Xinye YANG, Nian ZHANG, Sha MA, Linpei HUANG, Xueyi LI, Xiaoping HUANG, Mi ZHANG, Cuixian YANG, Xicheng WANG. Analysis of Laboratory Index Characteristics in Newly Treated Smear-Negative Pulmonary Tuberculosis Patients[J]. Journal of Kunming Medical University, 2024, 45(9): 56-61. doi: 10.12259/j.issn.2095-610X.S20240909
Citation: Xiaobing TAN, Min ZHANG, Yu GUO, Linling DU, Qingyuan DAI. Effect of miR-130b-3p on the Reprogramming of Human Dental Origin iPSCs[J]. Journal of Kunming Medical University, 2022, 43(12): 18-22. doi: 10.12259/j.issn.2095-610X.S20221204

Effect of miR-130b-3p on the Reprogramming of Human Dental Origin iPSCs

doi: 10.12259/j.issn.2095-610X.S20221204
  • Received Date: 2022-07-27
    Available Online: 2022-12-05
  • Publish Date: 2022-12-25
  •   Objective  To explore the effect of hsa-miR-130b-3p on the reprogramming of human dental iPSCs.   Methods  LV3 (H1/GFP&Puro)-hsa-miR-130b-3p-mimics plasmid was designed and synthesized. The plasmid was transduced into human DPSCs by Lipofectamine 3000 kit according to the manufacturer’s instructions. Fluorescence microscopy was used to observe the cells and transfection efficiency was verified by RT-qPCR. Sendai reprogramming kit was used to induce two groups of DPSCs (miR-130b-3p-DPSCs in the experimental group and DPSCs in the control group) into iPSCs. The morphology and reprogramming efficiency were compared and the expression of Oct4/Nanog/KOS/Klf4/c-Myc was detected by RT-PCR in two groups of iPSCs.  Results  hsa-miR-130b-3p overexpression plasmid was significantly expressed in DPSCs 48h after transfection, indicating high transfection efficiency (P < 0.01). The two groups of iPSCs obtained by Sev reprogramming showed flat and dense round clones with clear and smooth edges, uniform cell morphology and large nucleolus in the colonies. RT-PCR results showed that cells in both groups could express the specific markers of stem cells Oct4 and Nanog. At the same time, exogenous virus SeV or transcription factors KOS/Klf4/c-Myc were no longer expressed. RT-PCR showed that cells in both groups all expressed specific markers Oct4 and Nanog, while SeV or KOS/Klf4/ C-MYC were not detected. The reprogramming efficiency of the experimental group was higher than that of the control group (0.037% and 0.018% respectively, P < 0.05).   Conclusion  hsa-miR-130b-3p could promote the reprogramming efficiency of human DPSCs. Our research provides theoretical foundation for dental iPSCs application in dental pulp regenerative therapy.
  • [1]
    Takahashi K,Tanabe K,Ohnuki M,et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell,2007,131(5):861-872. doi: 10.1016/j.cell.2007.11.019
    [2]
    Yu J,Vodyanik M A,Smuga-Otto K,et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science,2007,318(5858):1917-1920. doi: 10.1126/science.1151526
    [3]
    Hu J,Wang J. From embryonic stem cells to induced pluripotent stem cells-Ready for clinical therapy?[J]. Clin Transplant,2019,33(6):e13573.
