Network Pharmacological Study on Active Compounds of Astragalus and Magnolia officinalis Against Prostate Cancer
-
摘要:
目的 基于网络药理学原理全面分析黄芪和厚朴治疗前列腺癌的作用机制。 方法 通过TCMSP和Swiss数据库预测黄芪与厚朴中的活性分子靶点,并通过Genecards、DisGeNET和OMIM数据库筛选出前列腺癌相关靶点。利用Venny软件构建“疾病-活性成分-靶点”网络,得到69个候选关键靶点基因。进一步通过STRING数据库构建蛋白质互作网络,并使用R语言进行GO和KEGG富集通路分析。再用AutoDockvina对靶点对应的蛋白分子晶体结构与活性成分三维结构进行分子对接。体内实验构建裸鼠皮下瘤模型,使用黄芪-厚朴活性成分进行干预。 结果 分子对接分析表明,黄芪甲苷(MOL000438)和厚朴酚(MOL000398)等活性成分与前列腺癌关键靶点蛋白(包括ATK1、ESR1、PPARG、PTGS2及SRC)表现出显著结合活性,其中厚朴酚与雌激素受体α(ESR1,PDB:1a52)的结合能达-8.7 kcal/mol,通过LEU-391残基形成稳定氢键作用。体内实验进一步证实,黄芪-厚朴活性成分组裸鼠皮下移植瘤体积较模型组小(P < 0.05),且显示肿瘤组织PPARG和PTGS2蛋白表达显著下调(P < 0.05)。RT-qPCR检测表明,该复方可双向调控基因表达:促凋亡因子AKT1水平上调(P < 0.05),而癌相关基因PTGS2、PPARG、SRC及ESR1表达下调(P < 0.05)。 结论 黄芪与厚朴可能通过多靶点、多通路协同,具有良好结合活性和抗前列腺癌作用。 Abstract:Objective To comprehensively analyze the mechanism of Astragalus and Magnolia officinalis in treating prostate cancer based on the principles of network pharmacology. Methods Active molecular targets of Astragalus and Magnolia officinalis were predicted using the TCMSP and SwissTargetPrediction databases. Prostate cancer-related targets were screened via Genecards, DisGeNET, and OMIM databases. A "disease-active ingredient-target" network was constructed using Venny software, identifying 69 candidate key target genes. A protein-protein interaction (PPI) network was built using the STRING database, followed by GO and KEGG enrichment pathway analyses performed with R language. Constructing a subcutaneous tumor model in nude mice through in vivo experiments and intervening with active ingredients from Astragalus membranaceus and Magnolia officinalis. Results Molecular docking analysis revealed that active components such as astragaloside IV (MOL000438) and honokiol (MOL000398) exhibited significant binding activity with the key target proteins of prostate cancer, including AKT1, ESR1, PPARG, PTGS2, and SRC. Notably, Honokiol demonstrated a binding energy of -8.7 kcal/mol with estrogen receptor α (ESR1, PDB:1a52), forming stable hydrogen bond interaction with the LEU-391 residue. The in vivo experiments further confirmed that the Astragalus-Magnolia active component group showed smaller subcutaneous xenograft tumor volumes in nude mice as compared to the model group (P < 0.05). Immunohistochemical analysis revealed significant downregulation of PPARG and PTGS2 protein expression in tumor tissues (P < 0.05). QPCR results indicated that the formula bidirectionally regulated gene expression: pro-apoptotic factor AKT1 was upregulated (P < 0.05), while cancer-associated genes PTGS2, PPARG, SRC, and ESR1 were downregulated (P < 0.05). Conclusion The combination of Astragalus and Magnolia may exert anti-prostate cancer effects through multi-target and multi-pathway synergistic mechanisms, demonstrating favorable binding activity and therapeutic potential. -
图 5 分子对接图
A:1h10与MOL000438对接结果;B:1a52与MOL000398对接结果;C:1fm6与MOL000378对接结果;D:图5d 5f19与MOL000378对接结果;E:1a07与MOL000438对接结果。注:左侧为小分子与蛋白对接全局图,绿色(蓝色)卡通结构为蛋白3D结构,蓝色(黄色)棒状结构为小分子结构。右侧框为对接放大图,图中绿色(蓝色)棒状结构为氨基酸残基,旁边的文字为残基名和位置序号,蓝色(黄色)棒状结构为小分子结构,黄色(黑色)虚线代表氢键,氢键旁边的数字为两点间的距离,单位为(Å)。
Figure 5. Molecular Docking Diagram
表 1 所用引物及序列
Table 1. Primer sequences
基因名称 引物名称 引物序列 引物长度(bp) AKT1 AKT1 F 5'-GCACAAACGAGGGGAGTACA-3' 20 AKT1 R 5'-AAGGTGCGTTCGATGACAGT-3' 20 PTGS2 PTGS2 F 5'-CTCAGCCATACAGCAAATCCT-3' 21 PTGS2 R 5'-CCGGGTACAATCGCACTTAT-3' 20 PPARG PPARG F 5'-GTTTCTAAAGAGCCTGCGAAAG-3' 22 PPARG R 5'-GCCAAGTCGCTGTCATCTAA-3' 20 SRC SRC F 5'-TTCCTCGTGCGAGAAAGTG-3' 19 SRC R 5'-AGCTTGCGGATCTTGTAGTG-3' 20 ESR1 ESR1 F 5'-GGCATTCTACAGGCCAAATTC-3' 21 ESR1 R 5'-GGCAGATTCCATAGCCATACT-3' 21 GAPDH 内参H-GAPDH F 5'-CCCATCACCATCTTCCAGG-3' 19 内参H-GAPDH R 5'-CATCACGCCACAGTTTCCC-3' 19 表 2 分子对接结合能
