstructive lung disease 2017 report:Gold executive summary[J]. Am J Respir Crit Care Med,2017,195(5):557-582. doi: 10.1164/rccm.201701-0218PP
    [6]
    Capistrano S J,et al. Evidence of Biomass Smoke Exposure as a causative factor for the development of COPD[J]. Toxics,2017,5(4):36. doi: 10.3390/toxics5040036
    [7]
    O’Brien R. A caution regarding rules of thumb for variance inflation factor[J]. Qual Quant,2007,41(5):673-690. doi: 10.1007/s11135-006-9018-6
    [8]
    Lau,C S,Siracuse,B L,Chamberlain,R S. Readmission after COPD exacerbation scale:determining 30-day readmission risk for COPD patients[J]. Int J Chron Obstruct Pulmon Dis,2017,12(6):1891-1902.
    [9]
    Hakim M A,Garden F L,Jennings M D,et al. Performance of the LACE index to predict 30-day hospital readmissions in patients with chronic obstructive pulmonary disease[J]. Clin Epidemiol,2018,10(12):51-59.
    [10]
    Shu C C,Lin Y F,Hsu N C,et al. Risk factors for 30-day readmission in general medical patients admitted from the emergency department:A single centre study[J]. Intern Med J.,2012,42(6):677-682. doi: 10.1111/j.1445-5994.2011.02562.x
    [11]
    Harries T H,Thornton H,Crichton S,et al. Hospital readmissions for COPD:A retrospective longitudinal study[J]. NPJ Prim Care Respir Med,2017,27(1):31. doi: 10.1038/s41533-017-0028-8
    [12]
    张瑞,吴珍珍,常艳,等. 老年慢性阻塞性肺疾病患者30天内急性加重再入院风险预测模型的构建与验证[J]. 中国呼吸与危重监护杂志,2021,20(7):457-464.
    [13]
    蔡柏蔷,陈荣昌. 慢性阻塞性肺疾病急性加重(AECOPD)诊治中国专家共识(2017 年更新版)[J]. 国际呼吸杂志,2017,37(14):1041-1057. doi: 10.3760/cma.j.issn.1673-436X.2017.14.001
    [14]
    王明航,蔡坤坤,施丁莉,等. 基于回归分析法建立慢性阻塞性肺疾病急性加重风险预测模型与验证[J]. 中华危重病急救医学,2021,33(01):64-68. doi: 10.3760/cma.j.cn121430-20200720-00534
    [15]
    潘东霞,钱一建,王春梅,等. 吸烟与室内空气污染的交互作用对慢性阻塞性肺部疾病影响的分析[J]. 中华流行病学杂志,2016,37(11):1444-1449. doi: 10.3760/cma.j.issn.0254-6450.2016.11.002
    [16]
    黄亚玲,毛兵,闵婕,等. 慢性阻塞性肺疾病稳定期患者共患疾病与一年急性加重风险的关系研究[J]. 中华结核和呼吸杂志,2018,41(5):349-354. doi: 10.3760/cma.j.issn.1001-0939.2018.05.009
    [17]
    慢性阻塞性肺疾病糖皮质激素规范管理撰写组. 慢性阻塞性肺疾病糖皮质激素规范管理专家共识(2021版)[J]. 中华结核和呼吸杂志,2021,44(12):1054-1063. doi: 10.3760/cma.j.cn112147-20210802-00543
    [18]
    张维慧,刘颖,李彤彤,等. 雾化吸入和全身用糖皮质激素治疗老年慢性阻塞性肺疾病急性加重期的疗效[J]. 中国老年学杂志,2018,38(16):3902-3904. doi: 10.3969/j.issn.1005-9202.2018.16.026
    [19]
    Mirici A,Meral M,Akgun M. Comparison of efficacy of nebulished budesonide with parenteral corticosteroids in the treatment of acute exacerbations of chronic obstructive pulmonary disease[J]. Clin Drug Invest,2003,23(1):55-62. doi: 10.2165/00044011-200323010-00007
    [20]
    党瑞志,刘羽. 胸腺肽联合异丙托溴铵雾化吸入对老年COPD合并肺部感染患者肺功能及免疫功能的影响[J]. 中国老年学杂志,2020,40(22):4760-4762. doi: 10.3969/j.issn.1005-9202.2020.22.019
    [21]
    Maltais F,Ostinelli J,Bourbeau J,et al. Comparison of nebulized budesonide and oral prednisolone with placebo in the treatment of acute exacerbations of chronic obstructive pulmonary disease:A randomized controlled trial[J]. Am J Respir Crit Care Med,2002,165(5):698-703. doi: 10.1164/ajrccm.165.5.2109093
    [22]
    Rochwerg B,Brochard L,Elliott M W,et al. Official ERS/ATS clinical practice guidelines:Noninvasive ventilation for acute respiratory failure[J]. Eur Respir J,2017,50(2):1602426. doi: 10.1183/13993003.02426-2016
    [23]
