Volume 46 Issue 5
May  2025
Turn off MathJax
Article Contents
Guangxian HUANG, Yijie WANG. Research Progress of Immunosuppression Mechanism and Immunotherapy in Sepsis[J]. Journal of Kunming Medical University, 2025, 46(5): 1-11. doi: 10.12259/j.issn.2095-610X.S20250501
Citation: Guangxian HUANG, Yijie WANG. Research Progress of Immunosuppression Mechanism and Immunotherapy in Sepsis[J]. Journal of Kunming Medical University, 2025, 46(5): 1-11. doi: 10.12259/j.issn.2095-610X.S20250501

Research Progress of Immunosuppression Mechanism and Immunotherapy in Sepsis

doi: 10.12259/j.issn.2095-610X.S20250501
More Information
  • Corresponding author: 王怡洁,副主任医师,博士生导师。现任昆明医科大学第一附属医院老年重症医学科副主任。中国医药生物技术协会转化医学分会第三届委员会委员,云南省转化医学会重症医学分会副主任委员,云南省医学会老年医学分会第十届委员会老年重症医学学组委员,云南省医师协会老年病医师分会第二届委员会委员,云南省抗癌协会肿瘤生物治疗专业委员会委员,中华病例说年度优秀案例评审专家,共发表学术论文18余篇,其中以第一作者/通信作者发表SCI论文7篇。主持国家自然科学基金地区基金2项,省级、厅级、其他项目各1项,参与多项省厅级课题。2022年度云南省卫生科技成果三等奖(7/10)。担任国家级急诊医学规培基地指导教师。从事重症医学专业20年,擅长脓毒症、重症肺炎、颅脑疾病等重症患者救治工作。
  • Received Date: 2024-12-23
  • Publish Date: 2025-05-30
  • Sepsis is a syndrome caused by a dysregulated host response to infection that leads to life-threatening organ dysfunction. The immune response in sepsis is usually divided into two stages: hyperimmunity and immunosuppression. Immunosuppression is considered as the main cause of secondary infection and increased mortality in patients. This article reviews the main mechanisms of immunosuppression in sepsis, including dysfunction of immune cells, release of immunosuppressive cytokines, excessive activation of immunomodulatory cells, increased expression of immune checkpoints, and epigenetic dysregulation that have attracted much attention in recent years. At the same time, it also summarizes the existing and some new immunotherapy strategies. It includes immunostimulatory cytokines (such as GM-CSF, IL-7, IL-15), immune checkpoint inhibitors (such as PD-1/PD-L1 antibody, CTLA-4 antibody, TIM-3 antibody) and emerging immunotherapy methods (such as mesenchymal stem cells, calprotectin inhibitors, triggering receptor expressed on myeloid cells 1 inhibitors). This article focuses on epigenetic regulation mechanisms and emerging immunotherapies such as mesenchymal stem cells, aiming to provide theoretical support for individualized precision immunotherapy in patients with sepsis.
  • loading
  • [1]
    Vucelić V,Klobučar I,Đuras-Cuculić B,et al. Sepsis and septic shock - an observational study of the incidence,management,and mortality predictors in a medical intensive care unit[J]. Croatian Medical Journal,2020,61(5):429-439. doi: 10.3325/cmj.2020.61.429
    [2]
    Joosten S C M,Wiersinga W J,Poll T van der. Dysregulation of host-pathogen interactions in sepsis: Host-related factors[J]. Seminars in Respiratory and Critical Care Medicine,2024,45(4):469-478. doi: 10.1055/s-0044-1787554
    [3]
    Cao M,Wang G,Xie J. Immune dysregulation in sepsis: Experiences,lessons and perspectives[J]. Cell Death Discovery,2023,9(1):465. doi: 10.1038/s41420-023-01766-7
    [4]
    Unsinger J,Walton A H,Blood T,et al. Frontline science: OX40 agonistic antibody reverses immune suppression and improves survival in sepsis[J]. Journal of Leukocyte Biology,2021,109(4):697-708. doi: 10.1002/JLB.5HI0720-043R
    [5]
    Wei Y,Kim J,Ernits H,et al. The septic neutrophil-friend or foe[J]. Shock (augusta,Ga.),2021,55(2):147-155. doi: 10.1097/SHK.0000000000001620
    [6]
    Huang S,Chen Y,Gong F,et al. Septic macrophages induce T cells immunosuppression in a cell-cell contact manner with the involvement of CR3[J]. Heliyon,2024,10(1):e23266. doi: 10.1016/j.heliyon.2023.e23266
    [7]
    Lu Z Q,Zhang C,Zhao L J,et al. Matrix metalloproteinase-8 regulates dendritic cell tolerance in late polymicrobial sepsis via the nuclear factor kappa-B p65/β-catenin pathway[J]. Burns & Trauma,2024,12:tkad025.
