Volume 45 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Lei ZHOU, Wenwen LYU, Yongzhong DUAN, Wen QIAN, Jishuai CHENG. Research Progress of siRNA Targeting Against HSV-1[J]. Journal of Kunming Medical University, 2024, 45(9): 1-8. doi: 10.12259/j.issn.2095-610X.S20240901
Citation: Lei ZHOU, Wenwen LYU, Yongzhong DUAN, Wen QIAN, Jishuai CHENG. Research Progress of siRNA Targeting Against HSV-1[J]. Journal of Kunming Medical University, 2024, 45(9): 1-8. doi: 10.12259/j.issn.2095-610X.S20240901

Research Progress of siRNA Targeting Against HSV-1

doi: 10.12259/j.issn.2095-610X.S20240901
More Information
  • Corresponding author: 钱雯,北京协和医学院免疫学博士,研究员。就职于云南沃森生物技术股份有限公司,先后从事疫苗的研发、生产和质量控制及管理工作20余年。主要研究方向为疫苗技术开发及质量控制。作为主研人员完成了b型流感嗜血杆菌结合疫苗、流脑等疫苗品种的关键技术的突破、产业化研究和现场质量体系的建立。涉及品种已上市销售,先后获得云南省科技进步二等奖3项,三等奖1项。昆明市科技进步二等奖1项,三等奖1项。承担国家认定企业技术中心、云南省疫苗工程技术研究中心、云南省生物技术药物工程研究中心等多项资质平台创新能力建设工作。为生物结合疫苗研发省创新团队核心成员。昆明市创新团队带头人,入选云南省产业技术领军人才、云南省科技创新人才、昆明市有突出贡献优秀专业技术人员、获得PMI-PMP、ACP项目管理专业人士认证、MATRIZ L3国际创新认证。国家三级创新工程师及一级创新培训师。申请发明专利7项,授权5项,其中第一发明人3项。第一作者或通讯作者发表中文核心期刊文章11篇,SCI文章1篇。
  • Received Date: 2024-05-28
    Available Online: 2024-08-29
  • Publish Date: 2024-09-25
  • HSV-1 is an important pathogen that can be carried and transmitted in various populations and can cause diseases including herpes labialis, capsulatus, keratitis and viral encephalitis. Although there are several types of HSV-1 vaccines in various stages of development, there is still no commercially available vaccine on the market. The specific anti-HSV-1 drugs used in clinical practice, such as acyclovir, valaciclovir and peniclovir, are also facing the serious threat of resistance. The development of new specific anti-HSV-1 drugs is one of the main tasks currently faced. siRNA is a double-stranded RNA with a length of 20-25 nucleotides that plays an interfering role by silencing gene expression at the post-transcriptional level. As a new and potential antiviral drug, siRNA has attracted much attention and developed rapidly. In this paper, we review the recent progress of siRNA in anti-HSV-1 research, including the design, delivery and targeting strategies of siRNA targeting key HSV-1 genes and HSV-1 interacting host cell genes.
  • loading
  • [1]
    Looker K J,Magaret A S,May M T,et al. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012[J]. PLoS One,2015,10(10):e0140765. doi: 10.1371/journal.pone.0140765
    [2]
    James C,Harfouche M,Welton N J,et al. Herpes simplex virus: Global infection prevalence and incidence estimates,2016[J]. Bull World Health Organ,2020,98(5):315-329. doi: 10.2471/BLT.19.237149
    [3]
    Looker K J,Magaret A S,May M T,et al. First estimates of the global and regional incidence of neonatal herpes infection[J]. Lancet Glob Health,2017,5(3):e300-e309. doi: 10.1016/S2214-109X(16)30362-X
    [4]
    Xu F,Sternberg M R,Kottiri B J,et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States[J]. Jama,2006,296(8):964-973. doi: 10.1001/jama.296.8.964
    [5]
    Navarro-Bielsa A,Gracia-Cazana T,Aldea-Manrique B,et al. COVID-19 infection and vaccines: Potential triggers of Herpesviridae reactivation[J]. An Bras Dermatol,2023,98(3):347-354. doi: 10.1016/j.abd.2022.09.004
