Volume 44 Issue 5
May  2023
Turn off MathJax
Article Contents
Jingyu YANG, Ning XU, Yutao ZHANG, Fengchang HUANG, Yuanming JIANG, Liang YIN. Comparative Study of Multiple Models Based on Baseline T2WI Images for Predicting Pathological Complete Remission of Progressive Rectal Cancer after Neo-adjuvant Chemoradiotherapy[J]. Journal of Kunming Medical University, 2023, 44(5): 117-124. doi: 10.12259/j.issn.2095-610X.S20230512
Citation: Jingyu YANG, Ning XU, Yutao ZHANG, Fengchang HUANG, Yuanming JIANG, Liang YIN. Comparative Study of Multiple Models Based on Baseline T2WI Images for Predicting Pathological Complete Remission of Progressive Rectal Cancer after Neo-adjuvant Chemoradiotherapy[J]. Journal of Kunming Medical University, 2023, 44(5): 117-124. doi: 10.12259/j.issn.2095-610X.S20230512

Comparative Study of Multiple Models Based on Baseline T2WI Images for Predicting Pathological Complete Remission of Progressive Rectal Cancer after Neo-adjuvant Chemoradiotherapy

doi: 10.12259/j.issn.2095-610X.S20230512
  • Received Date: 2023-02-16
    Available Online: 2023-05-13
  • Publish Date: 2023-05-25
  •   Objective   To investigate the predictive effectiveness of different models and the efficacy of baseline T2WI combined with machine learning imaging and to predict the pathological complete remission after the neo-adjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC).  Methods  A retrospective analysis was conducted on the data of 131 patients with non metastatic advanced rectal cancer from January 2017 to December 2021. All patients underwent the pelvic MRI examination before and after the treatment, received standard nCRT treatment, and then underwent the total mesorectal resection (TME). AK software (Analysis Kit, GE Healthcare) was used to manually draw the regions of interest (ROI) on the pre-treatment axial T2WI maps, and AK software also extracted the imaging omics features. The imaging omics data were used to build the prediction models by using the support vector machine (SVM), random forest (RF), and logistic regression (LR) methods after the the imaging omics features were feature-screened using a two-sample t-test + LASSO regression. The effectiveness of the model prediction was evaluated using the receiver operating characteristic curve (ROC).  Results  26 (19.8%) of the 131 patients had a pathologic complete response (pCR). The AK software extracted 1308 imaging omics features in total, and after the screening, 12 features were selected for pCR prediction. The SVM model had an AUC, accuracy of 0.8810 and 81.48%, sensitivity and specificity of 90.48% and 50%. The RF model had an AUC, accuracy of 0.7579 and 81.48%, sensitivity and specificity of accuracy 95.24% and 33.33%. The LR model had an AUC, accuracy of 0.9206 and 92.59%, sensitivity and specificity of 95.24% and 83.33%.   Conclusion  The three machine learning models constructed have the considerable accuracy in predicting complete pathological remission after the concurrent radiotherapy and chemotherapy for locally advanced rectal cancer. Among them, the machine learning model established with the use of logistic regression (LR) method has the higher diagnostic efficiency than other machine learning models, and has the potential to be applied in the clinical practice.
  • loading
  • [1]
    郑荣寿,张思维,孙可欣,等. 2016年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志,2023,45(3):212-220.
    [2]
    Siegel R L,Miller K D,Goding Sauer A,et al. Colorectal cancer statistics,2020[J]. CA:A Cancer Journal for Clinicians,2020,70(3):145-164. doi: 10.3322/caac.21601
    [3]
    Arnaldo Stanzione,Francesco Verde,Valeria Romeo,et al. Radiomics and machine learning applications in rectal cancer:Current update and future perspectives[J]. World J Gastroenterol,2021,27(32):5306-5321. doi: 10.3748/wjg.v27.i32.5306
    [4]
    Kanani A,Veen T,Søreide K. Neoadjuvant immunotherapy in primary and metastatic colorectal cancer[J]. The British Journal of Surgery,2021,108(12):1417-1425. doi: 10.1093/bjs/znab342
    [5]
    Shimizu H,Nakayama K I. Artificial intelligence in oncology[J]. Cancer science,2020,111(5):1452-1460. doi: 10.1111/cas.14377
    [6]
    Lambin P,Rios-Velazquez E,Leijenaar R,et al. Radiomics: Extracting more information from medical images using advanced feature analysis[J]. European Journal of Cancer (Oxford,England:1990),2012,48(4):441-446.