    [4]
    Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges[J]. Cell Stem Cell,2020,27(4):523-531. doi: 10.1016/j.stem.2020.09.014
    [5]
    Liu G,David B T,Trawczynski M,et al. Advances in pluripotent stem cells:History,mechanisms,technologies,and applications[J]. Stem Cell Rev Rep,2020,16(1):3-32. doi: 10.1007/s12015-019-09935-x
    [6]
    Zeng Z L,Lin X L,Tan L L,et al. MicroRNAs:Important regulators of induced pluripotent stem cell generation and differentiation[J]. Stem Cell Rev Rep,2018,14(1):71-81. doi: 10.1007/s12015-017-9785-6
    [7]
    Zou X Y,Yang H Y,Yu Z,et al. Establishment of transgene-free induced pluripotent stem cells reprogrammed from human stem cells of apical papilla for neural differentiation[J]. Stem Cell Res Ther,2012,3(5):43. doi: 10.1186/scrt134
    [8]
    Tan X,Dai Q. Characterization of microRNAs expression profiles in human dental-derived pluripotent stem cells[J]. PLoS One,2017,12(5):e0177832. doi: 10.1371/journal.pone.0177832
    [9]
    Guo Q,Zhu X,Wei R,et al. miR-130b-3p regulates M1 macrophage polarization via targeting IRF1[J]. J Cell Physiol,2021,236(3):2008-2022. doi: 10.1002/jcp.29987
    [10]
    Song D,Zhang Q,Zhang H,et al. MiR-130b-3p promotes colorectal cancer progression by targeting CHD9[J]. Cell Cycle,2022,21(6):585-601. doi: 10.1080/15384101.2022.2029240
    [11]
    Ye H,Wang Q. Efficient generation of non-integration and feeder-free induced pluripotent stem cells from human peripheral blood cells by Sendai virus[J]. Cell Physiol Biochem,2018,50(4):1318-1331.
    [12]
    Okumura T,Horie Y,Lai CY,et al. Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector[J]. Stem Cell Res Ther,2019,10(1):185. doi: 10.1186/s13287-019-1273-2
    [13]
    Lin S L,Chen J S,Ying S Y. MiR-302-mediated somatic cell reprogramming and method for generating tumor-free iPS cells using miR-302[J]. Methods Mol Biol,2020,2115:199-219.
    [14]
    Lin S L,Chang D,Lin C H,et al. Regulation of somatic cell reprogramming through inducible mir-302 expression[J]. Nucleic Acids Res,2011,39(3):1054-1065. doi: 10.1093/nar/gkq850
    [15]
    Anokye-Danso F,Trivedi C M,Juhr D,et al. Highly efficient miRNAmediated reprogramming of mouse and human somatic cells to pluripotency[J]. Cell Stem Cell,2011,8(4):376-388. doi: 10.1016/j.stem.2011.03.001
    [16]
    Miyoshi N,Ishii H,Nagano H,et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs[J]. Cell Stem Cell,2011,8(6):633-638. doi: 10.1016/j.stem.2011.05.001
    [17]
    Pascale E,Caiazza C,Paladino M,et al. MicroRNA roles in cell reprogramming mechanisms[J]. Cells,2022,11(6):940. doi: 10.3390/cells11060940
    [18]
    Lim J,Sakai E,Sakurai F,et al. miR-27b antagonizes BMP signaling in early differentiation of human induced pluripotent stem cells[J]. Sci Rep,2021,11(1):19820. doi: 10.1038/s41598-021-99403-9
    [19]
    Yue W,Sun J,Zhang J,et al. Mir-34c affects the proliferation and pluripotency of porcine induced pluripotent stem cell (piPSC)-like cells by targeting c-Myc[J]. Cells Dev,2021,166:203665.