    [6]
    Whitley RJRoizman B. Herpes simplex virus infections[J]. The Lancet,2001,357(9267):1513-1518. doi: 10.1016/S0140-6736(00)04638-9
    [7]
    Marcocci M E,Napoletani G,Protto V,et al. Herpes simplex virus-1 in the brain: The dark side of a sneaky infection[J]. Trends Microbiol,2020,28(10):808-820. doi: 10.1016/j.tim.2020.03.003
    [8]
    De Chiara G,Marcocci M E,Sgarbanti R,et al. Infectious agents and neurodegeneration[J]. Mol Neurobiol,2012,46(3):614-638. doi: 10.1007/s12035-012-8320-7
    [9]
    De Clercq E. A 40-year journey in search of selective antiviral chemotherapy[J]. Annual Review of Pharmacology and Toxicology,2011,51(1):1-24. doi: 10.1146/annurev-pharmtox-010510-100228
    [10]
    De Clercq E. Antivirals: Past,present and future[J]. Biochem Pharmacol,2013,85(6):727-744. doi: 10.1016/j.bcp.2012.12.011
    [11]
    Burrel S,Boutolleau D,Azar G,et al. Phenotypic and genotypic characterization of acyclovir-resistant corneal HSV-1 isolates from immunocompetent patients with recurrent herpetic keratitis[J]. J Clin Virol,2013,58(1):321-324. doi: 10.1016/j.jcv.2013.05.001
    [12]
    Sadowski L A,Upadhyay R,Greeley Z W,et al. Current drugs to treat infections with herpes simplex viruses-1 and -2[J]. Viruses,2021,13(7):1228. doi: 10.3390/v13071228
    [13]
    Preda M,Manolescu L S C,Chivu R D. Advances in alpha herpes viruses vaccines for human[J]. Vaccines (Basel),2023,11(6):1094. doi: 10.3390/vaccines11061094
    [14]
    Pushparaj P N,Aarthi J J,Manikandan J,et al. siRNA,miRNA,and shRNA: In vivo applications[J]. J Dent Res,2008,87(11):992-1003. doi: 10.1177/154405910808701109
    [15]
    Hu B,Zhong L,Weng Y,et al. Therapeutic siRNA: State of the art[J]. Signal Transduct Target Ther,2020,5(1):101. doi: 10.1038/s41392-020-0207-x
    [16]
    Tan F L,Yin J Q. RNAi,a new therapeutic strategy against viral infection[J]. Cell Res,2004,14(6):460-466. doi: 10.1038/sj.cr.7290248
    [17]
    Guo S,Kemphues K J. par-1,a gene required for establishing polarity in C. elegans embryos,encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell,1995,81(4):611-620. doi: 10.1016/0092-8674(95)90082-9
    [18]
    Fire A,Xu S,Montgomery M K,et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391(6669):806-811. doi: 10.1038/35888
    [19]
    Elbashir S M,Lendeckel W,Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs[J]. Genes Dev,2001,15(2):188-200. doi: 10.1101/gad.862301
    [20]
    Elbashir S M,Harborth J,Lendeckel W,et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature,2001,411(6836):494-498. doi: 10.1038/35078107
    [21]
    Hammond S M,Bernstein E,Beach D,et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells[J]. Nature,2000,404(6775):293-296. doi: 10.1038/35005107
    [22]
    Saurabh S,Vidyarthi A S,Prasad D. RNA interference: concept to reality in crop improvement[J]. Planta,2014,239(3):543-564. doi: 10.1007/s00425-013-2019-5
    [23]
    Carthew R W,Sontheimer E J. Origins and mechanisms of miRNAs and siRNAs[J]. Cell,2009,136(4):642-655. doi: 10.1016/j.cell.2009.01.035
    [24]
    Griffiths S J,Haas J. siRNA screening for genes involved in HSV-1 replication[J]. Bio Protoc,2014,4(16):e1209.
