Volume 44 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Jun XIE, Shaoyou LIU, Hongjin SHI, Qiuyu MAO, Hong YANG. Enhanceing Effect of EZH2 Inhibitors in Combination with GC Chemotherapeutic Agents in Bladder Cancer[J]. Journal of Kunming Medical University, 2023, 44(10): 67-76. doi: 10.12259/j.issn.2095-610X.S20231017
Citation: Jun XIE, Shaoyou LIU, Hongjin SHI, Qiuyu MAO, Hong YANG. Enhanceing Effect of EZH2 Inhibitors in Combination with GC Chemotherapeutic Agents in Bladder Cancer[J]. Journal of Kunming Medical University, 2023, 44(10): 67-76. doi: 10.12259/j.issn.2095-610X.S20231017

Enhanceing Effect of EZH2 Inhibitors in Combination with GC Chemotherapeutic Agents in Bladder Cancer

doi: 10.12259/j.issn.2095-610X.S20231017
  • Received Date: 2023-05-22
  • Publish Date: 2023-10-25
  •   Objective   To explore the synergizing effect of histone methyltransferase enhancer of Zeke 2 (EZH2) inhibitors on Gemcitabine and Cisplatin (GC) chemotherapy regimen in bladder cancer treatment.   Methods   Firstly, EZH2 siRNA knockdown lines were constructed, and then the expression level of siRNA in bladder cancer UCC cells was verified using qPCR and WB. According to different treatments, these cells were divided into control group (bladder cancer T24 cells cultured normally), GC chemotherapy group (T24 cells + GC), siEZH2 transfection group (T24 cells + siEZH2 transfection + GC), GSK126 inhibitor group (T24 cells + GSK126 5 μM + GC), UNC1999 inhibitor group (T24 cells + UNC1999 5 μM + GC), EI1 inhibitor group (T24 cells + EI1 5 μM + GC), DZNep1 inhibitor group (T24 cells + DZNep1 5 μM + GC), and EPZ005687 inhibitor group (T24 cells + EPZ005687 5 μM + GC). CCK-8, plate clone formation, Annexin/PI, and other experiments were used to detect the proliferation rate, apoptosis rate, and the effect on the cell cycle of the eight groups of cells respectively. Then, 30 female BALB/C nude mice were randomly divided into control group (bladder cancer T24 cells cultured normally), T24 cells + EZH2 inhibitor solvent buffer group, T24 cells + GC chemotherapy group, T24 cells + UNC1999 EZH2 inhibitor group, and T24 cells + UNC1999 EZH2 inhibitor + GC chemotherapy group, with 6 mice in each group. Tumor formation experiment in nude mice was used to detect the growth of transplanted tumors in each group after transfection, immunohistochemistry was used to observe the expression of Ki67 and EZH2 in the transplanted tumor tissues, and blood routine examination was used to detect the number of white blood cells, red blood cells, and platelets and the degree of bone marrow suppression in nude mice.   Results   In T24 cells transfected with siRNA plasmids, siEZH2-1 and siEZH2-2 showed statistically significant differences in siRNA and protein expression levels compared to the control group (P < 0.01). Compared to the control group, the above experimental groups found that EZH2 inhibitors can inhibit the proliferation, migration, and invasion ability of T24 cells, and increase the proportion of early apoptotic cells through CCK-8, plate cloning, and Annexin V/PI double staining, and Pi single staining experiments ( P < 0.01). Among them, in the plate cloning experiment, the difference in the number of cell clones between the experimental group T24 cells+EPZ005687 5 μM+GC chemotherapy drug group and the control group was statistically significant ( P < 0.05). In vivo experiments in mice showed that the tumor weight of nude mice treated with GC chemotherapy drugs or EZH2 inhibitors decreased compared to the control group ( P < 0.05), and the blood cell content also increased in the blood routine examination.   Conclusion   EZH2 inhibitors can enhance the sensitivity of bladder cancer GC chemotherapy regimen, thereby reducing the proliferation, migration, and growth of bladder cancer cells in nude mice xenografts. Additionally, combination therapy can significantly reduce bone marrow suppression. These findings suggest that combination therapy plays a role in sensitizing bladder cancer chemotherapy.
