Huijuan ZENG, Bo TIAN, Hongling YUAN, Jie HE, Guanxi LI, Guojia RU, Min XU, Dong ZHAN. Predictive Modeling of Chronic Kidney Disease with Hypertension or Diabetes Based on Machine Learning Algorithms[J]. Journal of Kunming Medical University, 2024, 45(3): 99-105. doi: 10.12259/j.issn.2095-610X.S20240315
Citation: Huijuan ZENG, Bo TIAN, Hongling YUAN, Jie HE, Guanxi LI, Guojia RU, Min XU, Dong ZHAN. Predictive Modeling of Chronic Kidney Disease with Hypertension or Diabetes Based on Machine Learning Algorithms[J]. Journal of Kunming Medical University, 2024, 45(3): 99-105. doi: 10.12259/j.issn.2095-610X.S20240315

Predictive Modeling of Chronic Kidney Disease with Hypertension or Diabetes Based on Machine Learning Algorithms

doi: 10.12259/j.issn.2095-610X.S20240315
  • Received Date: 2023-12-13
    Available Online: 2024-03-11
  • Publish Date: 2024-03-30
  •   Objective  To build the early predictive model for chronic kidney disease (CKD) in hypertension and diabetes patients in the community.   Methods  The CKD patients were recruited from 4 health care centers in 4 urban areas in Kunming. The control group was residents without hypertension and diabetes (n = 1267). The disease group was residents with hypertension and/or diabetes (n = 566). The questionnaire survey, physical examination, laboratory testing, and 5 SNPs gene types in the PVT1 gene. The risk factors, which were filtered with logistics regression, were used to build predictive models. Four machine learning algorithms were built: support vector machine (SVM), random forest (RF), Naïve Bayes (NB), and artificial neural network (ANN) models.   Results  Thirteen indicators included in the final diagnostic model: age, disease type, ethnicity, blood urea nitrogen, creatinine, eGFR from MDRD, ACR, eGFR from EPI2009, PAM13 score, sleep quality survey, staying-up late, PVT1 SNP rs11993333 and rs2720659. The accuracy, specificity, Kappa value, AUC of ROC, and PRC of ANN are greater than those of the other 3 models. The sensitivity of RF is the highest among 4 types of machine learning.   Conclusions  The ANN predictive model has a good ability of efficiency and classification to predict CKD with hypertension and/or diabetes patients in the community.
  • [1]
    陈婷,邓云蕾,龚蓉. 终末期肾病合并感染的生物标志物检测意义及研究进展[J]. 临床肾脏病杂志,2022,22(3):243-247.
    [2]
    Santos M,Yin H,Steffick D,et al. Predictors of kidney function recovery among incident ESRD patients[J]. BMC Nephrol,2021,22(1):142-153. doi: 10.1186/s12882-021-02345-7
    [3]
    Bikbov B,Purcell C,Levey A,et al. Global,regional,and national burden of chronic kidney disease,1990-2017: A systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet (London,England),2020,395(10225):709-733. doi: 10.1016/S0140-6736(20)30045-3
    [4]
    王仕鸿,令垚,杨子华,等. 基于时间序列模型的中国2020—2029年慢性肾病发病和患病情况预测研究[J]. 中国慢性病预防与控制,2023,31(11):801-806.
    [5]
    Zhang L,Wang F,Wang L,et al. Prevalence of chronic kidney disease in China: A cross-sectional survey[J]. Lancet (London,England),2012,379(9818):815-822. doi: 10.1016/S0140-6736(12)60033-6
    [6]
    郑旭彤,张曼,秦朱珠,等. 慢性肾病患者肾脏替代治疗辅助决策工具开发与验证研究的范围综述[J]. 中华护理教育,2023,20(4):500-507. doi: 10.3761/j.issn.1672-9234.2023.04.021
    [7]
    高翔,梅长林. 慢性肾脏病筛查诊断及防治指南[J]. 中国实用内科杂志,2017,37(1):28-34.
    [8]
    Zeng H,Jiang R,Zhou M,et al. Measuring patient activation in Chinese patients with hypertension and/or diabetes: Reliability and validity of the PAM13[J]. J Int Med Res,2019,47(12):5967-5976. doi: 10.1177/0300060519868327
    [9]
    Chen T,Li X,Li Y,et al. Prediction and risk stratification of kidney outcomes in IgA nephropathy[J]. Am J Kidney Dis,2019,74(3):300-309. doi: 10.1053/j.ajkd.2019.02.016
    [10]
    Chen Z,Zhang X,Zhang Z. Clinical risk assessment of patients with chronic kidney disease by using clinical data and multivariate models[J]. Int Urol Nephrol,2016,48(12):2069-2675. doi: 10.1007/s11255-016-1346-4
    [11]
    Polat H,Danaei Mehr H,Cetin A. Diagnosis of chronic kidney disease based on support vector machine by feature selection methods[J]. J Med Syst,2017,41(4):55-66. doi: 10.1007/s10916-017-0703-x
    [12]
    Almansour A,Syed F,Khayat R,et al. Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study[J]. Comput Biol Med,2019,109(6):101-111.
    [13]
    Wolfgram F,Garcia K,Evans G,et al. Association of albuminuria and estimated glomerular filtration rate with functional performance measures in older adults with chronic kidney disease[J]. Am J Nephrol,2017,45(2):172-179. doi: 10.1159/000455388
    [14]
    Zhang L,Zuo L,Xu G,et al. Community-based screening for chronic kidney disease among populations older than 40 years in Beijing[J]. Nephrology,dialysis,transplantation:official publication of the European Dialysis and Transplant Association - European Renal Association,2007,22(4):1093-1099. doi: 10.1093/ndt/gfl763
    [15]
    Wouters J,O'donoghue J,Ritchie J,et al. Early chronic kidney disease: Diagnosis,management and models of care[J]. Nature Reviews Nephrology,2015,11(8):491-502. doi: 10.1038/nrneph.2015.85
  • Relative Articles