    [25]
    Jin F,Li S,Zheng K,et al. Silencing herpes simplex virus type 1 capsid protein encoding genes by siRNA: A promising antiviral therapeutic approach[J]. PLoS One,2014,9(5):e96623. doi: 10.1371/journal.pone.0096623
    [26]
    Jbara-Agbaria D,Blondzik S,Burger-Kentischer A,et al. Liposomal siRNA formulations for the treatment of herpes simplex virus-1: In vitro characterization of physicochemical properties and activity,and in vivo biodistribution and toxicity studies[J]. Pharmaceutics,2022,14(3):633. doi: 10.3390/pharmaceutics14030633
    [27]
    Taylor T J,Knipe D M. Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication,repair,recombination,and chromatin remodeling proteins with ICP8[J]. J Virol,2004,78(11):5856-5866. doi: 10.1128/JVI.78.11.5856-5866.2004
    [28]
    Bryant K F,Yan Z,Dreyfus D H,et al. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication[J]. J Virol,2012,86(12):6825-6834. doi: 10.1128/JVI.00374-12
    [29]
    Song B,Liu X,Wang Q,et al. Adenovirus-mediated shRNA interference against HSV-1 replication in vitro[J]. J Neurovirol,2016,22(6):799-807. doi: 10.1007/s13365-016-0453-4
    [30]
    Silva A P,Lopes J F,Paula V S. RNA interference inhibits herpes simplex virus type 1 isolated from saliva samples and mucocutaneous lesions[J]. Braz J Infect Dis,2014,18(4):441-444. doi: 10.1016/j.bjid.2014.01.011
    [31]
    Duan F,Ni S,Nie Y,et al. Small interfering RNA targeting for infected-cell polypeptide 4 inhibits herpes simplex virus type 1 replication in retinal pigment epithelial cells[J]. Clinical & Experimental Ophthalmology,2012,40(2):195-204.
    [32]
    Liu Y T,Song B,Wang Y L,et al. [SiRNA targeting ICP4 attenuates HSV-1 replication][J]. Bing Du Xue Bao,2010,26(3):163-169.
    [33]
    Zhe R,Mei-Ying Z,Kitazato K,et al. Effect of siRNA on HSV-1 plaque formation and relative expression levels of UL39 mRNA[J]. Arch Virol,2008,153(7):1401-1406. doi: 10.1007/s00705-008-0110-1
    [34]
    Ren Z,Li S,Wang Q L,et al. Effect of siRNAs on HSV-1 plaque formation and relative expression levels of RR mRNA[J]. Virol Sin,2011,26(1):40-46. doi: 10.1007/s12250-011-3162-9
    [35]
    Heming J D,Conway J F,Homa F L. Herpesvirus capsid assembly and DNA packaging[J]. Adv Anat Embryol Cell Biol,2017,223:119-142.
    [36]
    Paavilainen H,Lehtinen J,Romanovskaya A,et al. Inhibition of clinical pathogenic herpes simplex virus 1 strains with enzymatically created siRNA pools[J]. J Med Virol,2016,88(12):2196-2205. doi: 10.1002/jmv.24578
    [37]
    Paavilainen H,Lehtinen J,Romanovskaya A,et al. Topical treatment of herpes simplex virus infection with enzymatically created siRNA swarm[J]. Antivir Ther,2017,22(7):631-637. doi: 10.3851/IMP3153
    [38]
    Kalke K,Lehtinen J,Gnjatovic J,et al. Herpes simplex virus type 1 clinical isolates respond to UL29-targeted siRNA swarm treatment independent of their acyclovir sensitivity[J]. Viruses,2020,12(12):1434. doi: 10.3390/v12121434
    [39]
    Levanova A A,Kalke K M,Lund L M,et al. Enzymatically synthesized 2'-fluoro-modified Dicer-substrate siRNA swarms against herpes simplex virus demonstrate enhanced antiviral efficacy and low cytotoxicity[J]. Antiviral Res,2020,182:104916. doi: 10.1016/j.antiviral.2020.104916
    [40]
    Zhang Y Q,Lai W,Li H,et al. Inhibition of herpes simplex virus type 1 by small interfering RNA[J]. Clin Exp Dermatol,2008,33(1):56-61.
    [41]
    Zhu Q C,Ren Z,Zhang C L,et al. Silencing HSV1 gD expression in cultured cells by RNA interference[J]. Bing Du Xue Bao,2007,23(1):22-27.
    [42]
    Bhuyan P K,Kariko K,Capodici J,et al. Short interfering RNA-mediated inhibition of herpes simplex virus type 1 gene expression and function during infection of human keratinocytes[J]. J Virol,2004,78(19):10276-10281. doi: 10.1128/JVI.78.19.10276-10281.2004
    [43]
    吴长静,邹雨芳,黄新伟. HSV1感染中的表观遗传调控机制研究进展[J]. 昆明医科大学学报,2024,45(1):172-178. doi: 10.12259/j.issn.2095-610X.S20240129
    [44]
    Liang Y,Vogel J L,Narayanan A,et al. Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency[J]. Nat Med,2009,15(11):1312-1317. doi: 10.1038/nm.2051
    [45]
    Kamakura M,Goshima F,Luo C,et al. Herpes simplex virus induces the marked up-regulation of the zinc finger transcriptional factor INSM1,which modulates the expression and localization of the immediate early protein ICP0[J]. Virol J,2011,8:257. doi: 10.1186/1743-422X-8-257
    [46]
    Olivo J F,Guille F,Lobel B. Microscopic hematuria. Semiologic value in urology. Management of microscopic hematuria[J]. J Urol (Paris),1989,95(8):453-458.
