|
[1]
|
Tham Y C, Goh J H L, Anees A, et al. Detecting visually significant cataract using retinal photograph-based deep learning[J]. Nat Aging, 2022, 2(3): 264-271. doi: 10.1038/s43587-022-00171-6
|
|
[2]
|
Mittal C, Kumari A, De I, et al. Heat treatment of soluble proteins isolated from human cataract lens leads to the formation of non-fibrillar amyloid-like protein aggregates[J]. Int J Biol Macromol, 2021, 188: 512-522. doi: 10.1016/j.ijbiomac.2021.07.158
|
|
[3]
|
Lapp T, Wacker K, Heinz C, et al. Cataract surgery-indications, techniques, and intraocular lens selection[J]. Dtsch Arztebl Int, 2023, 120(21): 377-386.
|
|
[4]
|
Mrugacz M, Pony-Uram M, Bryl A, et al. Current approach to the pathogenesis of diabetic cataracts[J]. Int J Mol Sci, 2023, 24(7): 6317. doi: 10.3390/ijms24076317
|
|
[5]
|
Palomino-Vizcaino G, Schuth N, Domínguez-Calva J A, et al. Copper reductase activity and free radical chemistry by cataract-associated human lens γ-crystallins[J]. J Am Chem Soc, 2023, 145(12): 6781-6797. doi: 10.1021/jacs.2c13397
|
|
[6]
|
Sonn S K, Song E J, Seo S, et al. Peroxiredoxin 3 deficiency induces cardiac hypertrophy and dysfunction by impaired mitochondrial quality control[J]. Redox Biol, 2022, 51: 102275. doi: 10.1016/j.redox.2022.102275
|
|
[7]
|
Sontag E M, Morales-Polanco F, Chen J H, et al. Nuclear and cytoplasmic spatial protein quality control is coordinated by nuclear-vacuolar junctions and perinuclear ESCRT[J]. Nat Cell Biol, 2023, 25(5): 699-713. doi: 10.1038/s41556-023-01128-6
|
|
[8]
|
Zhang M, Zhang R, Zhao X, et al. The role of oxidative stress in the pathogenesis of ocular diseases: an overview[J]. Mol Biol Rep, 2024, 51(1): 454. doi: 10.1007/s11033-024-09425-5
|
|
[9]
|
Qin Y, Liu H, Wu H. Cellular senescence in health, disease, and lens aging[J]. Pharmaceuticals (Basel), 2025, 18(2): 244.
|
|
[10]
|
Chen C T, Shao Z, Fu Z. Dysfunctional peroxisomal lipid metabolisms and their ocular manifestations[J]. Front Cell Dev Biol, 2022, 10: 982564. doi: 10.3389/fcell.2022.982564
|
|
[11]
|
Tan A, Prasad R, Lee C, et al. Past, present, and future perspectives of transcription factor EB (TFEB): mechanisms of regulation and association with disease[J]. Cell Death Differ, 2022, 29(8): 1433-1449.
|
|
[12]
|
Zhu S Y, Yao R Q, Li Y X, et al. The role and regulatory mechanism of transcription factor EB in health and diseases[J]. Front Cell Dev Biol, 2021, 9: 667750. doi: 10.3389/fcell.2021.667750
|
|
[13]
|
Yang J, Zhang W, Zhang S, et al. Novel insight into functions of transcription factor EB (TFEB) in Alzheimer’s disease and Parkinson’s disease[J]. Aging Dis, 2023, 14(3): 652-669. doi: 10.14336/AD.2022.0927
|
|
[14]
|
Lei H, Ruan Y, Ding R, et al. The role of celastrol in inflammation and diseases[J]. Inflamm Res, 2025, 74(1): 23. doi: 10.1007/s00011-024-01983-5
|
|
[15]
|
Gu M, Li C, Deng Q, et al. Celastrol enhances the viability of random-pattern skin flaps by regulating autophagy through the AMPK-mTOR-TFEB axis[J]. Phytother Res, 2024, 38(6): 3020-3036.
|
|
[16]
|
Liu D, Zhang Q, Luo P, et al. Neuroprotective effects of celastrol in neurodegenerative diseases-unscramble its major mechanisms of action and targets[J]. Aging Dis, 2022, 13(3): 815-836. doi: 10.14336/AD.2021.1115
|
|
[17]
|
Bahmani F, Bathaie S Z, Aldavood S J, et al. Glycine therapy inhibits the progression of cataract in streptozotocin-induced diabetic rats[J]. Mol Vis, 2012, 18: 439-448.
|
|
[18]
|
谷李影, 杜刚, 罗丰年. 羟苯磺酸钙对硒性白内障大鼠晶状体上皮细胞凋亡及Nrf2/HO-1信号通路的影响[J]. 临床和实验医学杂志, 2018, 17(11): 1129-1134. doi: 10.3969/j.issn.1671-4695.2018.11.003
|
|
[19]
|
Dou C S, Zhang Y, Zhang L, et al. Autophagy and autophagy-related molecules in neurodegenerative diseases[J]. Animal Model Exp Med, 2023, 6(1): 10-17.
|