Hong WANG, Dexing YANG, Qiang WANG, Weiyu ZHOU, Jiefu TANG, Zhenfang WANG, Kai FU, Shengzhe LIU, Rong LIU. Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis[J]. Journal of Kunming Medical University, 2022, 43(11): 44-51. doi: 10.12259/j.issn.2095-610X.S20221102
Citation: Hong WANG, Dexing YANG, Qiang WANG, Weiyu ZHOU, Jiefu TANG, Zhenfang WANG, Kai FU, Shengzhe LIU, Rong LIU. Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis[J]. Journal of Kunming Medical University, 2022, 43(11): 44-51. doi: 10.12259/j.issn.2095-610X.S20221102

Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis

doi: 10.12259/j.issn.2095-610X.S20221102
  • Received Date: 2022-04-04
  • Publish Date: 2022-11-25
  •   Objective   To explore the relevant risk factors for Refeeding Syndrome (RFS) in ICU patients with sepsis, and to establish a prediction model of RFS based on the selected risk factors.   Methods   The clinical data of sepsis patients admitted to the ICU of the First Affiliated Hospital of Kunming Medical University from November 2020 to January 2022 were studied retrospectively. Finally, 202 patients were selected according to the inclusion and exclusion criteria. According to the diagnosis criteria of ASPEN Consensus Recommendations (2020) for RFS, the patients were divided into two groups: RFS group (n = 141) and non-RFS group (n = 61) on the basis of whether occur of RFS. The differences of gender, body mass index (BMI), nutrition risk screening, nutritional way, related critical score, intraabdominal pressure (IAP), relevant laboratory tests, biochemical indexes and pharmacy were compared between the two groups. The independent risk factors of RFS in ICU patients with sepsis were screened by single factor and multivariate logistic regression analysis, and a prediction model was established according to the results of the analysis. The predictive value of the prediction model for RFS in ICU patients with sepsis was evaluated by drawing the receiver operating characteristic curve (ROC) of the subjects.   Results   After analyzing the relevant data of 202 sepsis patients, the results of monofactor logistic regression analysis showed: Body mass index (BMI), albumin (ALB), prealbumin (PA), creatinine-height index (CHI), serum sodium (Na+), serum potassium (K+), serum magnesium (Mg2+), serum phosphorus (P- ), interleukin-6 (IL-6), fasting blood glucose (FBG), vitamin B1 (VitB1), glycosylated hemoglobin (HbA1c), use of diuretics, use of insulin and other indicators were significantly different (P < 0.05). And multivariate analysis showed that the use of diuretics, BMI, CHI, serum K+, FBG, and VitB1 were independent risk factors for RFS in ICU sepsis patients.   Conclusions   Based on the independent risk factors in the multivariate screening, the prediction model expression is established as: L = 1.39×diuretics + 0.15×BMI - 0.14×CHI + 0.75×K+-0.16×FBG+0.78×VitB1-2.94. The prediction model established by regression analysis has strong consistency, the joint prediction model has better predictive value.
  • [1]
    Reinhart K,Daniels R,Kissoon N,et al. Recognizing sepsis as a global health priority - WHO resolution[J]. N Engl J Med,2017,377(5):414-417. doi: 10.1056/NEJMp1707170
    [2]