  • Relative Articles

    [1] Yongjun DENG, Qian CHEN, Jianbin ZOU, Zheng GONG, Huanpeng LIU. Overexpression of ZIC1 Gene Inhibits Proliferation of Pleural Mesothelioma Cells by Activating P53 Signaling Pathway. Journal of Kunming Medical University, 2024, 45(4): 35-40.  doi: 10.12259/j.issn.2095-610X.S20240405
    [2] Qian XU, Yumei CUI, Siming MA, Yunhong LIN, Yijing XIONG, Zijun SONG, Xudong LI. miR-148a-3p Targeting SMURF2 in Regulating Osteogenic Differentiation and Enamel Development during In Vitro Tooth Organogenesis. Journal of Kunming Medical University, 2023, 44(11): 16-21.  doi: 10.12259/j.issn.2095-610X.S20231103
    [3] Chuntao LI, Xuemei ZHANG, Yandi SU, Jianqing Zhang. Construction of Stable Transfected Cell Line A549 of Non-small Cell Lung Cancer by Overexpressing and Knocking Down LncRNA RP11-521C20.3. Journal of Kunming Medical University, 2023, 44(10): 1-9.  doi: 10.12259/j.issn.2095-610X.S20231016
    [4] Ting LI, Wei-Hua GUO. Research Progress of Glycolytic Reprogramming in Oral Squamous Cell Carcinoma. Journal of Kunming Medical University, 2023, 44(6): 155-161.  doi: 10.12259/j.issn.2095-610X.S20230611
    [5] Shibing QIAN, Lingpeng ZHANG, Lingyun YIN, Changquan LI, Hu LI, Hongbin YU. Study on Osteogenic Ability of Dental Pulp Stem Cells at Different Concentrations. Journal of Kunming Medical University, 2023, 44(2): 61-68.  doi: 10.12259/j.issn.2095-610X.S20230214
    [6] Suxian ZHANG, Limei FENG, Lu WU, Shaoyan YANG, Qinghua ZHAO. miR-145 Regulates the Expression of OCT4 in Human Endometrial Stromal Cells and Promotes the Development of Endometriosis. Journal of Kunming Medical University, 2022, 43(2): 23-33.  doi: 10.12259/j.issn.2095-610X.S20220220
    [7] Jin-shan TIE, Yao LIU, Shao-chun CHEN. Advances in Research of Astrocyte-neuron Transformation in Vivo. Journal of Kunming Medical University, 2021, 42(3): 140-144.  doi: 10.12259/j.issn.2095-610X.S20210333
    [8] Wei Han Xiao , Zhang Ai Jun , Li Qiang , Jin Pei Sheng . . Journal of Kunming Medical University, 2020, 41(09): 50-55.
    [9] Zhao Bin , Li Rui Qian , Zhang Guo Ying , Lei Yong Hong , Wang Qi Lin , Liu Zhi Min . Overexpression of miR-4328 Inhibits the Proliferation, Migration and Epithelial Mesenchymal Transition of Prostate Cancer Cells. Journal of Kunming Medical University, 2017, 38(11): 29-33.
    [10] Ge Jia Yun . Effects of FHIT Overexpression Mediated by Slow Virus on the growth of Hepatoma Lines in Vitro. Journal of Kunming Medical University,
    [11] Wei Dong . The Influence of pcDNA 3.0-WWOX Recombinant Vector on the Expression of WWOX and △Ψm in Gallbladder Carcinoma Cells. Journal of Kunming Medical University,
    [12] Lu Ping . . Journal of Kunming Medical University,
    [13] Han Qun Chao . . Journal of Kunming Medical University,
    [14] Huang Yun Yan . . Journal of Kunming Medical University,
    [15] Qi Zong Ze . . Journal of Kunming Medical University,
    [16] Jiao Yang . . Journal of Kunming Medical University,
    [17] Chen Shao Chun . . Journal of Kunming Medical University, 2013, 34(07): 1-1.
    [18] Wu Bin . . Journal of Kunming Medical University,
    [19] . Expression of CNTF, TGF-β1, and IGF-1 in NSCs Cultured in vitro. Journal of Kunming Medical University,
    [20] Ding Peng . . Journal of Kunming Medical University,
  • Cited by

    Periodical cited type(22)

    1. 李雅静,于华. 机械振动排痰辅助治疗小儿肺炎的临床效果. 妇儿健康导刊. 2024(02): 59-61 .
    2. 张艳梅. 机械排痰辅助药物治疗对小儿肺炎患儿排痰量及不良反应的影响. 现代医学与健康研究电子杂志. 2024(03): 142-144 .
