Wei CHEN, Zichen ZHANG, Ruoyu WANG, He JIANG, Wende CAO, Yulan MIAO. Analysis of Clinical Data of 471 Elderly Patients Hospitalized with Burns[J]. Journal of Kunming Medical University, 2023, 44(2): 88-97. doi: 10.12259/j.issn.2095-610X.S20230202
Citation: Yiwen ZHANG, Ximing WANG, Zilong LI, Xinzhang ZHANG, Changxian CHEN, Weijun LIU, Zhenyong ZHANG. Research Progress of Artificial Intelligence in the Diagnosis and Treatment of Anorectal Diseases[J]. Journal of Kunming Medical University, 2024, 45(2): 1-6. doi: 10.12259/j.issn.2095-610X.S20240201

Research Progress of Artificial Intelligence in the Diagnosis and Treatment of Anorectal Diseases

doi: 10.12259/j.issn.2095-610X.S20240201
More Information
  • Corresponding author: 张振勇,主任医师,教授,云南省名中医,云南省兴滇英才名医。云南省第一人民医院肛肠科、中医科主任,昆明理工大学、云南中医药大学硕士生导师。中华中医药学会肛肠专业委员会常务理事;中国民间中医药研究学会肛肠分会副会长;中国老年保健协会肛肠专业委员会副会长;中国西南西北肛肠协会副会长;中国医师协会肛肠专业委员会常务委员;云南省医师协会肛肠科医师分会主任委员;中国民间中医药研究学会肛肠分会云南工作部主任委员;云南省医学会外科分会肛肠学组副主任委员;云南省中西医结合学会肛肠专业委员会副主任委员。获云南省科技进步三等奖一项,云南省卫生厅科技进步三等奖一项,中华中医药学会科学技术奖学术著作奖三等奖一项,2016年获中华中医药学会肛肠分会授予“全国中医肛肠学科名医工作室—张振勇名医工作室”,2019年获“中国西部肛肠名师”。
  • Received Date: 2023-10-08
  • Publish Date: 2024-02-25
  • In the past 20 years, the development of artificial intelligence has made rapid progress, and it is increasingly applied in the medical field, including medical image-assisted diagnosis and treatment, health management, disease risk prediction and so on. In this paper, the application status of artificial intelligence-assisted detection and diagnosis system based on deep learning in anorectal diseases is summarized, and the new methods related to the diagnosis and treatment of anorectal diseases at home and abroad are summarized. It mainly reviews the research progress of artificial intelligence technology in the diagnosis and treatment of anal fistula, perianal abscess, hemorrhoids and other anorectal diseases.
  • [1]
    刘访,苏丹,林宏城,等. 任东林教授中西医结合防治肛肠疾病的学术理念及其临床经验撷菁[J]. 结直肠肛门外科,2023,29(2):151-157.
    [2]
    程议乐,武永连,李万里,等. 国内肛肠疾病流行病学调查研究进展[J]. 中国肛肠病杂志,2022,42(6):74-76.
    [3]
    覃金玲,王业皇,谭静玲,等. 华东地区肛肠疾病流行病学相关因素分析[J]. 中国肛肠病杂志,2016,36(2):25-28.
    [4]
    Navkar N V,Balakrishnan S,Kharbech S,et al. 3D visualization of perianal fistulas using parametric models[J]. Tech Coloproctol,2022,26(4):291-300. doi: 10.1007/s10151-022-02573-5
    [5]
    Nakata N. Recent technical development of artificial intelligence for diagnostic medical imaging[J]. Jpn J Radiol,2019,37(2):103-108. doi: 10.1007/s11604-018-0804-6
    [6]
    Nakaura T,Higaki T,Awai K,et al. A primer for understanding radiology articles about machine learning and deep learning[J]. Diagn Interv Imaging,2020,101(12):765-770. doi: 10.1016/j.diii.2020.10.001
    [7]
    De Reyni è s A,Assi é G,Rickman D S,et al. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival[J]. J Clin Oncol,2009,27(7):1108-1115. doi: 10.1200/JCO.2008.18.5678
    [8]
    Egger J,Gsaxner C,Pepe A,et al. Medical deep learning-A systematic meta-review[J]. Comput Methods Programs Biomed,2022,221:106874. doi: 10.1016/j.cmpb.2022.106874
    [9]
    Kim T M,Choi S J,Ko J Y,et al. Fully automatic volume measurement of the adrenal gland on CT using deep learning to classify adrenal hyperplasia[J]. Eur Radiol,2023,33(6):4292-4302.