    [7]
    Aerts H J W L,Velazquez E R,Leijenaar R T H,et al. Erratum: Corrigendum: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nature Communications,2014,5(1):1-8.
    [8]
    Gillies R J,Kinahan P E,Hricak H. Radiomics: Images are more than pictures,they are data[J]. Radiology,2016,278(2):563-577. doi: 10.1148/radiol.2015151169
    [9]
    Horvat N,Veeraraghavan H,Khan M,et al. MR imaging of rectal cancer: Radiomics analysis to assess treatment response after neoadjuvant therapy[J]. Radiology,2018,287(3):833-843. doi: 10.1148/radiol.2018172300
    [10]
    Avanzo M,Wei L,Stancanello J,et al. Machine and deep learning methods for radiomics[J]. Medical physics,2020,47(5):e185-e202.
    [11]
    Zhang X Y,Wang L,Zhu H T,et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI[J]. Radiology,2020,296(1):56-64. doi: 10.1148/radiol.2020190936
    [12]
    Shin J,Seo N,Baek S E,et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy[J]. Radiology,2022,303(2):351-358. doi: 10.1148/radiol.211986
    [13]
    Liu Z,Zhang X Y,Shi Y J,et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Clinical Cancer Research:An Official Journal of the American Association for Cancer Research,2017,23(23):7253-7262. doi: 10.1158/1078-0432.CCR-17-1038
    [14]
    Yi X,Pei Q,Zhang Y,et al. MRI-based radiomics predicts tumor response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Frontiers in Oncology,2019,9(9):552.
    [15]
    Horvat N,Bates D D B,Petkovska I. Novel imaging techniques of rectal cancer: What do radiomics and radiogenomics have to offer? A literature review[J]. Abdominal Radiology (New York),2019,44(11):3764-3774. doi: 10.1007/s00261-019-02042-y
    [16]
    Hiram Shaish,Andrew Aukerman,Rami Vanguri,et al. Radiomics of MRI for pretreatment prediction of pathologic complete response,tumor regression grade,and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: An international multicenter study[J]. Eur Radiol,2020,30(11):6263-6273. doi: 10.1007/s00330-020-06968-6
    [17]
    Antunes J T,Ofshteyn A,Bera K,et al. Radiomic features of primary rectal cancers on baseline T2 -weighted MRI are associated with pathologic complete response to neoadjuvant chemoradiation: A multisite study[J]. Journal of Magnetic Resonance Imaging:JMRI,2020,52(5):1531-1541. doi: 10.1002/jmri.27140
  • Relative Articles

    [1] Xiao CHEN. Development of Predictive Scale for Diabetic Kidney Disease Progression Based on Decision Tree Classification Model. Journal of Kunming Medical University, 2024, 45(8): 109-116.  doi: 10.12259/j.issn.2095-610X.S20240816
    [2] Yanmei JI, Wenjun LI, Qingyun LI, Ni GUO, Ni MENG, Dan ZHOU, Qiuyu LI, Xingfang JIN. The Analysis of Related Factors of Cognitive Impairment after the Acute Ischemic Stroke and Construction of Nomogram Model. Journal of Kunming Medical University, 2024, 45(5): 73-81.  doi: 10.12259/j.issn.2095-610X.S20240511
    [3] Huijuan ZENG, Bo TIAN, Hongling YUAN, Jie HE, Guanxi LI, Guojia RU, Min XU, Dong ZHAN. Predictive Modeling of Chronic Kidney Disease with Hypertension or Diabetes Based on Machine Learning Algorithms. Journal of Kunming Medical University, 2024, 45(3): 99-105.  doi: 10.12259/j.issn.2095-610X.S20240315
    [4] Zhaoyang CAO, Sijia LIU, Yaying YANG. Advancements of Radiomics in Coloractal Cancer. Journal of Kunming Medical University, 2024, 44(1B): 1-7.