    Preiser J C,van Zanten A R,Berger M M,et al. Metabolic and nutritional support of critically ill patients:Consensus and controversies[J]. Crit Care,2015,19(1):35-46. doi: 10.1186/s13054-015-0737-8
    [3]
    Wischmeyer P E. Nutrition therapy in sepsis[J]. Crit Care Clin,2018,4(1):107-125.
    [4]
    McKnight C L,Newberry C,Sarav M,et al. Refeeding syndrome in the critically ill:A literature review and clinician’s guide[J]. Curr Gastroenterol Rep,2019,21(11):1-7.
    [5]
    Brozek J,Chapman C B,Keys A. Drastic food restriction:effect on cardiovascular dynamics dynamics in normotensive and hypertensive conditions[J]. J Am Med Assoc,1948,137(18):1569. doi: 10.1001/jama.1948.02890520001001
    [6]
    Da Silva J S V,Seres D,Sabino K et al. ASPEN Consensus recommendations for refeeing syndrome[J]. Nutr Clin Pract,2020,35(2):178-195. doi: 10.1002/ncp.10474
    [7]
    National Collaborating Centre for Acute Care ( UK). Nutrition support for adults:oral nutrition support,enteral tube feeding and parenteral nutrition[J]. London:National Collaborating Centre for Acute Care (UK),2006,63(3):342-350.
    [8]
    Wong,Gabriel J Y,Pang,et al. Refeeding hypophosphatemia in patients receiving parenteral nutrition:Prevalence,risk factors,and predicting its occurrence[J]. Nutr Clin Pract,2021,36(3):679-688. doi: 10.1002/ncp.10559
    [9]
    Luke R G,Galla J H. It is chloride depletion alkalosis,not contraction alkalosis[J]. J Am Soc Nephrol,2012,23:204-207. doi: 10.1681/ASN.2011070720
    [10]
    于恺英,刘俐惠,石汉平. 营养状况是基本生命体征[J]. 肿瘤代谢与营养电子杂志,2019,6(4):391-396. doi: 10.16689/j.cnki.cn11-9349/r.2019.04.001
    [11]
    沈丽达,龙庭凤,赵艳芳,等. 胃癌患者营养风险筛查和营养支持治疗调查分析[J]. 昆明医科大学学报,2014,35(10):86-90. doi: 10.3969/j.issn.1003-4706.2014.10.024
    [12]
    Datta,Debapriya,Foley,et al. Can creatinine height index predict weaning and survival outcomes in patients on prolonged mechanical ventilation after critical illness?[J]. J Intensive Care Med,2018,33(2):104-110. doi: 10.1177/0885066616648133
    [13]
    Blaser A R, van Zanten R H. Electrolyte disorders during the initiation of nutrition therapy in the ICU[J]. Curr Opin Clin Nutr Metab Care, 202), 24(2): 151-158.
    [14]
    Tongyoo S,Viarasilpa T,Permpikul C. Serum potassium levels and outcomes in critically ill patients in the medical intensive care unit[J]. J Int Med Res,2018,46:1254-1262. doi: 10.1177/0300060517744427
    [15]
    Friedli N,Baumann J,Hummel R,et al. Refeeding syndrome is associated with increased mortality in malnourished medical inpa- tients:secondary analysis of a randomized trial[J]. Medicine (Baltimore),2020,99(1):e18506.
    [16]
    Deutsche,Gesellschaftfür,ErnährungÖGfE,et al. Gesellschaft für Ernährungsforschung (2015) Referenzwerte für die Nährstoffffzufuhr[J]. Umschau Buchverlag,Neustadtan derWeinstraße,2015,64(12):975-976.
    [17]
    Collie J T B,Greaves R F,Jones O A H,et al. Vitamin B1 in critically ill patients:needs and challenges[J]. Clin Chem Lab Med,2017,55(11):1652-1668.
    [18]
    Zhang Q,Zhao G,Yang N L,et al. Fasting blood glucose levels in patients with different types of diseases[J]. Prog Mol Biol Transl Sci,2019,162:277-292.
    [19]
    See K C. Glycemic targets in critically ill adults:A mini-review[J]. World J Diabetes,2021,12(10):1719-1730. doi: 10.4239/wjd.v12.i10.1719
  • Relative Articles