    [10]
    Robinson-Weiss C,Patel J,Bizzo B C,et al. Machine Learning for Adrenal Gland Segmentation and Classification of Normal and Adrenal Masses at CT[J]. Radiology,2023,306(2):e220101. doi: 10.1148/radiol.220101
    [11]
    李昕,郑丽华. 肛瘘常用手术方式[J]. 中国临床医生杂志,2023,51(1):3-6.
    [12]
    Charalampopoulos A,Papakonstantinou D,Bagias G,et al. Surgery of simple and complex anal fistulae in adults: A review of the literature for optimal surgical outcomes[J]. Cureus,2023,15(3):e35888.
    [13]
    Gao H,Cheng X,Gao L,et al. Time-scheduled dotted and solid thread-ligating therapy combined with vacuum sealing drainage for treating high complex anal fistula[J]. Am J Transl Res,2021,13(10):11737-11744.
    [14]
    王淙锦,杨雅兰,庄华,等. 克罗恩病相关性肛瘘和普通性肛瘘间的超声影像学特征比较[J]. 西部医学,2022,34(03):458-463.
    [15]
    Zhou Z. Pay attention to the imaging diagnosis of complex anal fistula[J]. Zhonghua Wei Chang Wai Ke Za Zhi,2015,18(12):1193-1196.
    [16]
    Han L,Chen Y,Cheng W,et al. Deep learning-based CT image characteristics and postoperative anal function restoration for patients with complex anal fistula[J]. J Healthc Eng,2021,2021:1730158.
    [17]
    Iqbal N,Sackitey C,Gupta A,et al. The development of a minimum dataset for MRI reporting of anorectal fistula: a multi-disciplinary,expert consensus process[J]. European Radiology,2022,32(12):8306-8316. doi: 10.1007/s00330-022-08931-z
    [18]
    袁军,陈欣悦,常时新,等. 基于T1增强成像的人工智能算法在肛瘘内口诊断中的可行性研究[J]. 安徽医药,2023,27(3):447-452.
    [19]
    Parian A M,Obi M,Fleshner P,et al. Management of perianal Crohn's disease[J]. Am J Gastroenterol,2023,118(8):1323-1331. doi: 10.14309/ajg.0000000000002326
    [20]
    Song E M,Lee H S,Kim Y J,et al. Incidence and outcomes of perianal disease in an asian population with Crohn's disease: A nationwide population-based study[J]. Dig Dis Sci,2020,65(4):1189-1196. doi: 10.1007/s10620-019-05819-9
    [21]
    Jeri-McFarlane S,Garc í a-Granero Á,Gil-Catalan A,et al. Surgical strategy for supralevator abscess in Perianal Crohn’s disease: emergency surgery and residual complex fistula[J]. Tech Coloproctol,2021,25(10):1163-1164. doi: 10.1007/s10151-021-02460-5
    [22]
    Lee J L,Yoon Y S and Yu C S. Treatment strategy for perianal fistulas in Crohn disease patients: The surgeon's point of view[J]. Ann Coloproctol,2021,37(1):5-15. doi: 10.3393/ac.2021.02.08
    [23]
    Sudoł-Szopi ń ska I,Santoro G A,Kołodziejczak M,et al. Magnetic resonance imaging template to standardize reporting of anal fistulas[J]. Tech Coloproctol,2021,25(3):333-337. doi: 10.1007/s10151-020-02384-6
    [24]
    Jeri-McFarlane S,Garcia-Granero A,Ochogavia-Segui A,et al. Three-dimensional modelling as a novel interactive tool for preoperative planning for complex perianal fistulas in Crohn's disease[J]. Colorectal Dis,2023,25(6):1279-1284. doi: 10.1111/codi.16539
    [25]
    李兰兰, 邓珂, 张恒, 等 基于深度卷积神经网络的克罗恩病肛瘘磁共振成像诊断模型初探[J]. 中华炎性肠病杂志, 2023, 7(2): 144-150.