    [47]
    Sanders I,Boyer MF,Fraser N W. Early nucleosome deposition on,and replication of,HSV DNA requires cell factor PCNA[J]. J Neurovirol,2015,21(4):358-369. doi: 10.1007/s13365-015-0321-7
    [48]
    Bryant K F,Colgrove R C,Knipe D M. Cellular SNF2H chromatin-remodeling factor promotes herpes simplex virus 1 immediate-early gene expression and replication[J]. MBio,2011,2(1):e00330-10.
    [49]
    Zhou G,Te D,Roizman B. The CoREST/REST repressor is both necessary and inimical for expression of herpes simplex virus genes[J]. mBio,2010,2(1):e00313-10.
    [50]
    Mccullough J,Colf LA,Sundquist W I. Membrane fission reactions of the mammalian ESCRT pathway[J]. Annu Rev Biochem,2013,82:663-692. doi: 10.1146/annurev-biochem-072909-101058
    [51]
    Pawliczek T,Crump C M. Herpes simplex virus type 1 production requires a functional ESCRT-III complex but is independent of TSG101 and ALIX expression[J]. J Virol,2009,83(21):11254-11264. doi: 10.1128/JVI.00574-09
    [52]
    Barnes J,Wilson D W. The ESCRT-II subunit EAP20/VPS25 and the bro1 domain proteins HD-PTP and BROX are individually dispensable for herpes simplex virus 1 replication[J]. J Virol,2020,94(4):e01641-19.
    [53]
    Russell T,Samolej J,Hollinshead M,et al. Novel role for ESCRT-III component CHMP4C in the integrity of the endocytic network utilized for herpes simplex virus envelopment[J]. mBio,2021,12(3):e02183-20.
    [54]
    Huber M T,Wisner T W,Hegde N R,et al. Herpes simplex virus with highly reduced gD levels can efficiently enter and spread between human keratinocytes[J]. J Virol,2001,75(21):10309-10318. doi: 10.1128/JVI.75.21.10309-10318.2001
    [55]
    Petermann P,Thier K,Rahn E,et al. Entry mechanisms of herpes simplex virus 1 into murine epidermis: Involvement of nectin-1 and herpesvirus entry mediator as cellular receptors[J]. J Virol,2015,89(1):262-274. doi: 10.1128/JVI.02917-14
    [56]
    Sayers C L,Elliott G. Herpes simplex virus 1 enters human keratinocytes by a nectin-1-dependent,rapid plasma membrane fusion pathway that functions at low temperature[J]. J Virol,2016,90(22):10379-10389. doi: 10.1128/JVI.01582-16
    [57]
    Tiwari V,Oh M J,Kovacs M,et al. Role for nectin-1 in herpes simplex virus 1 entry and spread in human retinal pigment epithelial cells[J]. FEBS J,2008,275(21):5272-5285. doi: 10.1111/j.1742-4658.2008.06655.x
    [58]
    Cheshenko N,Trepanier J B,Segarra T J,et al. HSV usurps eukaryotic initiation factor 3 subunit M for viral protein translation: novel prevention target[J]. PLoS One,2010,5(7):e11829. doi: 10.1371/journal.pone.0011829
    [59]
    Gu H,Liang Y,Mandel G,et al. Components of the REST/CoREST/histone deacetylase repressor complex are disrupted,modified,and translocated in HSV-1-infected cells[J]. Proc Natl Acad Sci U S A,2005,102(21):7571-7576. doi: 10.1073/pnas.0502658102
  • Relative Articles

    [1] Zhixiao LI, Xia ZHENG, Chunling LI, Qingsheng LIU, Heng ZHANG. The Molecular Mechanism of miR-205-5p Targeting ERBB3 to Regulate PI3K/AKT/mTOR Pathway and Inhibit Angiogenesis in Hemorrhoids. Journal of Kunming Medical University, 2024, 45(6): 22-35.  doi: 10.12259/j.issn.2095-610X.S20240604