  • loading
  • [1]
    Van Hoogstraten L M C,Vrieling A,Van Der Heijden A G,et al. Global trends in the epidemiology of bladder cancer: Challenges for public health and clinical practice[J]. Nat Rev Clin Oncol,2023,20(5):287-304. doi: 10.1038/s41571-023-00744-3
    [2]
    Ramakrishnan S,Granger V,Rak M,et al. Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer[J]. Cell Death Differ,2019,26(10):2100-2114. doi: 10.1038/s41418-019-0278-9
    [3]
    Bai Y,Zhang Z,Cheng L,et al. Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer[J]. J Biol Chem,2019,294(25):9911-9923. doi: 10.1074/jbc.RA119.008152
    [4]
    Yetişir A E,Paydaş S,Büyükşimşek M,et al. Effects of enhancer of zeste homolog 2 and mucin 1 expressions on treatment response in breast cancer[J]. Rev Assoc Med Bras (1992),2023,69(1):153-158.
    [5]
    Hong S H,Hwang H J,Son D H,et al. Inhibition of EZH2 exerts antitumorigenic effects in renal cell carcinoma via LATS1[J]. FEBS Open Bio,2023,13(4):724-735. doi: 10.1002/2211-5463.13579
    [6]
    Hu F F,Chen H,Duan Y,et al. CBX2 and EZH2 cooperatively promote the growth and metastasis of lung adenocarcinoma[J]. Mol Ther Nucleic Acids,2022,27:670-684 . doi: 10.1016/j.omtn.2021.12.032
    [7]
    Dong P,Xiong Y,Konno Y,et al. Long non-coding RNA DLEU2 drives EMT and glycolysis in endometrial cancer through HK2 by competitively binding with miR-455 and by modulating the EZH2/miR-181a pathway[J]. J Exp Clin Cancer Res,2021,40(1):216. doi: 10.1186/s13046-021-02018-1
    [8]
    Yu T,Zhou F,Tian W,et al. EZH2 interacts with HP1BP3 to epigenetically activate WNT7B that promotes temozolomide resistance in glioblastoma[J]. Oncogene,2023,42(6):461-470. doi: 10.1038/s41388-022-02570-w
    [9]
    Ren J,Yu H,Li W,et al. Downregulation of CBX7 induced by EZH2 upregulates FGFR3 expression to reduce sensitivity to cisplatin in bladder cancer[J]. Br J Cancer,2023,128(2):232-244. doi: 10.1038/s41416-022-02058-0
    [10]
    Sun J X,Xu J Z,Liu C Q,et al. The association between human papillomavirus and bladder cancer: Evidence from meta-analysis and two-sample mendelian randomization[J]. J Med Virol,2023,95(1):e28208. doi: 10.1002/jmv.28208
    [11]
    Kim H S,Seo H K. Immune checkpoint inhibitors for urothelial carcinoma[J]. Investig Clin Urol,2018,59(5):285-296. doi: 10.4111/icu.2018.59.5.285
    [12]
    Su H,Jiang H,Tao T,et al. Hope and challenge: Precision medicine in bladder cancer[J]. Cancer Med,2019,8(4):1806-1816. doi: 10.1002/cam4.1979
    [13]
    Patel V G,Oh W K,Galsky M D. Treatment of muscle-invasive and advanced bladder cancer in 2020[J]. CA Cancer J Clin,2020,70(5):404-423. doi: 10.3322/caac.21631
    [14]
    Qu H C,Huang Y,Mu Z Y,et al. Efficacy and safety of chemotherapy regimens in advanced or metastatic bladder and urothelial carcinomas: An updated network meta-analysis[J]. Front Pharmacol,2019,10:1507.