    [1] Feixue QIN, Juankun HE, Shi LIU, Bin WEN, Hong ZHU, Jing LI, Li GUI, Xiaoyan CAO. The Distribution Characteristics of Pathogenic Bacteria in Inpatients with Diabetic Foot were Correlated with Different Wagner Grades. Journal of Kunming Medical University, 2025, 46(2): 67-73.  doi: 10.12259/j.issn.2095-610X.S20250210
    [2] Yuanzhen WANG, Hongyan WEI, Renhai TIAN, Yongzhen Chen, Danqing XU, Yingyuan ZHANG, Lixian CHANG, Chunyun LIU, Li LIU. Establishment and Evaluation of a Risk Prediction Model for Chronic Liver Failure Complicated by Primary Hepatocellular Carcinoma Before Intervention. Journal of Kunming Medical University, 2025, 46(3): 1-9.
    [3] Xu ZHENG, Chen XIE, Rao FU, Yu-zhi WU, Zhu-ling GUO. A Survey on the Cognition of the Relationship between Periodontitis and Diabetes Mellitus in Type 2 Diabetes Patients and Endocrinologists. Journal of Kunming Medical University, 2021, 42(3): 89-93.  doi: 10.12259/j.issn.2095-610X.S20210323
    [4] Hong-min LIANG, Yong-ping LU, Min CHEN, Yuan YANG, Jian-fu CHEN, Wei-han CAO. Study on Renal Perfusion in Chronic Kidney Disease by Semi-quantitative Analysis of Superb Micro-vascular Imaging and Color Doppler. Journal of Kunming Medical University, 2021, 42(2): 38-42.  doi: 10.12259/j.issn.2095-610X.S20210212
    [5] Wang Hua Wei , Meng Zhao Hui , Lu Ya Nan , Huang Zhao , Xu Jun , Chen Li Xing . . Journal of Kunming Medical University, 2020, 41(01): 42-47.
    [6] Yang Shu Di , Cai Le , Ma Guo Yu , Yang Jia Tian , Cui Wen Long . . Journal of Kunming Medical University, 2019, 40(04): 41-45.
    [7] Yu Shan , Wang Bo . 糖尿病健康教育研究进展. Journal of Kunming Medical University, 2018, 39(04): 130-134.
    [8] Dong Ling , Peng Yun Zhu , Huang Cheng , Huang Zhao , Chen Li Xing . Prevalence Rate and Associated Risk Factors of Hypertension in Bai Ethnic Group in Yunnan. Journal of Kunming Medical University, 2018, 39(07): 52-57.
    [9] Chen Qian . . Journal of Kunming Medical University, 2017, 38(03): 71-74.
    [10] Zeng Xiao Yan , Wu Bin , Yang Hui Ying , Yang Chun Ai , Huang Yun Hua . . Journal of Kunming Medical University, 2017, 38(02): 82-85.
    [11] Yan Sui Jun, Li Hui Fang . . Journal of Kunming Medical University, 2017, 38(03): 1-5.
    [12] Jiang Hong Ying , Dou Li Na , Liao Yun Juan , Zeng Yi , Bai Yi Hua , Yang Min . Clinical Value of Myocardial Injury Markers in Evaluating Cardiac Structure and Function of Chronic Kidney Disease Patients without Dialysis. Journal of Kunming Medical University, 2017, 38(10): 50-54.
    [13] Chen Min . Correlation Research of RANTES and Its Receptor CCR5 with Diabetes. Journal of Kunming Medical University,
    [14] Xiang Xi . The Correlation between Vitamin D Receptor Gene FokI Single Nucleotide Polymorphism and Diabetic Kidney Disease. Journal of Kunming Medical University,
    [15] Peng Hui . . Journal of Kunming Medical University,
    [16] Qin Min Li . . Journal of Kunming Medical University,
    [17] Wang Hong Xiong . . Journal of Kunming Medical University,
    [18] Xiong Yu Xin . . Journal of Kunming Medical University,
    [19] Li Hui Fang . . Journal of Kunming Medical University,
    [20] . . Journal of Kunming Medical University,
  • Cited by

