Volume 45 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Xiao CHEN. Development of Predictive Scale for Diabetic Kidney Disease Progression Based on Decision Tree Classification Model[J]. Journal of Kunming Medical University, 2024, 45(8): 109-116. doi: 10.12259/j.issn.2095-610X.S20240816
Citation: Xiao CHEN. Development of Predictive Scale for Diabetic Kidney Disease Progression Based on Decision Tree Classification Model[J]. Journal of Kunming Medical University, 2024, 45(8): 109-116. doi: 10.12259/j.issn.2095-610X.S20240816

Development of Predictive Scale for Diabetic Kidney Disease Progression Based on Decision Tree Classification Model

doi: 10.12259/j.issn.2095-610X.S20240816
  • Received Date: 2023-12-18
    Available Online: 2024-06-26
  • Publish Date: 2024-08-25
  •   Objective  To establish a diabetic kidney disease (DKD) progression prediction scale based on the decision tree classification model.   Methods  A retrospective analysis was conducted on 308 patients with diabetic kidney disease admitted to Department of Endocrinology, the Second People's Hospital of Liupanshui from July 2020 to July 2021. The patients were divided into two groups: microalbuminuria group (n = 224) and macroalbuminuria group (n = 84). Univariate and multivariate Logistic regression analysis were performed on demographic data, past medical history and other indicators of the two groups of patients, and a DKD progression prediction scale was established using the decision tree classification model.   Results  Among the 308 subjects, 84 (27.27%) had macroalbuminuria and 224 (72.73%) had microalbuminuria. Multivariate Logistic regression analysis showed that systolic blood pressure (OR = 1.022, P = 0.003) and serum creatinine (OR = 1.012, P < 0.001) and total protein levels (OR = 0.953, P = 0.003) were risk factors for macroalbuminuria. The decision tree classification model was used to establish a prediction scale with a total score of 60 points and a diagnostic threshold of 33 points. The area under the ROC curve of the decision tree model (0.781) was greater than that of the multivariate logistic regression model (0.769). The sensitivity was 95.2% and the specificity was 78.9%.  Conclusion  DKD progression prediction scale can accurately assess the progression of DKD and has good clinical value for the early prediction of DKD progression.
  • loading
  • [1]
    Wang S,Yang Y,He X,et al. Cdk5-Mediated phosphorylation of sirt1 contributes to podocyte mitochondrial dysfunction in diabetic nephropathy[J]. Antioxidants & Redox Signaling,2021,34(3):171-190.
    [2]
    Luo Y,Lu Z,Waaga-Gasser A M,et al. Modulation of calcium homeostasis may be associated with susceptibility to renal cell carcinoma in diabetic nephropathy Rats[J]. Cancer Management and Research,2020,12:9679-9689. doi: 10.2147/CMAR.S268402
    [3]
    王晋文,芮章茹,任晓燕. 云南慢性肾衰竭患者病因与转归分析[J]. 昆明医学院学报,2010,31(10):102-104+117.
    [4]
    Mann J F E,Green D,Jamerson K,et al. Avosentan for overt diabetic nephropathy[J]. Journal of the American Society of Nephrology: JASN,2010,21(3):527-535. doi: 10.1681/ASN.2009060593
    [5]
    Hamat I,Abderraman G M,Cisse M M,et al. Profile of diabetic nephropathy at the National Reference General Hospital of N’Djamena[J]. The Pan African Medical Journal,2016,24(1):193-196.
    [6]
    张圣,胡振杰,叶璐,等. 决策树分析在急性心肌梗死事件预测中的应用[J]. 浙江大学学报(医学版),2019,48(6):594-602. doi: 10.3785/j.issn.1008-9292.2019.12.02
    [7]
    张向伟. 早期糖尿病肾脏病向临床期糖尿病肾脏病进展预测因子及模型研究[D]. 北京: 北京中医药大学,2017.
    [8]
    李佳佳,黄皓,陶立坚,等. 糖尿病肾病主要发病机制的研究进展[J]. 生命科学,2023,35(3):396-404.
    [9]
    孟继娴,刘蕾,甄紫伊,等. 2型糖尿病患者糖尿病肾病发生风险预测模型的研究进展[J]. 沈阳医学院学报,2023,25(5):525-528,534.
    [10]
    文晓晨,马晓燕,宫成军. 糖尿病肾脏病进展风险因素和预测模型构建[J]. 辽宁中医药大学学报,2023,25(1):161-170.
    [11]
    王富军,王文琦. 中国2型糖尿病防治指南(2020年版)解读[J]. 河北医科大学学报,2021,42(12):1365-1371. doi: 10.3969/j.issn.1007-3205.2021.12.001
    [12]
    孙玲莉,董世杰,杨贵军. 常用多重插补法的插补重数选择[J]. 统计与决策,2019,35(23):5-10.
    [13]
    柳红芳,姜旻. 基于临床研究的糖尿病肾脏病预测量表的研制[J]. 北京中医药大学学报,2018,41(5):418-422. doi: 10.3969/j.issn.1006-2157.2018.05.011
    [14]
    Tuttle K R,Agarwal R,Alpers C E,et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease[J]. Kidney International,2022,102(2):248-260. doi: 10.1016/j.kint.2022.05.012
    [15]
    张曼,戴丽芬,田福璐,等. 糖尿病肾病发生发展的相关危险因素[J]. 中国老年保健医学,2020,18(2):80-82.
    [16]
    王力宁. 糖尿病患者慢性肾脏病的早期筛查和防治[J]. 肾脏病与透析肾移植杂志,2007,(6):542-543. doi: 10.3969/j.issn.1006-298X.2007.06.009
    [17]
    李桂霞,翟晓丽,黄艺,等. 糖尿病肾脏病合并高血压患者昼夜血压节律变化与脂代谢、内皮功能的相关性研究[J]. 中国处方药,2023,21(6):1-4. doi: 10.3969/j.issn.1671-945X.2023.06.002
    [18]
    徐德凤,朱德琪. 糖尿病与高血压[J]. 山东医药,1988,(10):9.
    [19]
    Barutta F,Bellini S,Canepa S,et al. Novel biomarkers of diabetic kidney disease: Current status and potential clinical application[J]. Acta Diabetologica,2021,58(7):819-830. doi: 10.1007/s00592-020-01656-9
    [20]
    李明,罗绍珍,叶婧. 低分子肝素联合血管转换酶抑制剂对糖尿病肾病显性蛋白尿的治疗观察[J]. 内科,2006,(2):116-117. doi: 10.3969/j.issn.1673-7768.2006.02.009
    [21]
    林秋璇,林彩战. 糖肾方治疗糖尿病肾病显性蛋白尿期临床观察[J]. 光明中医,2022,37(13):2292-2294.
    [22]
    王征,李艳芳. 糖肾方治疗糖尿病肾病显性蛋白尿期的临床疗效及其作用机制探讨[J]. 中国中西医结合肾病杂志,2020,21(4):328-330.
    [23]
    梁瑛楠,刘玉宁,周静威,等. 以大量蛋白尿为表现的糖尿病肾脏病临床特点及中医证型分析[J]. 中国中西医结合肾病杂志,2023,24(11):974-977.
    [24]
    Naaman S C,Bakris G L. Slowing diabetic kidney disease progression: Where do we stand today?[J]. Compendia,2021,2021(1):28-32. doi: 10.2337/db20211-28
    [25]
    van Raalte D H,Bjornstad P,Cherney D Z I,et al. Combination therapy for kidney disease in people with diabetes mellitus[J]. Nature Reviews Nephrology,2024,6(1):1-14.
    [26]
    An N,Wu B,Yang Y,et al. Re-understanding and focusing on normoalbuminuric diabetic kidney disease[J]. Frontiers in Endocrinology,2022,13:1077929. doi: 10.3389/fendo.2022.1077929
  • Relative Articles