    Peter J V,Moran J L. Noninvasive ventilation in exacerbations of chronic obstructive pulmonary disease:Implications of different meta-analytic strategies[J]. Ann Intern Med,2004,141(5):78-79. doi: 10.7326/0003-4819-141-5-200409070-00031-w1
    [24]
    Lightowler J V,Wedzicha J A,et al. Non-invasive positive pressure ventilation to treat respiratoryfailure resulting from exacerbations of chronic obstructive pulmonary disease:Cochrane systematic review and meta-analysis[J]. BMJ,2003,326(7382):185. doi: 10.1136/bmj.326.7382.185
    [25]
    Shah T,Press V G,et al. COPD Readmissions:Addressing COPD in the Era of Value-based Health Care[J]. Chest,2016,150(4):916-926. doi: 10.1016/j.chest.2016.05.002
    [26]
    Wu Y K,Lan C C,Tzeng I S,et al. The COPD-readmission (CORE) score:A novel prediction model for one-year chronic obstructive pulmonary disease readmissions[J]. J Formos Med Assoc,2021,120(3):1005-1013. doi: 10.1016/j.jfma.2020.08.043
    [27]
    邓琳,郑劲平. 肺功能检查临床应用研究进展(2018-2019年度)[J]. 中国实用内科杂志,2020,40(9):777-781. doi: 10.19538/j.nk2020090116
    [28]
    Rabe K F,Hurd,S,Anzueto A,et al. Global strategy for the diagnosis,management,and prevention of chronic obstructive pulmonary disease:GOLD executive summary[J]. Am J Respir Crit Care Med,2007,176(6):532-555. doi: 10.1164/rccm.200703-456SO
    [29]
    Cen J,Ma H,Chen Z,et al. Monitoring peak expiratory flow could predict COPD exacerbations:A prospective observational study[J]. Respir Med,2019,148:43-48. doi: 10.1016/j.rmed.2019.01.010
    [30]
    Hong W,Earnest A,Sultana P,Koh Z,et al. How accurate are vital signs in predicting clinical outcomes in critically ill emergency department patients[J]. Eur J Emerg Med,2013,20(1):27-32. doi: 10.1097/MEJ.0b013e32834fdcf3
  • Relative Articles

    [1] Huijuan ZENG, Bo TIAN, Hongling YUAN, Jie HE, Guanxi LI, Guojia RU, Min XU, Dong ZHAN. Predictive Modeling of Chronic Kidney Disease with Hypertension or Diabetes Based on Machine Learning Algorithms. Journal of Kunming Medical University, 2024, 45(3): 99-105.  doi: 10.12259/j.issn.2095-610X.S20240315
    [2] Yanmei JI, Wenjun LI, Qingyun LI, Ni GUO, Ni MENG, Dan ZHOU, Qiuyu LI, Xingfang JIN. The Analysis of Related Factors of Cognitive Impairment after the Acute Ischemic Stroke and Construction of Nomogram Model. Journal of Kunming Medical University, 2024, 45(5): 73-81.  doi: 10.12259/j.issn.2095-610X.S20240511
    [3] Maoliang TIAN, Boxue HAN, Jiamei WANG, Zheng ZONG, Zhiping DENG. Effects of AVAPS-AE Mode of Non-invasive Ventilation on PSG Parameters,ESS Score and Comfort in Patients with AECOPD and OSA. Journal of Kunming Medical University, 2024, 45(4): 105-112.  doi: 10.12259/j.issn.2095-610X.S20240415
    [4] Hao FAN, Xing LIU, Le ZHANG, Weixian LI, Xuejiao WU, Yi HAN, Xiaodie YAO. Applications of Decision Tree Models and Logistic Regression in the Prediction of Active Tuberculosis. Journal of Kunming Medical University, 2023, 44(9): 25-31.  doi: 10.12259/j.issn.2095-610X.S20230916
    [5] Jingyu YANG, Ning XU, Yutao ZHANG, Fengchang HUANG, Yuanming JIANG, Liang YIN. Comparative Study of Multiple Models Based on Baseline T2WI Images for Predicting Pathological Complete Remission of Progressive Rectal Cancer after Neo-adjuvant Chemoradiotherapy. Journal of Kunming Medical University, 2023, 44(5): 117-124.  doi: 10.12259/j.issn.2095-610X.S20230512