    Periodical cited type(4)

    1. 王剑涛,赵旭东,邓丽,葛梦君,高贝贝,李雷. 亚甲基蓝改善脑炎性衰老大鼠认知功能及机制探索. 中华老年心脑血管病杂志. 2024(03): 336-340 .
    2. 李青宴,董宝莲,胡建英,宋超,郭玲,张洪江. 锰介导大鼠原代神经元氧化应激及炎症损伤模型的建立. 阿尔茨海默病及相关病杂志. 2022(01): 16-21 .
    3. 关雪,郭玲. 虾青素干预脂多糖介导原代小胶质细胞氧化应激反应的初步研究. 阿尔茨海默病及相关病杂志. 2021(01): 21-27 .
    4. 董宝莲,乔廷廷,陈忠义,关雪,郭玲,李辉. 建立Aβ_(1-42)介导新生鼠原代神经元退行性变细胞模型及虾青素作用研究. 阿尔茨海默病及相关病. 2019(02): 368-374 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 43.9 %FULLTEXT: 43.9 %META: 56.0 %META: 56.0 %PDF: 0.1 %PDF: 0.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.2 %其他: 10.2 %Canton: 0.0 %Canton: 0.0 %China: 3.5 %China: 3.5 %Falkenstein: 0.2 %Falkenstein: 0.2 %上海: 4.6 %上海: 4.6 %东莞: 0.1 %东莞: 0.1 %亳州: 0.1 %亳州: 0.1 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %休斯敦: 0.0 %休斯敦: 0.0 %保定: 0.0 %保定: 0.0 %六安: 0.1 %六安: 0.1 %凤凰城: 0.1 %凤凰城: 0.1 %北京: 45.5 %北京: 45.5 %十堰: 0.1 %十堰: 0.1 %南昌: 0.0 %南昌: 0.0 %南通: 0.1 %南通: 0.1 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %咸阳: 0.0 %咸阳: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.5 %天津: 0.5 %宁波: 0.0 %宁波: 0.0 %安那罕: 0.0 %安那罕: 0.0 %宜宾: 0.0 %宜宾: 0.0 %宣城: 0.3 %宣城: 0.3 %宿州: 0.1 %宿州: 0.1 %常州: 0.0 %常州: 0.0 %平顶山: 0.0 %平顶山: 0.0 %张家口: 0.3 %张家口: 0.3 %扬州: 0.3 %扬州: 0.3 %昆明: 0.2 %昆明: 0.2 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.1 %杭州: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.0 %洛阳: 0.0 %淄博: 0.0 %淄博: 0.0 %温州: 0.1 %温州: 0.1 %湖州: 0.0 %湖州: 0.0 %漯河: 0.7 %漯河: 0.7 %爱达荷福尔斯: 0.1 %爱达荷福尔斯: 0.1 %玉溪: 0.3 %玉溪: 0.3 %珠海: 0.0 %珠海: 0.0 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.3 %石家庄: 0.3 %秦皇岛: 0.0 %秦皇岛: 0.0 %绍兴: 0.0 %绍兴: 0.0 %芒廷维尤: 3.7 %芒廷维尤: 3.7 %芝加哥: 0.1 %芝加哥: 0.1 %衡水: 0.1 %衡水: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 1.8 %西宁: 1.8 %诺沃克: 0.0 %诺沃克: 0.0 %运城: 0.1 %运城: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.3 %郑州: 0.3 %银川: 0.0 %银川: 0.0 %长沙: 0.3 %长沙: 0.3 %阿布奎基: 0.0 %阿布奎基: 0.0 %青岛: 0.1 %青岛: 0.1 %马赛: 0.1 %马赛: 0.1 %马鞍山: 0.0 %马鞍山: 0.0 %驻马店: 23.8 %驻马店: 23.8 %其他CantonChinaFalkenstein上海东莞亳州伊利诺伊州休斯敦保定六安凤凰城北京十堰南昌南通博阿努瓦呼和浩特咸阳嘉兴天津宁波安那罕宜宾宣城宿州常州平顶山张家口扬州昆明晋城朝阳杭州武汉沈阳洛阳淄博温州湖州漯河爱达荷福尔斯玉溪珠海盐城石家庄秦皇岛绍兴芒廷维尤芝加哥衡水襄阳西宁诺沃克运城邯郸郑州银川长沙阿布奎基青岛马赛马鞍山驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (1136) PDF downloads(34) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return