    [15]
    Duan R,Du W,Guo W. EZH2: A novel target for cancer treatment[J]. J Hematol Oncol,2020,13(1):104. doi: 10.1186/s13045-020-00937-8
    [16]
    Sawicka-Gutaj N,Shawkat S,Andrusiewicz M,et al. EZH2 and SMYD3 expression in papillary thyroid cancer[J]. Oncol Lett,2021,21(5):342. doi: 10.3892/ol.2021.12603
    [17]
    Li Z,Li M,Wang D,et al. Post-translational modifications of EZH2 in cancer[J]. Cell Biosci,2020,10(1):143 . doi: 10.1186/s13578-020-00505-0
    [18]
    Hussein Y R,Sood A K,Bandyopadhyay S,et al. Clinical and biological relevance of enhancer of zeste homolog 2 in triple-negative breast cancer[J]. Hum Pathol,2012,43(10):1638-1644. doi: 10.1016/j.humpath.2011.12.004
    [19]
    Liu L C,Chien Y C,Wu G W,et al. Analysis of EZH2 genetic variants on triple-negative breast cancer susceptibility and pathology[J]. Int J Med Sci,2022,19(6):1023-1028 . doi: 10.7150/ijms.71931
    [20]
    Morschhauser F,Salles G,Batlevi C L,et al. Taking the EZ way: Targeting enhancer of zeste homolog 2 in B-cell lymphomas[J]. Blood Rev,2022,56:100988. doi: 10.1016/j.blre.2022.100988
    [21]
    Qiang N,Ao J,Nakamura M,et al. Alteration of the tumor microenvironment by pharmacological inhibition of EZH2 in hepatocellular carcinoma[J]. Int Immunopharmacol,2023,118:110068. doi: 10.1016/j.intimp.2023.110068
    [22]
    Li C,Song J,Guo Z,et al. EZH2 inhibitors suppress colorectal cancer by regulating macrophage polarization in the tumor microenvironment[J]. Front Immunol,2022,13:857808. doi: 10.3389/fimmu.2022.857808
    [23]
    Gong H,Li Y,Yuan Y,et al. EZH2 inhibitors reverse resistance to gefitinib in primary EGFR wild-type lung cancer cells[J]. BMC Cancer,2020,20(1):1189. doi: 10.1186/s12885-020-07667-7
    [24]
    Wang Y F,Yu L,Hu Z L,et al. Regulation of CCL2 by EZH2 affects tumor-associated macrophages polarization and infiltration in breast cancer[J]. Cell Death Dis,2022,13(8):748. doi: 10.1038/s41419-022-05169-x
    [25]
    Zhang Q,Chen X,Cao J,et al. Discovery of a novel covalent EZH2 inhibitor based on tazemetostat scaffold for the treatment of ovarian cancer[J]. J Med Chem,2023,66(3):1725-1741. doi: 10.1021/acs.jmedchem.2c01370
    [26]
    Chen R,Gan Q,Zhao S,et al. DNA methylation of miR-138 regulates cell proliferation and EMT in cervical cancer by targeting EZH2[J]. BMC Cancer,2022,22(1):488 . doi: 10.1186/s12885-022-09477-5
    [27]
    Ishiguro K,Kitajima H,Niinuma T,et al. Dual EZH2 and G9a inhibition suppresses multiple myeloma cell proliferation by regulating the interferon signal and IRF4-MYC axis[J]. Cell Death Discov,2021,7(1):7. doi: 10.1038/s41420-020-00400-0
    [28]
    Yang Y X,Shen H H,Cao F,et al. Therapeutic potential of enhancer of zeste homolog 2 in autoimmune diseases[J]. Expert Opin Ther Targets,2019,23(12):1015-1030. doi: 10.1080/14728222.2019.1696309
    [29]
    He Y,Wang N,Zhou X,et al. Prognostic value of ki67 in BCG-treated non-muscle invasive bladder cancer: A meta-analysis and systematic review[J]. BMJ Open,2018,8(4):e019635. doi: 10.1136/bmjopen-2017-019635
  • Relative Articles

    [1] Yuqin LIU, Mingying YANG, Liufang WANG, Siya XIA, Danna LI, Xijuan ZHAO, Ya WANG. Development of a Patient-reported Outcome Scale For Bladder Cancer and Test of Reliability and Validity. Journal of Kunming Medical University, 2024, 45(7): 183-190.  doi: 10.12259/j.issn.2095-610X.S20240727