Table 2. Binding Energies from Molecular Docking
Molecule ID Symbol PDB/
AlphaFold IDEnergy
(kcal/mol)MOL000438 ATK1 1h10 −5.9 MOL000398 ESR1 1a52 −8.7 MOL000378 PPARG 1fm6 −8.0 MOL000378 PTGS2 5f19 −7.5 MOL000438 SRC 1a07 −6.6 -
[1] Rawla P. Epidemiology of prostate cancer[J]. World J Oncol., 2019, 10(2): 63-89. doi: 10.14740/wjon1191 [2] 闵淑慧, 胡依, 郭芮绮, 等. 1990-2019年中国前列腺癌疾病负担分析及趋势预测[J]. 中国肿瘤, 2023, 32(3): 171-177. doi: 10.11735/j.issn.1004-0242.2023.03.A002 [3] 中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会(CSCO)前列腺癌诊疗指南 2024 [M]. 北京: 人民卫生出版社, 2024. [4] 陈炽炜, 林曼迪, 刘昊, 等. 去势抵抗性前列腺癌患者的中医证型分布及其早期进展原因的多因素分析[J]. 广州中医药大学学报, 2020, 37(7): 1241-1247. [5] 程晓金, 王春洋, 牛潇菲, 等. 基于网络药理学和分子对接法探讨黄芪治疗前列腺癌的机制[J]. 临床医学进展, 2022, 12(9): 8695-8706. [6] Wang XF, Liu QQ, Fu YF, et al. Magnolol as a potential anticancer agent: A proposed mechanistic insight[J]. Molecules, 2022, 27(19): 6441. doi: 10.3390/molecules27196441 [7] 刘樊, 粟宏伟. 中医药治疗前列腺癌研究进展[J]. 海南医学, 2018, 29(20): 2946-2949. doi: 10.3969/j.issn.1003-6350.2018.20.040 [8] 陈海群, 华其荣, 林军, 等. 女贞子-黄芪治疗转移性去势抵抗性前列腺癌的网络药理学机制[J]. 广西科学, 2023, 30(5): 1017-1024. [9] 张瑶, 李小江, 贾英杰. 中医“健脾利湿化瘀法”在前列腺癌治疗中的运用[J]. 天津中医药, 2021, 38(3): 317-321. [10] Li WN, Jiang HL, Zhang WN, et al. Mechanisms of action of Sappan lignum for prostate cancer treatment: network pharmacology, molecular docking and experimental validation [J]. Frontiers in Pharmacology, 2024, 15 1407525-1407525. [11] Wu LT, Chen Y, Chen MJ, et al. Application of network pharmacology and molecular docking to elucidate the potential mechanism of Astragalus-Scorpion against prostate cancer.[J]. Andrologia, 2021, 53(9): e14165-e14165. [12] 张瑶, 李家合. PI3K/AKT信号通路与前列腺癌关系的研究进展[J]. 肿瘤学杂志, 2021, 27(2): 153-157. doi: 10.11735/j.issn.1671-170X.2021.02.B012 [13] Li X, Wu LH, Liu W, et al. A network pharmacology study of Chinese Medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action[J]. Plos One, 2014, 9(5): e95004. doi: 10.1371/journal.pone.0095004 [14] Zhang H, Tang J, Cao HL, et al. Effect and mechanism of Magnolia officinalis in colorectal cancer: Multi-component-multi-target approach [J]. Journal of Ethnopharmacology 2025, 338 (Pt 1): 119007. [15] Ma Q, Lu XJ, Tian W, et al. Astragaloside Ⅳ mediates the effect and mechanism of KPNB1 on biological behavior and tumor growth in prostate cancer[J]. Heliyon, 2024, 10(13): e33904-e33904. doi: 10.1016/j.heliyon.2024.e33904 [16] Guo SQ, Ma BJ, Jiang XK, et al. Astragalus polysaccharides inhibits tumorigenesis and lipid metabolism through miR-138-5p/SIRT1/SREBP1 pathway in prostate cancer[J]. Frontiers in Pharmacology, 2020, 11: 598. doi: 10.3389/fphar.2020.00598 [17] Kou DQ, Jiang YL, Qin JH, et al. Magnolol attenuates the inflammation and apoptosis through the activation of SIRT1 in experimental stroke rats [J]. Pharmacological Reports, 2017: 642-647. [18] Hsu FT, Liu WL, Lee SR, et al. Unveiling nature's potential weapon: Magnolol's role in combating bladder cancer by upregulating the miR-124 and inactivating PKC-δ/ERK axis[J]. Phytomedicine., 2023, 119: 154947. doi: 10.1016/j.phymed.2023.154947 [19] Chan MH, Chen HH, Lo YC, et al. Effectiveness in the block by honokiol, a dimerized allylphenol from Magnolia officinalis, of hyperpolarization-Activated cation current and delayed-rectifier K+ current[J]. International Journal of Molecular Sciences, 2020, 21(12): 4260. doi: 10.3390/ijms21124260 [20] 张明发, 沈雅琴. 厚朴酚抗肿瘤药理作用及其机制的研究进展[J]. 抗感染药学, 2022, 19(6): 783-787. -