[1]
|
Alexander S P,Fabbro D,Kelly E,et al. The concise guide to Pharmacology 2017/18:Enzymes[J]. British Journal of Pharmacology,2017,17(4):272-359.
|
[2]
|
Niimura Y. Evolutionary dynamics of olfactory receptor genes in chordates:interaction between environments and genomic contents[J]. Human Genomics,2009,4(2):107-118. doi: 10.1186/1479-7364-4-2-107
|
[3]
|
Lagerström M,Schiöth H. Structural diversity of G protein-coupled receptors and significance for drug discovery[J]. Nature Reviews Drug Discovery,2008,7(4):339-357. doi: 10.1038/nrd2518
|
[4]
|
Surgand J S,Rodrigo J,Kellenberger E,et al. A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors[J]. Proteins:Structure,Function,and Bioinformatics,2006,62(2):509-538.
|
[5]
|
Kakarala K K,Jamil K. Sequence-structure based phylogeny of GPCR class a rhodopsin receptors[J]. Molecular Phylogenetics and Evolution,2014,74(3):66-96.
|
[6]
|
Jacoby E,Bouhelal R,Gerspacher M,et al. The 7 TM G-protein-coupled receptor target family[J]. Chemmedchem,2006,1(8):761-782.
|
[7]
|
Calderón-Zamora L,Ruiz-Hernandez A,Romero-Nava R,et al. Possible involvement of orphan receptors GPR88 and GPR124 in the development of hypertension in spontaneously hypertensive rat[J]. Clinical and Experimental Hypertension (New York,NY:1993),2017,39(6):513-519. doi: 10.1080/10641963.2016.1273949
|
[8]
|
Vaneps N,Altenbach C,Caro L,et al. G-and G-coupled GPCRs show different modes of G-protein binding[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(10):2383-2388. doi: 10.1073/pnas.1721896115
|
[9]
|
Mizushima K,Miyamoto Y,Tsukahara F,et al. A novel G-protein-coupled receptor gene expressed in striatum[J]. Genomics,2000,69(3):314-321. doi: 10.1006/geno.2000.6340
|
[10]
|
Sgourakis N,Bagos P,Hamodrakas S. Prediction of the coupling specificity of GPCRs to four families of G-proteins using hidden Markov models and artificial neural networks[J]. Bioinformatics (Oxford,England),2005,21(22):4101-4106. doi: 10.1093/bioinformatics/bti679
|
[11]
|
Abela L,Kurian M. Postsynaptic movement disorders:clinical phenotypes,genotypes,and disease mechanisms[J]. Journal of Inherited Metabolic Disease,2018,41(6):1077-1091. doi: 10.1007/s10545-018-0205-0
|
[12]
|
Becker J,Befort K,Blad C,et al. Transcriptome analysis identifies genes with enriched expression in the mouse central extended amygdala[J]. Neuroscience,2008,156(4):950-965. doi: 10.1016/j.neuroscience.2008.07.070
|
[13]
|
Massart R,Mignon V,Stanic J,et al. Developmental and adult expression patterns of the G-protein-coupled receptor GPR88 in the rat:Establishment of a dual nuclear-cytoplasmic localization[J]. Journal of Comparative Neurology,2016,524(14):2776-2802. doi: 10.1002/cne.23991
|
[14]
|
Jin C,Decker A,Harris D,et al. Effect of substitution on the aniline moiety of the GPR88 agonist 2-PCCA:Synthesis,structure-activity relationships,and molecular modeling studies[J]. ACS Chemical Neuroscience,2016,7(10):1418-1432. doi: 10.1021/acschemneuro.6b00182
|
[15]
|
Li J,Thorn D A,Jin C. The GPR88 receptor agonist 2-PCCA does not alter the behavioral effects of methamphetamine in rats[J]. European Journal of Pharmacology,2013,698(1-3):272-277. doi: 10.1016/j.ejphar.2012.10.037
|
[16]
|
Jin C,Decker A,Langston T. Design,synthesis and pharmacological evaluation of 4-hydroxyphenylglycine and 4-hydroxyphenylglycinol derivatives as GPR88 agonists[J]. Bioorganic& Medicinal Chemistry,2017,25(2):805-812.