    [5] Qianting DUAN, Guanshun WANG, Rong DING, Na WANG, Hongli CUN, Ling YANG. Application of CT Radiomics in the Short-Term Prognosis of Combined Therapy for Hepatocellular Carcinoma. Journal of Kunming Medical University, 2023, 44(1): 128-134.  doi: 10.12259/j.issn.2095-610X.S20220818
    [6] Yan WANG, Rong DING, Lvling ZHANG, Ruohua WANG, Xiaoling ZHAO, Na MA. Efficacy of Blood Transfusion Combined with Chemoradiotherapy in Patients with Colorectal Cancer and its Effect on Tumor Markers and T Lymphocyte Levels. Journal of Kunming Medical University, 2022, 43(8): 61-65.  doi: 10.12259/j.issn.2095-610X.S20220809
    [7] Min ZHOU, Zhihui MA, Jiayan LI, Jianhua FAN, Ling LIN, Tingying YU, Huifang ZHANG, Li LIU. Predictive Model of Risk Factors for the Recurrence of Liver Cirrhosis with Pleural Effusion. Journal of Kunming Medical University, 2022, 43(5): 149-154.  doi: 10.12259/j.issn.2095-610X.S20220524
    [8] Ji JIA, Siming TAO. Development of A Plasma Osmolality Prediction Model for the Risk of In-hospital Death in Critically Ill Patients with Acute ST-segment Elevation Myocardial Infarction. Journal of Kunming Medical University, 2022, 43(12): 58-65.  doi: 10.12259/j.issn.2095-610X.S20221212
    [9] Hong WANG, Dexing YANG, Qiang WANG, Weiyu ZHOU, Jiefu TANG, Zhenfang WANG, Kai FU, Shengzhe LIU, Rong LIU. Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis. Journal of Kunming Medical University, 2022, 43(11): 44-51.  doi: 10.12259/j.issn.2095-610X.S20221102
    [10] Guimei ZHANG, Shu CHEN, Yunhua SONG, Yang WU, Hongyuan ZHOU. Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model. Journal of Kunming Medical University, 2022, 43(8): 184-190.  doi: 10.12259/j.issn.2095-610X.S20220830
    [11] Guixuan ZHANG, Xin SHI, Wei LI, Shuhua YE. Research Progress of Radiomics in Adrenal Tumors. Journal of Kunming Medical University, 2022, 43(3): 142-147.  doi: 10.12259/j.issn.2095-610X.S20220324
    [12] An-hui TAN, Teng-fei KE. Rectal Cancer Preoperative Clinical Staging and Postoperative Recurrence and Metastasis Prediction by Carcinoembryonic Antigen. Journal of Kunming Medical University, 2021, 42(12): 36-40.  doi: 10.12259/j.issn.2095-610X.S20211217
    [13] Xing LIU, Yuan LIU, Xiang-fang LIU, Jie CHEN, Yong-gang CHEN, Hui SUN, Ling MA. Adverse Reactions Analysis and Prediction Model of Cefoperazone Sodium Sulbactam Sodium. Journal of Kunming Medical University, 2021, 42(6): 139-145.  doi: 10.12259/j.issn.2095-610X.S20210622
    [14] Jing-rong DAI, Jie LI, Xu HE, Yang LI, Yan LI. Risk Factors Analysis and Risk Prediction Model Construction of Depression in Inpatients of Geriatrics Department of a Hospital in Yunnan. Journal of Kunming Medical University, 2021, 42(11): 20-26.  doi: 10.12259/j.issn.2095-610X.S20211104
    [15] Zhang Yue , Wang Hua , Ma Jun , Luo Hai Bo , Yang Yan Long , Wang Ying Hua , Yang Yi Fu . Predictive Value of Cr-POSSUM Scoring Systems in Patient with Rectal Cancer after Surgery. Journal of Kunming Medical University, 2017, 38(04): 117-119.
    [16] Zhu Tian Bo . Clinical Application of Preoperative New Adjuvant Chemotherapy in Treatment of Cervical Cancer. Journal of Kunming Medical University,
    [17] Li Zhuo Lin . Assessment of Locally Advanced Breast Cancer Response to Neoadjuvant Chemotherapy with Diffusion weighted MRI. Journal of Kunming Medical University,
    [18] Ai Yi Qin . . Journal of Kunming Medical University,
    [19] Ai Yi Qin . . Journal of Kunming Medical University,
    [20] Yin Liang . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (3256) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return