    [1] Yuanzhen WANG, Hongyan WEI, Renhai TIAN, Yongzhen Chen, Danqing XU, Yingyuan ZHANG, Lixian CHANG, Chunyun LIU, Li LIU. Establishment and Evaluation of a Risk Prediction Model for Chronic Liver Failure Complicated by Primary Hepatocellular Carcinoma Before Intervention. Journal of Kunming Medical University, 2025, 46(3): 1-9.
    [2] Jun DENG, Jun WANG, Xi WANG, Change GAO, Xiao CHEN, Mingxia SHI. Prediction Model and Its Value of IrAEs Based on Peripheral Blood Markers. Journal of Kunming Medical University, 2025, 46(): 1-10.
    [3] Congxin LI, Haidong YUE, Pengxi ZHU, Guangxian HUANG, Lingjie MU, Yanan PENG, Yijie WANG, Yang YANG. Correlation Analysis between Different Vitamin D3 Levels and Immune Inflammatory Indicators in Elderly Patients with Sepsis. Journal of Kunming Medical University, 2025, 46(2): 51-58.  doi: 10.12259/j.issn.2095-610X.S20250208
    [4] Dongyan LIU, Yan LIU, Zhiming REN, Feng WANG, Yong WANG. Analysis of Risk Factors for Chemotherapy Induced Myelosuppression and Construction of Prediction Models for Myelosuppression Based on Logistic Regression Analysis in Cancer Patients. Journal of Kunming Medical University, 2025, 46(): 1-8.
    [5] Huijuan ZENG, Bo TIAN, Hongling YUAN, Jie HE, Guanxi LI, Guojia RU, Min XU, Dong ZHAN. Predictive Modeling of Chronic Kidney Disease with Hypertension or Diabetes Based on Machine Learning Algorithms. Journal of Kunming Medical University, 2024, 45(3): 99-105.  doi: 10.12259/j.issn.2095-610X.S20240315
    [6] Junjie NIU, Wenjuan JI, Zhuaizhuai YU. Correlation between Gut Microbiota,Serum ET,PCT Levels with the Severity and Prognosis of Sepsis. Journal of Kunming Medical University, 2024, 45(4): 140-145.  doi: 10.12259/j.issn.2095-610X.S20240420
    [7] Yanmei JI, Wenjun LI, Qingyun LI, Ni GUO, Ni MENG, Dan ZHOU, Qiuyu LI, Xingfang JIN. The Analysis of Related Factors of Cognitive Impairment after the Acute Ischemic Stroke and Construction of Nomogram Model. Journal of Kunming Medical University, 2024, 45(5): 73-81.  doi: 10.12259/j.issn.2095-610X.S20240511
    [8] Xing LIU, Weixian LI, Xiang ZHU, Mengxing LIU, Na LI, Jiawei XIA, Le ZHANG, Yan WU, Shenghao LI. Construction of a Nomogram Model of Tsutsugamushi Disease Complicated with Sepsis Based on Lasso Regression. Journal of Kunming Medical University, 2024, 45(9): 35-41.  doi: 10.12259/j.issn.2095-610X.S20240906
    [9] Saiqiong ZHANG, Wuquan LI, Qingjiang CHEN. Clinical Efficacy of Continuous Renal Replacement Therapy in Severe Burn Sepsis. Journal of Kunming Medical University, 2023, 44(11): 94-99.  doi: 10.12259/j.issn.2095-610X.S20231114
    [10] Linlin XUE, Binghan LI, Chunyun LIU, Weikun LI, Lixian CHANG, Huimin LI, Yanwei QI, Li LIU. Establishment and Evaluation of a Nomogram for Predicting Potential Death in Patients with Hepatitis C Cirrhosis and Sepsis in General Wards. Journal of Kunming Medical University, 2023, 44(6): 113-119.  doi: 10.12259/j.issn.2095-610X.S20230630
    [11] Wenzhuo LI, Li YANG, Jing XIA. Efficacy of Xinmailong Injection on Septic Cardiomyopathy. Journal of Kunming Medical University, 2022, 43(12): 111-116.  doi: 10.12259/j.issn.2095-610X.S20221221
    [12] Min ZHOU, Zhihui MA, Jiayan LI, Jianhua FAN, Ling LIN, Tingying YU, Huifang ZHANG, Li LIU. Predictive Model of Risk Factors for the Recurrence of Liver Cirrhosis with Pleural Effusion. Journal of Kunming Medical University, 2022, 43(5): 149-154.  doi: 10.12259/j.issn.2095-610X.S20220524
    [13] Guimei ZHANG, Shu CHEN, Yunhua SONG, Yang WU, Hongyuan ZHOU. Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model. Journal of Kunming Medical University, 2022, 43(8): 184-190.  doi: 10.12259/j.issn.2095-610X.S20220830
    [14] Jing-rong DAI, Jie LI, Xu HE, Yang LI, Yan LI. Risk Factors Analysis and Risk Prediction Model Construction of Depression in Inpatients of Geriatrics Department of a Hospital in Yunnan. Journal of Kunming Medical University, 2021, 42(11): 20-26.  doi: 10.12259/j.issn.2095-610X.S20211104
    [15] Liu Ya Ming , Xu Mian , Yan Yue Xin , Zhou Feng Gao , Xu Cheng , Zhao Kun , Jiang Guo Yun , Wu Yu, Liu Rong . . Journal of Kunming Medical University, 2019, 40(06): 16-22.
    [16] Teng Yan . Effect of Hemoperfusion on Inflammation Factors in Patients with Sepsis. Journal of Kunming Medical University,
    [17] Wang Jin . . Journal of Kunming Medical University,
    [18] Xu Ying . . Journal of Kunming Medical University,
    [19] Miao Yu Lan . . Journal of Kunming Medical University,
    [20] Miao Yu Lan . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(8)

    Article Metrics

    Article views (4070) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return