Disease Burden of Hypertensive Nephropathy Attributable to High Sodium Diet in China,Japan,and the United States During 1990-2021 and Its Predictive Analysis
-
摘要:
目的 分析1990—2021年中国、日本和美国归因于高钠饮食的高血压肾病疾病负担及其变化趋势,并预测2022年—2036年的趋势。 方法 利用2021年全球疾病负担数据库(GBD 2021),提取归因于高钠饮食的高血压肾病的年龄标准化死亡率(age-standardized mortality rates,AMSR)和年龄标准化伤残调整寿命年率(age-standardized disability-adjusted life year rates,ASDALYR)。采用预计年度百分比变化(estimated annual percentage change,EAPC)和Joinpoint回归模型分析历史趋势,并使用贝叶斯年龄-时期-队列(bayesian age-period-cohort,BAPC)模型预测未来疾病负担。 结果 全球归因于高钠饮食的高血压肾病ASMR和ASDALYR总体呈显著上升趋势,EAPC分别为0.58(95%CI:0. 53~0. 62)和0.32(95%CI:0.28~0. 37),分层分析提示男性ASDALYR差异有统计学意义(EAPC=0.44,95%CI:0.39~0. 48)。在中日美三国比较中,中国归因于高钠饮食的高血压肾病的ASMR和ASDALYR负担最重,但呈下降趋势,EAPC分别为-1.35(95%CI:-1.43~-1.27)和-1.26(95%CI:-1.36 ~-1.16),且其女性下降更为显著。日本的疾病负担较轻,且ASMR和ASDALYR下降趋势最为显著,EAPC分别为-1.72(95%CI:-2.01 ~-1.42)和-2.02(95%CI:-2.26~-1.79),其中女性下降趋势更显著。美国归因于高钠饮食的高血压肾病的ASMR和ASDALYR呈上升趋势,EAPC分别为4.68(95%CI:4.40~4.97)和 4.72(95%CI:4.38~5.50),且男性上升趋势显著高于女性。Joinpoint分析显示,全球女性和中国男性和女性的ASDALYR均是在2004年出现下降转折,而日本早在1995年后即呈现下降趋势。BAPC模型预测显示,2022—2036年,中国与日本的男性和女性的ASDALYR均呈稳步下降趋势。其中,中国男、女性该指标将分别从24.65/10万、14.06/10万降至23.38/10万、13.46/10万;日本男、女性该指标则分别从9.47/10万、3.03/10万降至8.56/10万、2.55/10万。美国该指标则呈现出性别不一致,男性ASDALYR预计从22.53/10万轻微下降至22.10/10万,而女性则从8.34/10万持续上升至9.34/10万。 结论 全球归因于高钠饮食的高血压肾病疾病负担总体尚未得到有效控制,且存在显著的国家和性别差异。严格控制钠摄入是防治高血压肾病的关键潜在靶点,各国应借鉴日本的有效经验,制定精准的防控策略。 Abstract:Objective To analyze the disease burden and trends of hypertensive nephropathy attributed to high sodium diet in China, Japan, and the United States from 1990 to 2021, and to project trends from 2022 to 2036. Methods Data were extracted from the 2021 Global Burden of Disease (GBD 2021) database, including age-standardized mortality rates (ASMR) and age-standardized disability-adjusted life year rates (ASDALYR) for hypertensive nephropathy attributed to high sodium diet. Estimated annual percentage change (EAPC) and Joinpoint regression models were used to analyze historical trends, while the Bayesian age-period-cohort (BAPC) model was employed to project future disease burden. Results Globally, ASMR and ASDALYR for hypertensive nephropathy attributed to high sodium diet showed significant upward trends, with EAPC of 0.58 (95%CI: 0.53~0.62) and 0.32 (95%CI: 0.2~0.37), respectively. Stratified analysis revealed statistically significant differences in ASDALYR among males (EAPC = 0.44, 95%CI: 0.39~0.48). Among the three countries, China bore the heaviest disease burden, though with a declining trend (EAPC: -1.35 [95%CI: -1.43 to -1.27] for ASMR and -1.26 [95%CI: -1.36 to -1.16] for ASDALYR), with more pronounced decline in females. Japan had the lightest disease burden with the most significant declining trends (EAPC: -1.72 [95%CI: -2.01 to -1.42] for ASMR and -2.02 [95%CI: -2.26 to -1.79] for ASDALYR), particularly among females. The United States showed upward trends (EAPC: 4.68 [95%CI: 4.40~4.97] for ASMR and 4.72 [95%CI: 4.38~5.50] for ASDALYR), with males showing significantly higher increases than females. Joinpoint analysis revealed that ASDALYR declined after 2004 globally in females and in both