    [6] Yuqing XIE, Jun WANG, Xuebi JI, Ping WANG, Haifeng WANG, Xumin LI, Linya HUANG. Research Progress on Risk Factors and Risk Assessment of Urinary Tract Infection in Patients with Ureterostomy. Journal of Kunming Medical University, 2023, 44(11): 158-163.  doi: 10.12259/j.issn.2095-610X.S20231124
    [7] Ji JIA, Siming TAO. Development of A Plasma Osmolality Prediction Model for the Risk of In-hospital Death in Critically Ill Patients with Acute ST-segment Elevation Myocardial Infarction. Journal of Kunming Medical University, 2022, 43(12): 58-65.  doi: 10.12259/j.issn.2095-610X.S20221212
    [8] Min ZHOU, Zhihui MA, Jiayan LI, Jianhua FAN, Ling LIN, Tingying YU, Huifang ZHANG, Li LIU. Predictive Model of Risk Factors for the Recurrence of Liver Cirrhosis with Pleural Effusion. Journal of Kunming Medical University, 2022, 43(5): 149-154.  doi: 10.12259/j.issn.2095-610X.S20220524
    [9] Hong WANG, Dexing YANG, Qiang WANG, Weiyu ZHOU, Jiefu TANG, Zhenfang WANG, Kai FU, Shengzhe LIU, Rong LIU. Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis. Journal of Kunming Medical University, 2022, 43(11): 44-51.  doi: 10.12259/j.issn.2095-610X.S20221102
    [10] Jing WANG, Lian-fang TANG, Mei-qun GU, Xiao-yan XU, Jian-hua YU, Shan HE, Zi-wei LI, Kai BI, Li-qiao LIU, Qiong ZHAO, Hong-ying MI. Risk Factors and Early Clinical Characteristics of Neonatal Necrotizing Enterocolitis. Journal of Kunming Medical University, 2021, 42(11): 99-104.  doi: 10.12259/j.issn.2095-610X.S20211118
    [11] Ze-zu MENG, Hang XIAN, Xiao-jin HOU, Shi-lei WEI, Ji MA, Rui ZHAO, Rui Cong. Analysis of the Risk Factors Associated with Vascular Crisis after the Digits Replantation. Journal of Kunming Medical University, 2021, 42(1): 130-134.  doi: 10.12259/j.issn.2095-610X.S20210122
    [12] Xing LIU, Yuan LIU, Xiang-fang LIU, Jie CHEN, Yong-gang CHEN, Hui SUN, Ling MA. Adverse Reactions Analysis and Prediction Model of Cefoperazone Sodium Sulbactam Sodium. Journal of Kunming Medical University, 2021, 42(6): 139-145.  doi: 10.12259/j.issn.2095-610X.S20210622
    [13] Jia LIU, Yin HE, Xin LIU. Risk Factors and Nursing Strategies of PICC Catheter-related Infection in Tumor Patients. Journal of Kunming Medical University, 2021, 42(1): 173-176.  doi: 10.12259/j.issn.2095-610X.S20210116
    [14] Jing-rong DAI, Jie LI, Xu HE, Yang LI, Yan LI. Risk Factors Analysis and Risk Prediction Model Construction of Depression in Inpatients of Geriatrics Department of a Hospital in Yunnan. Journal of Kunming Medical University, 2021, 42(11): 20-26.  doi: 10.12259/j.issn.2095-610X.S20211104
    [15] Lu Hong Mei , Zuo Ren Jiao , Wu Ting Ting , Liao Lei . . Journal of Kunming Medical University, 2019, 40(12): 155-160.
    [16] Li Jun . Analysis of Fatigue and Related Health and Safety Risk Factors Among Taxi Drivers in Kunming. Journal of Kunming Medical University,
    [17] Dai Mei . Risk Factors for Asthma in Children in Kunming City, China. Journal of Kunming Medical University,
    [18] Li Yan Yuan . . Journal of Kunming Medical University,
    [19] Liu Yi . . Journal of Kunming Medical University,
    [20] Yang Qiu Ping . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (4050) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return