    [26]
    Azmi F P,Rahman N A A,Mazlan L,et al. A Case of Large Perianal Mucinous Adenocarcinoma Arising from Recurrent Abscess and Complex Fistulae[J]. Case Rep Surg,2020,2020:1798543.
    [27]
    Solis E,Liang Y,Ctercteko G,et al. Dangers of delayed diagnosis of perianal abscess and undrained perianal sepsis in Fournier's gangrene: a case series[J]. BMJ Case Rep,2020,13(10):10.1136/bcr-2020-236503.
    [28]
    Liu Y H,Lv Z B,Liu J B,et al. Perianorectal abscesses and fistula due to ingested jujube pit in infant: Two case reports[J]. World J Clin Cases,2020,8(20):4930-4937. doi: 10.12998/wjcc.v8.i20.4930
    [29]
    Chang H,Kuo M C,Tang T C,et al. Clinical Features and Recurrence Pattern of Perianal Abscess in Patients with Acute Myeloid Leukemia[J]. Acta Haematol,2017,138(1):10-13. doi: 10.1159/000475589
    [30]
    Ding W,Sun Y R,Wu Z J. Treatment of Perianal Abscess and Fistula in Infants and Young Children: From Basic Etiology to Clinical Features[J]. Am Surg,2021,87(6):927-932. doi: 10.1177/0003134820954829
    [31]
    Han S,Yang J and Xu J. Deep Learning-Based Computed Tomography Image Features in the Detection and Diagnosis of Perianal Abscess Tissue[J]. J Healthc Eng,2021,2021:3706265.
    [32]
    Yang J,Han S and Xu J. Deep Learning-Based Magnetic Resonance Imaging Features in Diagnosis of Perianal Abscess and Fistula Formation[J]. Contrast Media Mol Imaging,2021,2021:9066128.
    [33]
    江维,张虹玺,隋楠,等. 中国城市居民常见肛肠疾病流行病学调查[J]. 中国公共卫生,2016,32(10):1293-1296.
    [34]
    中华医学会消化内镜学分会内痔协作组. 中国消化内镜内痔诊疗指南及操作共识(2021)[J]. 中华消化内镜杂志,2021,38(9):676-687.
    [35]
    陆建英,沈文娟,顾莹,等. 深度学习在内镜下内痔诊断及危险分级中的应用[J]. 中国内镜杂志,2023,29(02):1-7.
    [36]
    刘璐,林嘉希,朱世祺,等. 基于ResNet的可解释性计算机视觉模型在内镜下内痔评估中的应用[J]. 现代消化及介入诊疗,2023,08:^972-975+980.
    [37]
    Komeda Y, Handa H, Watanabe T, et al. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience[J]. Oncology, 2017, 93 Suppl 1(30-34).
    [38]
    Chen P J,Lin M C,Lai M J,et al. Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis[J]. Gastroenterology,2018,154(3):568-575. doi: 10.1053/j.gastro.2017.10.010
    [39]
    Bedrikovetski S,Dudi-Venkata N N,Kroon H M,et al. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis[J]. BMC Cancer,2021,21(1):1058. doi: 10.1186/s12885-021-08773-w
    [40]
    Geng Z,Zhang Y,Yin S,et al. Preoperatively Grading Rectal Cancer with the Combination of Intravoxel Incoherent Motions Imaging and Diffusion Kurtosis Imaging[J]. Contrast Media Mol Imaging,2020,2020:2164509.
