Volume 45 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Haijun WANG, Liangwu QIU, Yanbin XIYANG, Jundi PANG. Research Progress on Aerobic Exercise Intervention for Learning and Memory Ability in Chronic Cerebral Ischemia[J]. Journal of Kunming Medical University, 2024, 45(3): 186-191. doi: 10.12259/j.issn.2095-610X.S20240328
Citation: Haijun WANG, Liangwu QIU, Yanbin XIYANG, Jundi PANG. Research Progress on Aerobic Exercise Intervention for Learning and Memory Ability in Chronic Cerebral Ischemia[J]. Journal of Kunming Medical University, 2024, 45(3): 186-191. doi: 10.12259/j.issn.2095-610X.S20240328

Research Progress on Aerobic Exercise Intervention for Learning and Memory Ability in Chronic Cerebral Ischemia

doi: 10.12259/j.issn.2095-610X.S20240328
  • Received Date: 2023-08-29
    Available Online: 2024-03-11
  • Publish Date: 2024-03-30
  • Active physical exercise can effectively alleviate the pathological process of chronic cerebral ischemia(CCH) and improve learning and memory ability. This paper reviews the possible biological mechanisms of aerobic exercise to delay the pathological process of chronic cerebral ischemia and improve learning and memory. Previous studies have found that aerobic exercise can improve the neuroprotective effect, enhance the plasticity of hippocampal synapses, improve the activity of the upper and lower pathways of hippocampal tissue, and improve learning and memory ability. However, the intervention effect of aerobic exercise on chronic cerebral ischemia should be fully considered at the intervention time, and the intervention effect is also different.
  • loading
  • [1]
    Shibata M,Yamasaki N,Miyakawa T,et al. Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion[J]. Stroke,2007,38(10):2826-2832. doi: 10.1161/STROKEAHA.107.490151
    [2]
    Flak M M,Hernes S S,Chang L,et al. The memory aid study: Protocol for a randomized controlled clinical trial evaluating the effect of computer-based working memory training in elderly patients with mild cognitive impairment[J]. Trials,2014,15(1):156. doi: 10.1186/1745-6215-15-156
    [3]
    Wrann C D,White J P,Salogiannis J,et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway[J]. Cell Metabolism,2013,18(5):649-659. doi: 10.1016/j.cmet.2013.09.008
    [4]
    Berchtold N C,Castello N,Cotman C W. Exercise and time-dependent benefits to learning and memory[J]. Neuroscience,2010,167(3):588-597. doi: 10.1016/j.neuroscience.2010.02.050
    [5]
    Hoveida R,Alaei H,Oryan S,et al. Treadmill running improves spatial memory in an animal model of Alzheimer's disease[J]. Behavioural Brain Research,2011,216(1):270-274. doi: 10.1016/j.bbr.2010.08.003
    [6]
    Cassilhas R C,Tufik S,De Mellom T. Physical exercise,neuroplasticity,spatial learning and memory[J]. Cellular and Molecular Life Sciences,2016,73(5):975-983. doi: 10.1007/s00018-015-2102-0
    [7]
    Robakis N K. Mechanisms of AD neurodegeneration may be independent of Aβ and its derivatives[J]. Neurobiology of Aging,2011,32(3):372-379. doi: 10.1016/j.neurobiolaging.2010.05.022
    [8]
    Sopala M,Danysz W. Chronic cerebral hypoperfusion in the rat enhances age-related deficits in spatial memory[J]. Journal of Neural Transmission,2001,108(12):1445-1456. doi: 10.1007/s007020100019
    [9]
    He J,Huang Y,Du G,et al. Lasting spatial learning and memory deficits following chronic cerebral hypoperfusion are associated with hippocampal mitochondrial aging in rats[J]. Neuroscience,2019,44(4):215-229.
    [10]
    Gálvez-Márquez D K,Salgado-Ménez M,Moreno-Castilla P,et al. Spatial contextual recognition memory updating is modulated by dopamine release in the dorsal hippocampus from the locus coeruleus[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(49):1-17.
    [11]
    Broadbent N J,Squire L R,Clark R E. Spatial memory,recognition memory,and the hippocampus[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(40):14515-14520.