    [2] Yijun AN, Lidan YU, Meisu ZHAO, Dongmei MA, Chunhua YANG, Yao KONG. The Application of Prognostic Model of Lysosomal Related Genes in Bladder Cancer. Journal of Kunming Medical University, 2024, 45(5): 66-72.  doi: 10.12259/j.issn.2095-610X.S20240510
    [3] Yuqing XIE, Jun WANG, Xuebi JI, Ping WANG, Haifeng WANG, Xumin LI, Linya HUANG. Research Progress on Risk Factors and Risk Assessment of Urinary Tract Infection in Patients with Ureterostomy. Journal of Kunming Medical University, 2023, 44(11): 158-163.  doi: 10.12259/j.issn.2095-610X.S20231124
    [4] Shi CHEN, Shi FU, Zhiyong TAN, Jiansong WANG, Haifeng WANG. Research Progress of Autophagy in the Development and Treatment of Bladder Cancer. Journal of Kunming Medical University, 2023, 44(5): 168-174.  doi: 10.12259/j.issn.2095-610X.S20230503
    [5] Haonan DONG, Haifeng WANG, Yinglong HUANG, Hongjin SHI, Lan MAO, Yijie LIU, Jiansong WANG. A Review on Metabolic Complications and Management after Radical Cystectomy and Orthotopic Neoblastectomy. Journal of Kunming Medical University, 2022, 43(12): 159-163.  doi: 10.12259/j.issn.2095-610X.S20221229
    [6] Jun GU, Zexi HE, Ting LUAN, Haifeng WANG, Jiansong WANG, Mingxia DING. Research Progress of Exosomes-derived Long Non-coding RNA in Bladder Cancer. Journal of Kunming Medical University, 2022, 43(1): 150-156.  doi: 10.12259/j.issn.2095-610X.S20220110
    [7] Zhi YAN, Jingang HAO, Yunyun SHANG. Value of VI-RADS Scoring System in Precision Treatment of Bladder Cancer. Journal of Kunming Medical University, 2022, 43(3): 74-79.  doi: 10.12259/j.issn.2095-610X.S20220322
    [8] Huang Yu , Luan Ting , Wang Hai Feng , Wang Jian Song . . Journal of Kunming Medical University, 2019, 40(11): 147-151.
    [9] Li Dan Na , Yang Ming Ying , Wang Jun , Wang Liu Fang , Wu Guang Liu , Wang Hui Xiao , Chen Jiang Guo , Yao Cheng , Huang Ying Long . . Journal of Kunming Medical University, 2018, 39(09): 27-32.
    [10] Yang Can , Gong Yu Hang , Wang Hai Feng , Li Hai Hao , Liu Jing Yu , Wang Wei , Wang Jian Song , Zuo Yi Gang , Chen Jian , Zhan Hui , Ding Ming Xia . The Research of Monoclonal Antibody KMP1 Inhibited Bladder Cancer EJ Cell Lines Growth and Metastasis in Vivo. Journal of Kunming Medical University, 2018, 39(05): 1-6.
    [11] Yan Yong , Sun Xuan , Li Gang , Zheng Cuan , Ma Shao Xiang , Li Yong , Zhao Run Heng , Wang Ke . Expression of Survivin in Circulating Tumor Cells in Patients with Bladder Cancer. Journal of Kunming Medical University, 2017, 38(07): 102-106.
    [12] Lei Yu Ying , Gao Jie , Wang Rao Xiang , Chuan Li Xue , Hao Jin Gang . Value of Diffusion Weighted Imaging in the Diagnosis of Bladder Cancer. Journal of Kunming Medical University, 2017, 38(07): 136-139.
    [13] Hu Xin Yi . Radical Cystectomy and Orthotopic Urinary Diversion with 3D Laparoscopy. Journal of Kunming Medical University,
    [14] Huang Zhen Hua , Shi Xin , Wang Hui Tao , Zhang Jing Song , Wang Guang , Hao Jin Gang , Liu Jian He . Application Value of DWI in Diagnosis of T Staging of Bladder Cancer. Journal of Kunming Medical University, 2016, 37(12): 67-71.
    [15] Wang Hai Feng . . Journal of Kunming Medical University,
    [16] Di Yu Qiang . . Journal of Kunming Medical University,
    [17] Sun Li Hui . . Journal of Kunming Medical University,
    [18] Ma Zhen . . Journal of Kunming Medical University, 2012, 33(07): 1-1.
    [19] . . Journal of Kunming Medical University,
    [20] . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (1608) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return