    [41]
    He B,Ji T,Zhang H,et al. MRI-based radiomics signature for tumor grading of rectal carcinoma using random forest model[J]. J Cell Physiol,2019,234(11):20501-20509. doi: 10.1002/jcp.28650
    [42]
    Inchingolo R,Maino C,Cannella R,et al. Radiomics in colorectal cancer patients[J]. World J Gastroenterol,2023,29(19):2888-2904. doi: 10.3748/wjg.v29.i19.2888
    [43]
    Mitsala A,Tsalikidis C,Pitiakoudis M,et al. Artificial Intelligence in Colorectal Cancer Screening,Diagnosis and Treatment. A New Era[J]. Current Oncology,2021,28(3):1581-1607. doi: 10.3390/curroncol28030149
  • Relative Articles

    [1] Jinyu LI, Liangsheng FENG, Yang GAO, Yu LI, Bangxu WU, Yingying ZOU. Research Progress of DRD1 in Neurological Disorders and Functions. Journal of Kunming Medical University, 2024, 45(5): 1-7.  doi: 10.12259/j.issn.2095-610X.S20240501
    [2] Xiaoxiao ZHANG, Lulu LIU, Feng YAN, Jinlan YANG, Zhiqiang WANG, Meili HU. Analysis of Results from AI-Assisted Cervical Cancer Screening for Rural Women in Baoding City. Journal of Kunming Medical University, 2024, 45(10): 135-139.  doi: 10.12259/j.issn.2095-610X.S20241021
    [3] Haijun WANG, Liangwu QIU, Yanbin XIYANG, Jundi PANG. Research Progress on Aerobic Exercise Intervention for Learning and Memory Ability in Chronic Cerebral Ischemia. Journal of Kunming Medical University, 2024, 45(3): 186-191.  doi: 10.12259/j.issn.2095-610X.S20240328
    [4] Li DENG, Linhai CONG, Hongli FANG, Huifang GAO, Jiazhi YIN. Research Progress on Common Deafness Gene Screening in Chinese Newborns. Journal of Kunming Medical University, 2024, 44(1B): 1-3.
    [5] Yanrong HUANG, Mingying LI, Mengying GAO, Lifeng XIANG, Jiacong YAN, Yonggang LI. Application of Time-Lapse Imaging Technology and Artificial Intelligence in ART. Journal of Kunming Medical University, 2024, 45(7): 160-167.  doi: 10.12259/j.issn.2095-610X.S20240724
    [6] Yixuan CHEN, Lin WANG, Xiuhong XIA, Zaikun PENG, Yi DING, Runjiao SHI, Xuefen LEI. Research Progress on the Mechanisms of Autophagy in Hepatocellular Carcinoma. Journal of Kunming Medical University, 2023, 44(4): 159-164.  doi: 10.12259/j.issn.2095-610X.S20230416
    [7] Hongjiang ZHOU, Juan TANG, Lei LIANG, Xin NIAN. Research Progress of Akkermansia Muciniphila and Obesity-related Metabolic Diseases. Journal of Kunming Medical University, 2022, 43(1): 157-162.  doi: 10.12259/j.issn.2095-610X.S20220143
    [8] Li DONG, Shibo SUN, Shuguang SUN. Advances on Scutellarin Anti-Oxidative Stress Mechanism in the Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases. Journal of Kunming Medical University, 2022, 43(4): 146-151.  doi: 10.12259/j.issn.2095-610X.S20220423
    [9] Qie ZHANG, Shufen WANG, Shouming CAO, Haiying WU. Advances on Smad4 on Olfactory System Function and Disease. Journal of Kunming Medical University, 2022, 43(8): 161-165.  doi: 10.12259/j.issn.2095-610X.S20220826
    [10] Guixuan ZHANG, Xin SHI, Wei LI, Shuhua YE. Research Progress of Radiomics in Adrenal Tumors. Journal of Kunming Medical University, 2022, 43(3): 142-147.  doi: 10.12259/j.issn.2095-610X.S20220324
    [11] Di ZENG, Han-rui SHAO, Ying-ying ZOU, Yong-hua RUAN. Research Progress of Orphan Receptor GPR88 in Related Diseases. Journal of Kunming Medical University, 2021, 42(7): 137-142.  doi: 10.12259/j.issn.2095-610X.S20210723
    [12] Cheng-zhen ZHU, Xing ZHANG, Hao GUO. Advances on Complement Factor H and Cardiovascular Disease. Journal of Kunming Medical University, 2021, 42(8): 158-163.  doi: 10.12259/j.issn.2095-610X.S20210828
    [13] He Meng Xin , Ping Liang Liang , Xu Xiu Feng . . Journal of Kunming Medical University, 2019, 40(05): 129-134.