|
[17]
|
Jin C,Decker A M,Huang X P,et al. Synthesis,pharmacological characterization,and structure–activity relationship studies of small molecular agonists for the orphan GPR88 receptor[J]. ACS Chemical Neuroscience,2014,5(7):576-587. doi: 10.1021/cn500082p
|
[18]
|
Dzierba C,Bi Y,Dasgupta B,et al. Design,synthesis,and evaluation of phenylglycinols and phenyl amines as agonists of GPR88[J]. Bioorganic & Medicinal Chemistry letters,2015,25(7):1448-1452.
|
[19]
|
Chobanian A,Bakris G,Black H,et al. The seventh report of the joint national committee on prevention,detection,evaluation,and treatment of high blood pressure:the JNC 7 report[J]. JAMA,2003,289(19):2560-2572. doi: 10.1001/jama.289.19.2560
|
[20]
|
Olczak K,Taylor-Bateman V,Nicholls H,et al. Hypertension genetics past,present and future applications[J]. Journal of Internal Medicine,2021,24:52-59.
|
[21]
|
Feldman M D,Copelas L,Gwathmey J K,et al. Deficient production of cyclic AMP:pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure[J]. Circulation,1987,75(2):331-339. doi: 10.1161/01.CIR.75.2.331
|
[22]
|
Gong H,Sun H,Koch W J,et al. Specific β2AR blocker ICI 118,551 actively decreases contraction through a Gi-coupled form of the β2AR in myocytes from failing human heart[J]. Circulation,2002,105(21):2497-2503. doi: 10.1161/01.CIR.0000017187.61348.95
|
[23]
|
Della bruna R,Pinet F,Corvol P,et al. Regulation of renin secretion and renin synthesis by second messengers in isolated mouse juxtaglomerular cells[J]. Cellular Physiology and Biochemistry,1991,1(2):98-110. doi: 10.1159/000154598
|
[24]
|
Maisel N,Blodgett J,Wilbourne P,et al. Meta-analysis of naltrexone and acamprosate for treating alcohol use disorders:when are these medications most helpful?[J]. Addiction (Abingdon,England),2013,108(2):275-293. doi: 10.1111/j.1360-0443.2012.04054.x
|
[25]
|
Zeng J,Yu S,Cao H,et al. Neurobiological correlates of cue-reactivity in alcohol-use disorders:a voxel-wise meta-analysis of fMRI studies[J]. Neuroscience and Biobehavioral Reviews,2021,24:83-87.
|
[26]
|
Spanagel R. Alcoholism:a systems approach from molecular physiology to addictive behavior[J]. Physiological Reviews,2009,89(2):649-705. doi: 10.1152/physrev.00013.2008
|
[27]
|
Mulholland P,Chandler L,Kalivas P. Signals from the fourth dimension regulate drug relapse[J]. Trends in Neurosciences,2016,39(7):472-485. doi: 10.1016/j.tins.2016.04.007
|
[28]
|
Ben Hamida S,Mendonça-Netto S,Arefin T,et al. Increased alcohol seeking in mice lacking Gpr88 involves dysfunctional mesocorticolimbic networks[J]. Biological Psychiatry,2018,84(3):202-212. doi: 10.1016/j.biopsych.2018.01.026
|
[29]
|
Purves K,Coleman J,Meier S,et al. A major role for common genetic variation in anxiety disorders[J]. Molecular Psychiatry,2020,25(12):3292-3303. doi: 10.1038/s41380-019-0559-1
|
[30]
|
Aupperle R,Paulus M. Neural systems underlying approach and avoidance in anxiety disorders[J]. Dialogues Clin Neurosci,2010,12(4):517-531. doi: 10.31887/DCNS.2010.12.4/raupperle
|
[31]
|
Meirsman A,Le Merrer J,Pellissier L,et al. Mice lacking GPR88 show motor deficit,improved spatial learning,and low anxiety reversed by delta opioid antagonist[J]. Biological Psychiatry,2016,79(11):917-927. doi: 10.1016/j.biopsych.2015.05.020
|
[32]
|
Meirsman A,Robé A,De Kerchove D'exaerde A,et al. GPR88 in A2AR neurons enhances anxiety-like behaviors[J]. ENEURO,2016,3(4):16-20.