    [12]
    Zhang G,Wang F,Geng M,et al. Comparative proteomic analysis of hippocampus between chronic cerebral ischemia rats and normal controls[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2011,36(10):992-998.
    [13]
    Yonemort F,Yamada H,Yamaguchi T,et al. Spatial memory disturbance after focal cerebral ischemia in rats[J]. Journal of Cerebral Blood flow and Metabolism:Official Journal of the International Society of Cerebral Blood Flow and Metabolism,1996,16(5):973-980. doi: 10.1097/00004647-199609000-00022
    [14]
    Bizon J L,Lasarge C L,Montgomery K S,et al. Spatial reference and working memory across the lifespan of male Fischer 344 rats[J]. Neurobiology of Aging,2009,30(4):646-655. doi: 10.1016/j.neurobiolaging.2007.08.004
    [15]
    Funahashi S,Kubota K. Working memory and prefrontal cortex[J]. Neuroscience Research,1994,21(1):1-11. doi: 10.1016/0168-0102(94)90063-9
    [16]
    Phillips C. Physical activity modulates common neuroplasticity substrates in major depressive and bipolar disorder[J]. Neural Plasticity,2017,26(4):1-37.
    [17]
    Tukacs V,Mittli D,Györffy B A,et al. Chronic stepwise cerebral hypoperfusion differentially induces synaptic proteome changes in the frontal cortex,occipital cortex,and hippocampus in rats[J]. Scientific Reports,2020,10(1):1-10. doi: 10.1038/s41598-019-56847-4
    [18]
    Neumann J T,Cohan C H,Dave K R,et al. Global cerebral ischemia: Synaptic and cognitive dysfunction[J]. Current Drug Targets,2013,14(1):20-35. doi: 10.2174/138945013804806514
    [19]
    吴莎,华清泉,杨琨,等. 脑源性神经营养因子研究进展[J]. 中华临床医师杂志(电子版),2013,7(9):88-90.
    [20]
    Shamsaei N,Khaksari M,Erfani S,et al. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia[J]. Neural Regeneration Research,2015,10(8):1245-1250. doi: 10.4103/1673-5374.162756
    [21]
    Ahn J H,Choi J H,Park J H,et al. Long-term exercise improves memory deficits via restoration of myelin and microvessel damage,and enhancement of neurogenesis in the aged gerbil hippocampus after ischemic stroke[J]. Neurorehabilitation and Neural Repair,2016,30(9):894-905. doi: 10.1177/1545968316638444
    [22]
    付燕,谢攀,李雪,等. 长期有氧运动对大鼠脑衰老过程中学习记忆与海马BDNF表达的影响[J]. 中国运动医学杂志,2015,34(8):750-756.
    [23]
    汪君民,陆海林,龚腾云. 规律性有氧运动对脑缺血大鼠的脑保护作用及机制探讨[J]. 中国实验动物学报,2021,29(5):618-625.
    [24]
    Leardini-Tristão M,Andrade G,Garcia C,et al. Physical exercise promotes astrocyte coverage of microvessels in a model of chronic cerebral hypoperfusion[J]. Journal of Neuroinflammation,2020,17(1):1-14. doi: 10.1186/s12974-019-1655-5
    [25]
    Bae S,Masaki H. Effects of acute aerobic exercise on cognitive flexibility required during task-switching paradigm[J]. Frontiers in Human Neuroscience,2019,13(7):1-9.
    [26]
    Serra F T,Carvalho A D,Araujo B H S,et al. Early exercise induces long-lasting morphological changes in cortical and hippocampal neurons throughout of a sedentary period of rats[J]. Scientific Reports,2019,9(1):1-12. doi: 10.1038/s41598-018-37186-2
    [27]
    张业廷,付燕,李雪,等. 有氧运动对阿尔茨海默症小鼠学习记忆及海马神经形态结构的影响[J]. 中国组织工程研究,2023,27(20):3188-3194.
    [28]
    张泓,黄桂兰,谭洁,等. 有氧运动对慢性缺血性认知障碍模型大鼠海马组织pCREB、PICK1及GluR2蛋白表达的影响[J]. 中国康复医学杂志,2018,33(7):777-782,799.