    [14] Li Ting , Deng Shu Hao , Liu Yong Jun , Dong Zhao Xing . . Journal of Kunming Medical University, 2019, 40(08): 1-5.
    [15] Cai Bin , Song Hai , Wang Zhen , Han Xue , Yu Jian Yun . Research Progress of the Relationship of the Expression of TAR DNA/RNA-binding Domain Protein 43 in Neurodegenerative Disease and Brain Injury. Journal of Kunming Medical University, 2018, 39(05): 124-127.
    [16] Shi Bao Sheng , Shao Ya Ting , Chen Li Jun , Zhang Liang , Pu Dong , Wen Xiao Ling , Chen Ya Ping , Li Yu Peng . Research Progress of Dendrobium in the Treatment and Prevention of Diabetes. Journal of Kunming Medical University, 2018, 39(07): 129-132.
    [17] Yu Shan , Wang Bo . 糖尿病健康教育研究进展. Journal of Kunming Medical University, 2018, 39(04): 130-134.
    [18] Zhang Yang . . Journal of Kunming Medical University,
    [19] Wang Xin Cuan . . Journal of Kunming Medical University,
    [20] . . Journal of Kunming Medical University,
  • Cited by

    Periodical cited type(7)

    1. 牛艳国,王献. 支架辅助弹簧圈颅内栓塞对颅内破裂动脉瘤患者的影响. 实用临床医药杂志. 2023(22): 123-126 .
    2. 康平,苏龙,马改平,马刘佳,魏健强,罗帅,李健. 支架辅助弹簧圈栓塞术与单纯弹簧圈栓塞术治疗颅内破裂动脉瘤患者的效果比较及对术后出血事件的影响. 临床医学研究与实践. 2022(02): 12-15+69 .
    3. 蒙智恩,郭世军,莫建华,韦定,梁世强,黄忠海. 支架辅助弹簧圈栓塞治疗破裂颅内动脉瘤的研究进展. 大医生. 2022(17): 141-144 .
    4. 陈唯实,徐建基,邓智峰. 超早期Neuroform支架辅助栓塞颅内破裂动脉瘤的疗效及安全性研究. 海南医学. 2022(23): 3017-3019 .
    5. 徐园华,朱园园,陈淑娟. 颅内动脉瘤介入栓塞术患者术后血管并发症的预防性护理干预. 齐鲁护理杂志. 2019(16): 46-48 .
    6. 寇咏,王瑶. CT引导经皮肺穿刺活检对肺部病变的诊断意义及并发症原因分析. 中国实验诊断学. 2019(11): 1896-1899 .