|
[33]
|
Winship I,Dursun S,Baker G,et al. An overview of animal models related to schizophrenia[J]. Canadian Journal of Psychiatry Revue Canadienne de Psychiatrie,2019,64(1):5-17.
|
[34]
|
Kim Y,Leventhal B. Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders[J]. Biological Psychiatry,2015,77(1):66-74. doi: 10.1016/j.biopsych.2014.11.001
|
[35]
|
Logue S,Grauer S,Paulsen J,et al. The orphan GPCR,GPR88,modulates function of the striatal dopamine system:a possible therapeutic target for psychiatric disorders?[J]. Molecular and Cellular Neurosciences,2009,42(4):438-447. doi: 10.1016/j.mcn.2009.09.007
|
[36]
|
罗涛,吕品,刘筠,等. 甲基苯丙胺所致精神障碍男性患者GPR88基因启动子区甲基化水平变化的研究[J]. 中国医药,2019,14(05):779-782. doi: 10.3760/j.issn.1673-4777.2019.05.034
|
[37]
|
Ingallinesi M,Le Bouil L,Biguet N,et al. Local inactivation of Gpr88 in the nucleus accumbens attenuates behavioral deficits elicited by the neonatal administration of phencyclidine in rats[J]. Mol Psychiatry,2015,20(8):951-958. doi: 10.1038/mp.2014.92
|
[38]
|
Quintana A,Sanz E,Wang W,et al. Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors[J]. Nature Neuroscience,2012,15(11):1547-1555. doi: 10.1038/nn.3239
|
[39]
|
Alkufri F,Shaag A,Abu-Libdeh B,et al. Deleterious mutation in GPR88 is associated with chorea,speech delay,and learning disabilities[J]. Neurology,2016,2(3):64.
|
[40]
|
Lobo M. Molecular profiling of striatonigral and striatopallidal medium spiny neurons past,present,and future[J]. International Review of Neurobiology,2009,89(11):1-35.
|
[41]
|
Sesack S,Grace A. Cortico-Basal Ganglia reward network:microcircuitry[J]. Neuropsychopharmacology,2010,35(1):27-47. doi: 10.1038/npp.2009.93
|
[42]
|
Rocher A,Gubellini P,Merienne N,et al. Synaptic scaling up in medium spiny neurons of aged BACHD mice:A slow-progression model of Huntington's disease[J]. Neurobiology of Disease,2016,86(1):131-139.
|
[43]
|
Ye N,Song Z,Zhang A. Dual ligands targeting dopamine D2 and serotonin 5-HT1A receptors as new antipsychotical or anti-Parkinsonian agents[J]. Current Medicinal Chemistry,2014,21(4):437-457.
|
[44]
|
Zhang H,Ye N,Zhou S,et al. Identification of N-propylnoraporphin-11-yl 5-(1,2-dithiolan-3-yl)pentanoate as a new anti-Parkinson's agent possessing a dopamine D2 and serotonin 5-HT1A dual-agonist profile[J]. Journal of Medicinal Chemistry,2011,54(13):4324-4338. doi: 10.1021/jm200347t
|
[45]
|
Massart R,Guilloux J,Mignon V,et al. Striatal GPR88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents[J]. The European Journal of Neuroscience,2009,30(3):397-414. doi: 10.1111/j.1460-9568.2009.06842.x
|
[46]
|
Girault J,Nairn A. DARPP-32 40 years later[J]. Advances in Pharmacology,2021,90:67-87.
|