    [8]
    Yao R Q,Li Z X,Wang L X,et al. Single-cell transcriptome profiling of the immune space-time landscape reveals dendritic cell regulatory program in polymicrobial sepsis[J]. Theranostics,2022,12(10):4606-4628. doi: 10.7150/thno.72760
    [9]
    Nascimento D C,Viacava P R,Ferreira R G,et al. Sepsis expands a CD39+ plasmablast population that promotes immunosuppression via adenosine-mediated inhibition of macrophage antimicrobial activity[J]. Immunity,2021,54(9): 2024-2041. e8.
    [10]
    Ma K,Luo L,Yang M,et al. The suppression of sepsis-induced kidney injury via the knockout of T lymphocytes[J]. Heliyon,2024,10(1):e23311. doi: 10.1016/j.heliyon.2023.e23311
    [11]
    Reizine F,Grégoire M,Lesouhaitier M,et al. Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(8):e2115139119.
    [12]
    Gao K,Jin J,Huang C,et al. Exosomes derived from septic mouse serum modulate immune responses via exosome-associated cytokines[J]. Frontiers in Immunology,2019,10:1560. doi: 10.3389/fimmu.2019.01560
    [13]
    Neumann C,Scheffold A,Rutz S. Functions and regulation of T cell-derived interleukin-10[J]. Seminars in Immunology,2019,44:101344. doi: 10.1016/j.smim.2019.101344
    [14]
    Wei X,Zhang J,Cui J,et al. Adaptive plasticity of natural interleukin-35-induced regulatory T cells (Tr35) that are required for T-cell immune regulation[J]. Theranostics,2024,14(7):2897-2914. doi: 10.7150/thno.90608
    [15]
    Bergmann C B,Beckmann N,Salyer C E,et al. Potential targets to mitigate trauma- or sepsis-induced immune suppression[J]. Frontiers in Immunology,2021,12:622601. doi: 10.3389/fimmu.2021.622601
    [16]
    Qichuan Y,Li Y,Wang H,et al. TSLP induces a proinflammatory phenotype in circulating innate cells and predicts prognosis in sepsis patients[J]. FEBS Open Bio,2024,14(3):525. doi: 10.1002/2211-5463.13739
    [17]
    Gaborit B J,Roquilly A,Louvet C,et al. Regulatory T cells expressing tumor necrosis factor receptor type 2 play a major role in CD4+ T-cell impairment during sepsis[J]. Journal of Infectious Diseases,2020,222(7):1222-1234. doi: 10.1093/infdis/jiaa225
    [18]
    Shi Y,Wu D,Wang Y,et al. Treg and neutrophil extracellular trap interaction contributes to the development of immunosuppression in sepsis[J]. JCI Insight,2024,9(14):e180132. doi: 10.1172/jci.insight.180132
    [19]
    Zhang W,Fang X,Gao C,et al. MDSCs in sepsis-induced immunosuppression and its potential therapeutic targets[J]. Cytokine & Growth Factor Reviews,2023,69:90-103.
    [20]
    Li K,Shi H,Zhang B,et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer[J]. Signal Transduction and Targeted Therapy,2021,6(1):362. doi: 10.1038/s41392-021-00670-9
    [21]
    McBride M A,Patil T K,Bohannon J K,et al. Immune checkpoints: novel therapeutic targets to attenuate sepsis-induced immunosuppression[J]. Frontiers in Immunology,2020,11:624272.
    [22]
    Chen J,Chen R,Huang S,et al. Atezolizumab alleviates the immunosuppression induced by PD‑L1‑positive neutrophils and improves the survival of mice during sepsis[J]. Molecular Medicine Reports,2021,23(2):144.