    7. 潘捷,吴高远,倪永丰. LVIS密网支架辅助弹簧圈栓塞介入治疗单发颅内破裂小动脉瘤的近期疗效及其并发症发生情况的研究. 立体定向和功能性神经外科杂志. 2019(03): 157-162 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04050100150200250
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.8 %FULLTEXT: 27.8 %META: 70.2 %META: 70.2 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.9 %其他: 4.9 %其他: 0.1 %其他: 0.1 %三亚: 0.0 %三亚: 0.0 %上海: 13.1 %上海: 13.1 %东莞: 0.3 %东莞: 0.3 %丽江: 0.0 %丽江: 0.0 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %九江: 0.1 %九江: 0.1 %亳州: 0.3 %亳州: 0.3 %佳木斯: 0.1 %佳木斯: 0.1 %保定: 0.0 %保定: 0.0 %保山: 0.0 %保山: 0.0 %克孜勒苏: 0.2 %克孜勒苏: 0.2 %六安: 0.1 %六安: 0.1 %兰州: 0.0 %兰州: 0.0 %北京: 26.6 %北京: 26.6 %十堰: 0.0 %十堰: 0.0 %南京: 0.4 %南京: 0.4 %南通: 0.1 %南通: 0.1 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %卡纳塔克邦: 0.3 %卡纳塔克邦: 0.3 %厦门: 0.1 %厦门: 0.1 %台州: 0.0 %台州: 0.0 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.0 %呼和浩特: 0.0 %咸阳: 0.1 %咸阳: 0.1 %商丘: 0.1 %商丘: 0.1 %商洛: 0.0 %商洛: 0.0 %嘉兴: 0.2 %嘉兴: 0.2 %墨尔本: 0.0 %墨尔本: 0.0 %多伦多: 0.0 %多伦多: 0.0 %大理白族自治州: 0.0 %大理白族自治州: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.8 %天津: 0.8 %太原: 0.1 %太原: 0.1 %安那罕: 0.6 %安那罕: 0.6 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.2 %宣城: 0.2 %常州: 0.0 %常州: 0.0 %广州: 0.4 %广州: 0.4 %庆阳: 0.0 %庆阳: 0.0 %延安: 0.1 %延安: 0.1 %张家口: 1.4 %张家口: 1.4 %德宏: 0.1 %德宏: 0.1 %德里: 0.1 %德里: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.4 %扬州: 0.4 %拜仁: 0.1 %拜仁: 0.1 %揭阳: 0.2 %揭阳: 0.2 %新乡: 0.3 %新乡: 0.3 %无锡: 0.4 %无锡: 0.4 %日照: 0.0 %日照: 0.0 %昆明: 2.8 %昆明: 2.8 %明尼阿波利斯: 0.3 %明尼阿波利斯: 0.3 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.2 %杭州: 0.2 %松原: 0.0 %松原: 0.0 %柏林: 0.0 %柏林: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %楚雄: 0.2 %楚雄: 0.2 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.3 %沈阳: 0.3 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %海口: 0.2 %海口: 0.2 %淄博: 0.1 %淄博: 0.1 %淮南: 0.0 %淮南: 0.0 %深圳: 0.4 %深圳: 0.4 %温州: 0.3 %温州: 0.3 %湖州: 0.1 %湖州: 0.1 %漯河: 1.3 %漯河: 1.3 %玉林: 0.1 %玉林: 0.1 %玉溪: 0.1 %玉溪: 0.1 %珠海: 0.0 %珠海: 0.0 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.0 %福州: 0.0 %艾奥瓦城: 0.2 %艾奥瓦城: 0.2 %芒廷维尤: 11.1 %芒廷维尤: 11.1 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.3 %苏州: 0.3 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.2 %衡阳: 0.2 %襄阳: 0.0 %襄阳: 0.0 %西宁: 12.9 %西宁: 12.9 %西安: 0.3 %西安: 0.3 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.1 %运城: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.3 %郑州: 0.3 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.2 %重庆: 0.2 %金华: 0.0 %金华: 0.0 %长沙: 2.4 %长沙: 2.4 %青岛: 0.4 %青岛: 0.4 %马赛: 0.1 %马赛: 0.1 %驻马店: 8.3 %驻马店: 8.3 %黄石: 0.0 %黄石: 0.0 %其他其他三亚上海东莞丽江乌鲁木齐九江亳州佳木斯保定保山克孜勒苏六安兰州北京十堰南京南通博阿努瓦卡纳塔克邦厦门台州合肥呼和浩特咸阳商丘商洛嘉兴墨尔本多伦多大理白族自治州大连天津太原安那罕宝鸡宣城常州广州庆阳延安张家口德宏德里成都扬州拜仁揭阳新乡无锡日照昆明明尼阿波利斯晋城朝阳杭州松原柏林格兰特县楚雄武汉沈阳洛杉矶洛阳济南海口淄博淮南深圳温州湖州漯河玉林玉溪珠海石家庄福州艾奥瓦城芒廷维尤芝加哥苏州衡水衡阳襄阳西宁西安贵阳运城邯郸郑州鄂州重庆金华长沙青岛马赛驻马店黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1577) PDF downloads(45) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return