    [2] Lei ZHU, Ruixue LI, Changlei BAO, Chenchen HUANG, Shuxin LIANG, Zhenlin ZHAO, Hong ZHU. Effect of MSC-exo,a New Cell Delivery Tool,on Gene Delivery and Proliferation of Pancreatic Cancer. Journal of Kunming Medical University, 2024, 45(2): 39-48.  doi: 10.12259/j.issn.2095-610X.S20240206
    [3] Xiaobing GUO, Xiaowen LI, Hengxi LI, Yan CAO, Ping LI. miR-212-3p Targeted Regulation of NAP1L1 Inhibits Glioma Cell Proliferation,Migration and EMT. Journal of Kunming Medical University, 2024, 45(11): 22-30.  doi: 10.12259/j.issn.2095-610X.S20241104
    [4] Ting ZHOU, Ying HE, Xiaohan DONG, Yanbin XIYANG, Bo CHEN, Jun TONG, Rui MAO. Possible Roles of MiR-219-5p Targeting SOX5 in the Development of Oral Cancer. Journal of Kunming Medical University, 2023, 44(2): 45-51.  doi: 10.12259/j.issn.2095-610X.S20230201
    [5] Zhenhuan MA, Zhen LI, Xianglin ZHOU, Guojian LI, Guokai YANG, Jia WAN, Lingjuan DU, Yong YANG. Iodine-125 Seed Inhibits the Proliferation and Invasion of Gastric Cancer Cells by Regulating MicroRNA-193b-5p Expression. Journal of Kunming Medical University, 2022, 43(1): 8-13.  doi: 10.12259/j.issn.2095-610X.S20220120
    [6] Liju ZHANG, Xiaoming JIANG, Changxian CHEN, Xi WU, Zhenyong ZHANG, Weijun LIU. Long Non-coding RNA-p21 Regulates the MicroRNA-9 / Sirtuin-1 Signaling Pathway to Reverse Oxaliplatin Resistance in Colorectal Cancer Cells. Journal of Kunming Medical University, 2022, 43(5): 27-32.  doi: 10.12259/j.issn.2095-610X.S20220519
    [7] Hua HE, Jinghua FAN, Yanling ZHANG, Yang LI, Haiwen LI, Yan WU. Clinical Characteristics of Varicella-zoster Virus Infection in 38 Immunocompromised Patients. Journal of Kunming Medical University, 2022, 43(8): 127-131.  doi: 10.12259/j.issn.2095-610X.S20220820
    [8] Guo-qiang XUE, Xin-xin WEI, Na YAO, Wen-hua ZHAO. Metformin Protects Type II Diabetic Kidneys by Regulating PARP-1 Activity. Journal of Kunming Medical University, 2021, 42(6): 29-37.  doi: 10.12259/j.issn.2095-610X.S20210632
    [9] Wu Han Xin , Yu Jian Kun , Gao 淩, Li Ming Yang , Wu Xiao Hai , Tai Wen Lin . . Journal of Kunming Medical University, 2019, 40(01): 20-23.
    [10] Luo Yun , Luo Yu Hui , Liu Xiao Dong , Cui Qing Peng . . Journal of Kunming Medical University, 2018, 39(10): 18-23.
    [11] Li Kang Jian , Luo Yu Hui , Mo Yin , Shen Ji Hong , Liu Xiao Dong , Li Hao . Small Interfering RNA Silencing VDR in HK-2 Cells and Its Significance for Hypocitraturia. Journal of Kunming Medical University, 2017, 38(10): 22-26.
    [12] Zheng Zhi . . Journal of Kunming Medical University,
    [13] Wang Yang . . Journal of Kunming Medical University,
    [14] Zhou JieYan . . Journal of Kunming Medical University,
    [15] Bian Hai Xia . . Journal of Kunming Medical University,
    [16] Zhao Chun Fang . . Journal of Kunming Medical University, 2013, 34(01): 1-1.
    [17] Guo Xian Li . . Journal of Kunming Medical University,
    [18] Li Shao Xiang . . Journal of Kunming Medical University,
    [19] . Construction and Identification of Short Hairpin RNA Lentiviral Vector of Human Papillomavirus (HPV) 16 E6. Journal of Kunming Medical University,
    [20] Song Xin . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (589) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return