    [23]
    Rossi A L,Le M,Chung C S,et al. A novel role for programmed cell death receptor ligand 2 in sepsis-induced hepatic dysfunction[J]. American journal of physiology. Gastrointestinal and liver physiology,2019,316(1):G106-G114. doi: 10.1152/ajpgi.00204.2018
    [24]
    Wakeley M E,Armstead B E,Gray C C,et al. Lymphocyte HVEM/BTLA co-expression after critical illness demonstrates severity indiscriminate upregulation,impacting critical illness-induced immunosuppression[J]. Frontiers in Medicine,2023,10:1176602. doi: 10.3389/fmed.2023.1176602
    [25]
    Lange A,Cajander S,Magnuson A,et al. Sustained elevation of soluble B- and T- lymphocyte attenuator predicts long-term mortality in patients with bacteremia and sepsis[J]. PLOS One,2022,17(3):e0265818. doi: 10.1371/journal.pone.0265818
    [26]
    Cheng W,Zhang J,Li D,et al. CTLA-4 expression on CD4+ lymphocytes in patients with sepsis-associated immunosuppression and its relationship to mTOR mediated autophagic-lysosomal disorder[J]. Frontiers in Immunology,2024,15:1396157. doi: 10.3389/fimmu.2024.1396157
    [27]
    THuang S,Liu D,Sun J,et al. Tim-3 regulates sepsis-induced immunosuppression by inhibiting the NF-κB signaling pathway in CD4 T cells[J]. Mol Ther.,2022,30(3):1227-1238. doi: 10.1016/j.ymthe.2021.12.013
    [28]
    Mewes C,Alexander T,Büttner B,et al. Effect of the lymphocyte activation gene 3 polymorphism rs951818 on mortality and disease progression in patients with sepsis-a prospective genetic association study[J]. Journal of Clinical Medicine,2021,10(22):5302. doi: 10.3390/jcm10225302
    [29]
    Falcão-Holanda R B,Brunialti M K C,Jasiulionis M G,et al. Epigenetic regulation in sepsis,role in pathophysiology and therapeutic perspective[J]. Frontiers in Medicine,2021,8:685333. doi: 10.3389/fmed.2021.685333
    [30]
    C ó rneo E da S,Michels M,Dal-Pizzol F. Sepsis,immunosuppression and the role of epigenetic mechanisms[J]. Expert Review of Clinical Immunology,2021,17(2):169-176. doi: 10.1080/1744666X.2021.1875820
    [31]
    Zhang Y,Sun Z,Jia J,et al. Overview of histone modification[J]. Advances in Experimental Medicine and Biology,2021,1283:1-16.
    [32]
    Denis M,Dupas T,Persello A,et al. An O-GlcNAcylomic approach reveals ACLY as a potential target in sepsis in the young rat[J]. International journal of molecular sciences,2021,22(17):9236. doi: 10.3390/ijms22179236
    [33]
    Moreno-Yruela C,Zhang D,Wei W,et al. Class I histone deacetylases (HDAC1-3) are histone lysine delactylases[J]. Science Advances,2022,8(3):eabi6696. doi: 10.1126/sciadv.abi6696
    [34]
    Yu K,Proost P. Insights into peptidylarginine deiminase expression and citrullination pathways[J]. Trends in Cell Biology,2022,32(9):746-761. doi: 10.1016/j.tcb.2022.01.014
    [35]
    Lawton M L,Inge M M,Blum B C,et al. Multiomic profiling of chronically activated CD4+ T cells identifies drivers of exhaustion and metabolic reprogramming[J]. PLoS biology,2024,22(12):e3002943. doi: 10.1371/journal.pbio.3002943
    [36]
    Zhang S,Zhan L,Li X,et al. Preclinical and clinical progress for HDAC as a putative target for epigenetic remodeling and functionality of immune cells[J]. International Journal of Biological Sciences,2021,17(13):3381-3400. doi: 10.7150/ijbs.62001
    [37]
    Poli V,Pui-Yan Ma V,Di Gioia M,et al. Zinc-dependent histone deacetylases drive neutrophil extracellular trap formation and potentiate local and systemic inflammation[J]. Iscience,2021,24(11):103256. doi: 10.1016/j.isci.2021.103256
    [38]
    Wu C,Li A,Hu J,et al. Histone deacetylase 2 is essential for LPS-induced inflammatory responses in macrophages[J]. Immunology & Cell Biology,2019,97(1):72-84.
    [39]
    Chen W,Liu J,Ge F,et al. Long noncoding RNA HOTAIRM1 promotes immunosuppression in sepsis by inducing T cell exhaustion[J]. Journal of Immunology (baltimore,Md. : 1950),2022,208(3): 618-632.