    [29]
    骆远,宋诗语,赵格,等. 有氧运动对青年期小鼠海马体Cdc42及DNA损伤反应相关因子的短期和长期影响[J]. 中国病理生理杂志.,2023,39(11):1956-1963.
    [30]
    Zhang H P,Sun Y Y,Chen X M,et al. The neuroprotective effects of isoflurane preconditioning in a murine transient global cerebral ischemia-reperfusion model: The role of the Notch signaling pathway[J]. Neuromolecular Medicine,2014,16(1):191-204. doi: 10.1007/s12017-013-8273-7
    [31]
    陈伟,陈嘉勤,毛海峰,等. 有氧运动和黑果枸杞多糖对慢性脑缺血小鼠的干预及Notch通路相关因子的组织差异表达[J]. 中国动脉硬化杂志,2017,25(8):783-790.
    [32]
    杨力源,张业廷,李垂坤,等. 有氧运动训练影响阿尔茨海默症小鼠海马Notch1、Caspase-3的表达[J]. 中国组织工程研究,2024,28(26):13-20.
    [33]
    邱良武,何建辉,习杨彦彬,等. 音乐运动疗法对老年小鼠海马细胞凋亡的影响[J]. 中华中医药杂志,2020,35(10):5247-5250.
    [34]
    Sim Y J,Kim H,Kim J Y,et al. Long-term treadmill exercise overcomes ischemia-induced apoptotic neuronal cell death in gerbils[J]. Physiology & Behavior,2005,84(5):733-738.
    [35]
    Aksu I,Topcu A,Camsari U M,et al. Effect of acute and chronic exercise on oxidant-antioxidant equilibrium in rat hippocampus,prefrontal cortex and striatum[J]. Neuroscience Letters,2009,452(3):281-285. doi: 10.1016/j.neulet.2008.09.029
    [36]
    Pizzino G,Irrera N,Cucinotta M,et al. Oxidative stress: Harms and benefits for human health[J]. Oxidative Medicine and Cellular Longevity,2017,2017:1-13.
    [37]
    Rosa T S,Neves R V P,Deus L A,et al. Sprint and endurance training in relation to redox balance,inflammatory status and biomarkers of aging in master athletes[J]. Nitric Oxide:biology and Chemistry,2020,102(1):42-51.
    [38]
    于芳, 杨鑫, 张星芝, 等. 跑台运动通过拮抗海马氧化应激水平改善VD大鼠认知功能[C]. 第十一届全国体育科学大会论文集, 2019: 7461-7463.
    [39]
    Adlard P A,Perreau V M,Pop V,et al. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease[J]. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience,2005,25(17):4217-4221. doi: 10.1523/JNEUROSCI.0496-05.2005
    [40]
    Stillman C M,Lopez O L,Becker J T,et al. Physical activity predicts reduced plasma β amyloid in the Cardiovascular Health Study[J]. Annals of Clinical and Translational Neurology,2017,4(5):284-291. doi: 10.1002/acn3.397
    [41]
    Um H S,Kang E B,Koo J H,et al. Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease[J]. Neuroscience Research,2011,69(2):161-173. doi: 10.1016/j.neures.2010.10.004
    [42]
    Tapia-Rojas C,Aranguiz F,Varela-Nallar L,et al. Voluntary running attenuates memory loss,decreases neuropathological changes and induces neurogenesis in a mouse model of alzheimer's disease[J]. Brain Pathology (Zurich,Switzerland),2016,26(1):62-74. doi: 10.1111/bpa.12255
    [43]
    余锋,徐波,季浏,等. 跑轮和跑台运动干预模式对AD动物模型脑内β-淀粉样蛋白的影响[J]. 上海体育学院学报,2014,38(5):50-55,69.
    [44]
    Yuade C M,Zimmerman S D,Dong H,et al. Effects of voluntary and forced exercise on plaque deposition,hippocampal volume,and behavior in the Tg2576 mouse model of Alzheimer's disease[J]. Neurobiology of Disease,2009,35(3):26-32.
  • Relative Articles

    [1] Li MA, Zhaoyu YANG, Junyao LI, Jiahui JIANG, Jiali NING, Yi MA. Effects of Tactile/Motor Stimulation Massage on Feeding Outcomes and Neuromotor Development in Preterm Infants. Journal of Kunming Medical University, 2024, 46(): 1-6.