    [1] Jing ZHOU, Linling LI, Haihong WANG, Yuqiong YANG. Effect and Psychological State of Triangle Hierarchical Management+LEARNS Model for Diabetes Nephropathy. Journal of Kunming Medical University, 2024, 45(4): 197-202.  doi: 10.12259/j.issn.2095-610X.S20240429
    [2] Yuxin XIONG, Ying YANG. Research Progress of Diabetic Tubulopathy. Journal of Kunming Medical University, 2023, 44(9): 148-154.  doi: 10.12259/j.issn.2095-610X.S20230920
    [3] Ling ZHAO, Hongling ZHONG, Xinru GAO, Mei LI, Tingting MAO, Rongyong LI, Tingyu KE. Clinical Observation of SGLT-2 Inhibitors in Delaying the Progression of Diabetic Nephropathy. Journal of Kunming Medical University, 2023, 44(5): 60-65.  doi: 10.12259/j.issn.2095-610X.S20230527
    [4] Yi ZENG, Yun-juan LIAO, Ying LI, Zhen-kun HE. Efficacy of Dapagliflozin on Early Diabetic Nephropathy and Its Effect on Serum MCP-1 and IL-6. Journal of Kunming Medical University, 2021, 42(12): 41-46.  doi: 10.12259/j.issn.2095-610X.S20211218
    [5] Yang Dan . Effect of Paracrine Function of Mesenchymal Stem Cells on Diabetic Nephropathy. Journal of Kunming Medical University,
    [6] Xiang Xi . The Correlation between Vitamin D Receptor Gene FokI Single Nucleotide Polymorphism and Diabetic Kidney Disease. Journal of Kunming Medical University,
    [7] Dong Zhong Li . Monocytes/Macrophages Promote Venous Thrombosis Organization and Recanalization:Mechanism and Research Progress. Journal of Kunming Medical University,
    [8] Zhang Xi Jun . . Journal of Kunming Medical University,
    [9] Xiang Xi . . Journal of Kunming Medical University,
    [10] Lei Hai Feng . . Journal of Kunming Medical University,
    [11] An Xin Huan . . Journal of Kunming Medical University,
    [12] Li Hui Fang . . Journal of Kunming Medical University,
    [13] Mao Wen Wen . . Journal of Kunming Medical University,
    [14] Lu Fang Li . . Journal of Kunming Medical University,
    [15] Du Xing Hua . . Journal of Kunming Medical University,
    [16] Chen Li Hua . . Journal of Kunming Medical University,
    [17] Sun Zhi Min . . Journal of Kunming Medical University,
    [18] Tang Li Li . . Journal of Kunming Medical University,
    [19] . Protective Effect of α-Thioctic Acid on Early Type 2 Diabetics Nephropathy. Journal of Kunming Medical University,
    [20] Li Mei Rui . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(6)

    Article Metrics

    Article views (799) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return