    [40]
    Du J,Jiang H,Wang B. Long non-coding RNA GAS5/miR-520-3p/SOCS3 axis regulates inflammatory response in lipopolysaccharide-induced macrophages[J]. Biochemical Genetics,2022,60(5):1793-1808. doi: 10.1007/s10528-021-10179-z
    [41]
    Harkless R,Singh K,Christman J,et al. Microvesicle-mediated transfer of DNA methyltransferase proteins results in recipient cell immunosuppression[J]. The Journal of Surgical Research,2023,283:368-376. doi: 10.1016/j.jss.2022.10.030
    [42]
    Beltrán-García J,Casabó-Vallés G,Osca-Verdegal R,et al. Alterations in leukocyte DNA methylome are associated to immunosuppression in severe clinical phenotypes of septic patients[J]. Frontiers in Immunology,2023,14:1333705.
    [43]
    Tu F,Pan L,Wu W,et al. Recombinant GM-CSF enhances the bactericidal ability of PMNs by increasing intracellular IL-1β and improves the prognosis of secondary pseudomonas aeruginosa pneumonia in sepsis[J]. Journal of Leukocyte Biology,2023,114(5):443-458. doi: 10.1093/jleuko/qiad088
    [44]
    Sehgal R,Maiwall R,Rajan V,et al. Granulocyte-macrophage colony-stimulating factor modulates myeloid-derived suppressor cells and treg activity in decompensated cirrhotic patients with sepsis[J]. Frontiers in Immunology,2022,13:828949. doi: 10.3389/fimmu.2022.828949
    [45]
    Bhavani S V,Spicer A,Sinha P,et al. Distinct immune profiles and clinical outcomes in sepsis subphenotypes based on temperature trajectories[J]. Intensive Care Medicine,2024,50(12):2094-2104. doi: 10.1007/s00134-024-07669-0
    [46]
    Fu C,Zhang X,Zhang X,et al. Advances in IL-7 research on tumour therapy[J]. Pharmaceuticals (basel,Switzerland),2024,17(4):415. doi: 10.3390/ph17040415
    [47]
    Daix T,Mathonnet A,Brakenridge S,et al. Intravenously administered interleukin-7 to reverse lymphopenia in patients with septic shock: A double-blind,randomized,placebo-controlled trial[J]. Annals of Intensive Care,2023,13(1):17. doi: 10.1186/s13613-023-01109-w
    [48]
    Bidar F,Hamada S,Gossez M,et al. Correction to: recombinant human interleukin-7 reverses T cell exhaustion ex vivo in critically ill COVID-19 patients[J]. Annals of Intensive Care,2022,12(1):30. doi: 10.1186/s13613-022-01007-7
    [49]
    Lélu K,Dubois C,Evlachev A,et al. Viral delivery of IL-7 is a potent immunotherapy stimulating innate and adaptive immunity and confers survival in sepsis models[J]. Journal of Immunology (baltimore,Md. : 1950),2022,209(1): 99-117.
    [50]
    He C,Yu Y,Wang F,et al. Pretreatment with interleukin-15 attenuates inflammation and apoptosis by inhibiting NF-κB signaling in sepsis-induced myocardial dysfunction[J]. European Journal of Histochemistry: EJH,2024,68(2):4019.
    [51]
    Saito M,Inoue S,Yamashita K,et al. IL-15 improves aging-induced persistent T cell exhaustion in mouse models of repeated sepsis[J]. Shock (augusta,Ga.),2020,53(2):228-235. doi: 10.1097/SHK.0000000000001352
    [52]
    Yang L,Gao Q,Li Q,et al. PD-L1 blockade improves survival in sepsis by reversing monocyte dysfunction and immune disorder[J]. Inflammation,2024,47(1):114-128. doi: 10.1007/s10753-023-01897-0
    [53]
    Zhao Z Z,Wang X L,Xie J,et al. Therapeutic effect of an anti-human programmed death-ligand 1 (PD-L1) nanobody on polymicrobial sepsis in humanized mice[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research,2021,27:e926820.
    [54]
    Sun R,Huang J,Liu L,et al. Neutrophils mediate T lymphocyte function in septic mice via the CD80/cytotoxic T lymphocyte antigen-4 signaling pathway[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue,2021,33(7):849-854.