    [2] Guojing LIANG, Kun JI, Kaichun ZHANG, Yufang ZHANG, Jing AN, Yuge ZHANG, Juan WEN, Haiyan REN. The Effect of Probiotics on the Expression of Aβ and the Protective Effect of Neurons in Rats with Cerebral Ischemia-Reperfusion Injury. Journal of Kunming Medical University, 2024, 45(5): 37-43.  doi: 10.12259/j.issn.2095-610X.S20240506
    [3] Yu’e ZHOU, Tuan LI, Li MA, Tianyun LIU. Oral Exercise Intervention on Feeding Effect,Growth and Development in Low Birth Weight Infants. Journal of Kunming Medical University, 2023, 44(4): 176-180.  doi: 10.12259/j.issn.2095-610X.S20230414
    [4] Bijuan LIANG, Hua LI, Zhimin WANG, Jun GU, Lei YANG, Jianpei SU. Effect of Nutritional Intervention Combined with Resistance Exercise on Senile Sarcopenia. Journal of Kunming Medical University, 2023, 44(6): 92-96.  doi: 10.12259/j.issn.2095-610X.S20230613
    [5] Wen JIANG, Song MEI, Haijiang LI, Guoliang JIANG, Dan HUANG. Effects of Willed Movement on the Expression of GLUA2 and N-cadherin in Rats with Focal Cerebral Ischemia. Journal of Kunming Medical University, 2022, 43(3): 21-26.  doi: 10.12259/j.issn.2095-610X.S20220320
    [6] Sai-ge YIN, Jun SUN, Xin-wang YANG. Research Progress of Exogenous Peptide Molecule in Prevention and Treatment of Ischemic Stroke Injury. Journal of Kunming Medical University, 2021, 42(9): 156-161.  doi: 10.12259/j.issn.2095-610X.S20210929
    [7] Zhang Qin , Feng Peng Peng , Wang Shuo , Wang Yang , Wu Ying , Si Xiang Yue , Qian Jing Hua . . Journal of Kunming Medical University, 2020, 41(01): 132-136.
    [8] Jing YANG, Shu-xian WANG, Zhu ZHOU. Effect of Aerobic Exercise and Nutritional Management in Maintenance Hemodialysis Patients with Malnutrition. Journal of Kunming Medical University, 2020, 41(11): 68-71.  doi: 10.12259/j.issn.2095-610X.S20201123
    [9] Li Zun Hua , Qiu Liang Wu , Pang Jun Di . . Journal of Kunming Medical University, 2019, 40(01): 40-43.
    [10] Shen Zhi Xiang , Zhu Li Xun , Xu Wei Hong . 有氧运动对2型糖尿病大鼠AGE-RAGE轴及NF-κB通路的影响. Journal of Kunming Medical University, 2018, 39(01): 16-19.
    [11] Zhang Wei . Effect of SGK1 on the Protection of Ischemia Reperfusion Model Rats. Journal of Kunming Medical University,
    [12] Zhang Lan Chun , Wang Shang Wen , Hu Wei Yan , Zhao Rong Hua , Yu Hao Fei , Zhang Rong Ping . Protective Effects of Rosemary's Extract on Cerebral Ischemia in Mice and Acute Toxicity Evaluation. Journal of Kunming Medical University, 2016, 37(12): 16-19.
    [13] Liu Jing . Effect of Early Intervention in Neurodevelopment on Motor and Cognitive Development of High Risk Premature Infants. Journal of Kunming Medical University,
    [14] Bao Wen Li . . Journal of Kunming Medical University,
    [15] Zhang Ren Fa . . Journal of Kunming Medical University,
    [16] Lan Yang . . Journal of Kunming Medical University,
    [17] Zhang Ren Fa . . Journal of Kunming Medical University,
    [18] Shao Jian Lin . . Journal of Kunming Medical University, 2012, 33(04): 1-2.
    [19] . Protective Effects of Baicalin Against Learing and Memory Capacity of Mice with Cerebral Ischemia-reperfusion Injury. Journal of Kunming Medical University,
    [20] Zhu Xing Bao . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1156) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return