    3. 万娟,刘慧珍,刘路,刘攀,廖青慧. 机械振动排痰在支气管肺炎患儿中的应用. 中国医学创新. 2024(10): 75-79 .
    4. 鲁金,周玲. 机械振动排痰应用于支气管肺炎患儿的临床疗效分析. 长治医学院学报. 2024(04): 282-284+288 .
    5. 刘妹. 电动牙刷按摩肺俞穴在极低出生体重早产儿振动排痰中的应用. 黑龙江中医药. 2024(02): 26-28 .
    6. 林阿蝉,林小娟. 机械振动辅助排痰联合童趣化干预对支气管肺炎患儿肺功能及舒适度的影响. 医疗装备. 2024(16): 149-151+155 .
    7. 陈宝兰,缪建平,谌帆,赖玉婷. 鼻负压置换联合机械辅助排痰氧气雾化治疗小儿肺炎的临床研究. 医学信息. 2024(22): 38-41 .
    8. 张国清,李薇,陈葵带. 肺部超声技术对新生儿肺部疾病的鉴别诊断价值研究. 中国医药科学. 2024(22): 68-71 .
    9. 黄庆良,骆世明. 电动吸痰机联合全自动洗胃机在中毒患者急诊治疗期间的效果. 中国药物滥用防治杂志. 2024(12): 2232-2234 .
    10. 钱海霞,马卉. 改良式拍背吸痰法在肺炎患儿雾化治疗中的应用效果. 当代护士(上旬刊). 2023(05): 102-105 .
    11. 朱琰,殷晶,刘庭姣,施妤. 机械振动排痰仪辅助排痰联合头低足高俯卧位通气在社区获得性肺炎患儿中的应用. 齐鲁护理杂志. 2023(17): 165-167 .
    12. 徐瑶瑶,郑芳明,江海霞. 机械振动排痰辅助雾化吸入治疗小儿肺炎对患儿临床症状的影响. 中国当代医药. 2023(24): 89-92 .
    13. 尹丽娟,宝凌云,王芳,袁媛. 肺脏超声动态监测在新生儿重症肺炎精准护理中的应用效果. 昆明医科大学学报. 2023(10): 202-206 . 本站查看
    14. 周冉冉,蒲海波,王媛. 无创吸痰结合乙酰半胱氨酸治疗小儿支气管肺炎的效果分析. 国际医药卫生导报. 2023(19): 2688-2692 .
    15. 管辉琴,周丽玲. 多频振动治疗仪联合分期运动在小儿支气管肺炎护理中康复效果的观察. 中国医学创新. 2023(30): 105-110 .
    16. 黄少波,王新玲. 维生素D治疗新生儿感染性肺炎的效果及其对TLR2的影响. 中外医学研究. 2023(35): 138-141 .
    17. 肖诗兰,唐帆. 感染性肺炎新生儿肺部超声的临床护理实践. 现代医用影像学. 2023(12): 2373-2376 .
    18. 张晓丽. 乙酰半胱氨酸肺泡灌洗术联合振动排痰仪对肺不张患儿临床症状及血气分析的影响. 反射疗法与康复医学. 2022(10): 97-99 .
    19. 何莲,陈佩娟,李丹,邓婵媛. 振动型肿瘤患者护理用排痰器设计. 自动化与仪器仪表. 2022(07): 325-328+333 .
    20. 汤琼,华翠红. 机械振动排痰联合体位引流在新生儿肺炎气道护理中的应用效果. 医疗装备. 2022(20): 156-158 .
    21. 吴静娴,王君琴. 无创吸痰技术在支气管肺炎护理中应用的效果及安全性. 中国医药导报. 2022(32): 176-179 .
    22. 肖民. 机械振动排痰仪联合综合护理在肺炎患儿中的应用效果. 医疗装备. 2022(24): 188-190 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (3077) PDF downloads(14) Cited by(23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return