    [55]
    Paterson C W,Fay K T,Chen C W,et al. CTLA-4 checkpoint inhibition improves sepsis survival in alcohol-exposed mice[J]. Immunohorizons,2024,8(1):74-88. doi: 10.4049/immunohorizons.2300060
    [56]
    Busch L M,Sun J,Cui X,et al. Checkpoint inhibitor therapy in preclinical sepsis models: A systematic review and meta-analysis[J]. Intensive Care Medicine Experimental,2020,8(1):7. doi: 10.1186/s40635-019-0290-x
    [57]
    Liu S,Wang C,Jiang Z,et al. Tim-3 blockade decreases the apoptosis of CD8+ T cells and reduces the severity of sepsis in mice[J]. Journal of Surgical Research,2022,279:8-16. doi: 10.1016/j.jss.2022.05.014
    [58]
    Wu H,Tang T,Deng H,et al. Immune checkpoint molecule tim-3 promotes NKT cell apoptosis and predicts poorer prognosis in sepsis[J]. Clinical Immunology (orlando,Fla.),2023,254:109249. doi: 10.1016/j.clim.2023.109249
    [59]
    Li Y,Sun Z,Li Y,et al. IL-1β-stimulated bone mesenchymal stem cell-derived exosomes mitigate sepsis through modulation of HMGB1/AKT pathway and M2 macrophage polarization[J]. Current Molecular Medicine,2025,25(1):79-89. doi: 10.2174/0115665240277763231206051401
    [60]
    Alp E,Gonen Z B,Gundogan K,et al. The effect of mesenchymal stromal cells on the mortality of patients with sepsis and septic shock: A promising therapy[J]. Emergency Medicine International,2022,2022:9222379.
    [61]
    Zhang L,Zhang X,Liu Y,et al. CD146+ umbilical cord mesenchymal stem cells exhibit high immunomodulatory activity and therapeutic efficacy in septic mice[J]. Journal of Inflammation Research,2023,16:579-594. doi: 10.2147/JIR.S396088
    [62]
    Wang Q,Long G,Luo H,et al. S100A8/A9: An emerging player in sepsis and sepsis-induced organ injury[J]. Biomedicine & Pharmacotherapy,2023,168:115674.
    [63]
    Shi W,Wan T T,Li H H,et al. Blockage of S100A8/A9 ameliorates septic nephropathy in mice[J]. Frontiers in Pharmacology,2023,14:1172356. doi: 10.3389/fphar.2023.1172356
    [64]
    Boufenzer A,Carrasco K,Jolly L,et al. Potentiation of NETs release is novel characteristic of TREM-1 activation and the pharmacological inhibition of TREM-1 could prevent from the deleterious consequences of NETs release in sepsis[J]. Cellular and Molecular Immunology,2021,18(2):452-460. doi: 10.1038/s41423-020-00591-7
    [65]
    Siskind S,Brenner M,Wang P. TREM-1 modulation strategies for sepsis[J]. Frontiers in Immunology,2022,13:907387. doi: 10.3389/fimmu.2022.907387
    [66]
    François B,Lambden S,Fivez T,et al. Prospective evaluation of the efficacy,safety,and optimal biomarker enrichment strategy for nangibotide,a TREM-1 inhibitor,in patients with septic shock (ASTONISH): A double-blind,randomised,controlled,phase 2b trial[J]. The Lancet. Respiratory Medicine,2023,11(10):894-904. doi: 10.1016/S2213-2600(23)00158-3
    [67]
    François B,Wittebole X,Ferrer R,et al. Nangibotide in patients with septic shock: A Phase 2a randomized controlled clinical trial[J]. Intensive Care Med.,2020,46(7):1425-1437. doi: 10.1007/s00134-020-06109-z
    [68]
    François B,Lambden S,Garaud J J,et al. Evaluation of the efficacy and safety of TREM-1 inhibition with nangibotide in patients with COVID-19 receiving respiratory support: the ESSENTIAL randomised,double-blind trial[J]. Eclinicalmedicine,2023,60:102013. doi: 10.1016/j.eclinm.2023.102013
    [69]
    Wu Y,He Y,Liu C,et al. Histone deacetylase inhibitor (SAHA) reduces mortality in an endotoxemia mouse model by suppressing glycolysis[J]. International Journal of Molecular Sciences,2023,24(15):12448. doi: 10.3390/ijms241512448
  • Relative Articles

    [1] Couwen LI, Bing GONG, Runfei SHAO, Zhuange SHI, Lishun YANG, Guobing CHEN. The Mechanism of Protein Lactylation Modification in Sepsis Organ Dysfunction. Journal of Kunming Medical University, 2025, 46(8): 1-9.  doi: 10.12259/j.issn.2095-610X.S20250801
    [2] Congxin LI, Haidong YUE, Pengxi ZHU, Guangxian HUANG, Lingjie MU, Yanan PENG, Yijie WANG, Yang YANG. Correlation Analysis between Different Vitamin D3 Levels and Immune Inflammatory Indicators in Elderly Patients with Sepsis. Journal of Kunming Medical University, 2025, 46(2): 51-58.  doi: 10.12259/j.issn.2095-610X.S20250208
    [3] Xing LIU, Weixian LI, Xiang ZHU, Mengxing LIU, Na LI, Jiawei XIA, Le ZHANG, Yan WU, Shenghao LI. Construction of a Nomogram Model of Tsutsugamushi Disease Complicated with Sepsis Based on Lasso Regression. Journal of Kunming Medical University, 2024, 45(9): 35-41.  doi: 10.12259/j.issn.2095-610X.S20240906
    [4] Junjie NIU, Wenjuan JI, Zhuaizhuai YU. Correlation between Gut Microbiota,Serum ET,PCT Levels with the Severity and Prognosis of Sepsis. Journal of Kunming Medical University, 2024, 45(4): 140-145.  doi: 10.12259/j.issn.2095-610X.S20240420
    [5] Linlin XUE, Binghan LI, Chunyun LIU, Weikun LI, Lixian CHANG, Huimin LI, Yanwei QI, Li LIU. Establishment and Evaluation of a Nomogram for Predicting Potential Death in Patients with Hepatitis C Cirrhosis and Sepsis in General Wards. Journal of Kunming Medical University, 2023, 44(6): 113-119.  doi: 10.12259/j.issn.2095-610X.S20230630
    [6] Saiqiong ZHANG, Wuquan LI, Qingjiang CHEN. Clinical Efficacy of Continuous Renal Replacement Therapy in Severe Burn Sepsis. Journal of Kunming Medical University, 2023, 44(11): 94-99.  doi: 10.12259/j.issn.2095-610X.S20231114
    [7] Wenzhuo LI, Li YANG, Jing XIA. Efficacy of Xinmailong Injection on Septic Cardiomyopathy. Journal of Kunming Medical University, 2022, 43(12): 111-116.  doi: 10.12259/j.issn.2095-610X.S20221221
    [8] Hong WANG, Dexing YANG, Qiang WANG, Weiyu ZHOU, Jiefu TANG, Zhenfang WANG, Kai FU, Shengzhe LIU, Rong LIU. Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis. Journal of Kunming Medical University, 2022, 43(11): 44-51.  doi: 10.12259/j.issn.2095-610X.S20221102
    [9] Deng Yu Mei , Song Jia Mei , Liu Zhong Wei , Yang Jie , Meng Yu Shi . . Journal of Kunming Medical University, 2019, 40(10): 150-153.
    [10] Xu Jian , Wang Zi Yu , Chen Yao Xiang , Mou Bo , Jin Yan , Ma Lei . . Journal of Kunming Medical University, 2019, 40(04): 97-100.
    [11] Liu Ya Ming , Xu Mian , Yan Yue Xin , Zhou Feng Gao , Xu Cheng , Zhao Kun , Jiang Guo Yun , Wu Yu, Liu Rong . . Journal of Kunming Medical University, 2019, 40(06): 16-22.
    [12] Qin Yu Qi , Zhang Li Juan , Ren Wei Dong , Dong Jian . Influence of Bone Barrow Stem Cell Transplantation on Immunosuppressed Mice. Journal of Kunming Medical University, 2017, 38(06): 9-14.
    [13] Teng Yan . Effect of Hemoperfusion on Inflammation Factors in Patients with Sepsis. Journal of Kunming Medical University,
    [14] Xie Shu 姮. Changes and Mechanisms of Immunodepression after Ischemic Stroke in Mice. Journal of Kunming Medical University,
    [15] Yang Le . . Journal of Kunming Medical University,
    [16] Wang Jin . . Journal of Kunming Medical University,
    [17] Xu Ying . . Journal of Kunming Medical University,
    [18] Miao Yu Lan . . Journal of Kunming Medical University,
    [19] Miao Yu Lan . . Journal of Kunming Medical University,
    [20] . Clinical Effect of Xuebijing Injection on Pro/Anti-inflammatory Balance in Sepsis Patients. Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (596) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return