sexes in China, while Japan demonstrated declining trends after 1995. BAPC projections for 2022-2036 indicated that ASDALYR in both males and females in China and Japan would show steady decreases, with rates declining from 24.65/100,000 and 14.06/100,000 to 23.38/100,000 and 13.46/100,000 in Chinese males and females, respectively, and from 9.47/100,000 and 3.03/100,000 to 8.56/100,000 and 2.55/100,000 in Japanese males and females, respectively. The United States showed sex-specific divergence, with male ASDALYR slightly declining from 22.53/100,000 to 22.10/100,000, while female rates continued to increase from 8.34/100,000 to 9.34/100,000. Conclusion The global disease burden of hypertensive nephropathy attributed to high sodium diet remains inadequately controlled with significant national and gender disparities. Strict sodium intake control represents a key potential intervention target for preventing hypertensive nephropathy. Countries should adopt effective strategies from Japan's experience and develop precision-based prevention and control measures. -
表 1 1990—2021年中日美归因于高钠饮食的高血压肾病的ASMR、ASDALYR变化趋势(1/10万)
Table 1. Trends in ASMR and ASDALYR of hypertensive nephropathy attributable to high sodium diet in China,Japan,and the United States,1990-2021 (per 100,000)
项目 ASMR ASDALYR 1990 2021 EAPC(95%CI) 1990 2021 EAPC(95%CI) 全球 总体 0.58 0.67 0.58 (0.53~0.62) 14.46 15.75 0.32(0.28~0.37) 男性 0.80 0.93 0.62 (0.57~0.67) 19.19 21.32 0.44 (0.39~0.48) 女性 0.42 0.48 0.37 (0.33~0.42) 10.72 11.00 0.06 (0.00~0.11) 中国 总体 0.98 0.75 −0.8(-0.87~ -0.74) 24.42 18.65 −0.80(-0.89~ -0.72) 男性 1.26 1.06 −0.46(-0.54~ -0.37) 29.32 24.18 −0.50(-0.59~ -0.41) 女性 0.8 0.54 −1.35(-1.43~ -1.27) 20.67 14.04 −1.26(-1.36~ -1.16) 日本 总体 0.44 0.28 −1.72(-2.01~ -1.42) 9.98 5.85 −2.02(-2.26~ -1.79) 男性 0.66 0.45 −1.38(-1.65~ -1.11) 14.63 9.41 −1.71(-1.94~ -1.48) 女性 0.30 0.15 −2.45(-2.75~ -2.15) 6.67 3.02 −2.84(-3.07~ -2.61) 美国 总体 0.19 0.67 4.68(4.40~4.97) 4.15 14.42 4.72(4.38~5.05) 男性 0.28 1.01 4.93(4.63~5.24) 5.34 21.77 5.32(4.91~5.73) 女性 0.16 0.40 3.58(3.35~3.81) 3.48 8.19 3.19(2.97~3.41) 表 2 1990—2021年中日美归因于高钠饮食的高血压肾病Joinpoint回归分析结果
Table 2. Joinpoint regression analysis of hypertensive nephropathy attributable to high-sodium diet in the global,China,Japan and USA from 1990 to 2021
项目 AAPC 95%CI下限 95%CI上限 P 全球 总体 0.28 0.21 0.34 < 0.001*** 男性 0.34 0.25 0.44 < 0.001*** 女性 0.08 0.02 0.13 < 0.01** 中国 总体 −0.90 −1.04 −0.76 < 0.001*** 男性 −0.66 −0.9 −0.42 < 0.001*** 女性 −1.26 −1.45 −1.07 < 0.001*** 日本 总体 −1.26 −1.45 −1.07 < 0.001*** 男性 −1.48 −1.79 −1.17 < 0.001*** 女性 −2.54 −3.01 −2.06 < 0.001*** 美国 总体 4.16 3.83 4.50 < 0.001*** 男性 4.66 4.22 5.10 < 0.001*** 女性 2.79 2.53 3.06 < 0.001*** **P < 0.01;***P < 0.001。 表 3 2022-2036年全球、中国、日本和美国归因于高钠饮食的高血压肾病的ASDALYR预测值(1/10万)
Table 3. Predicted ASDALYR ( per 100 000 ) for hypertensive nephropathy attributable to high sodium diet in global,China,Japan and USA population from 2022 to 2036 (per 10,000)
年份 全球 中国 日本 美国 男性 女性 男性 女性 男性 女性 男性 女性 2022 21.55 11.09 24.65 14.06 9.47 3.03 22.53 8.34 2023 21.60 11.14 24.60 14.05 9.43 3.00 22.51 8.39 2024 21.64 11.18 24.54 14.03 9.39 2.96 22.49 8.45 2025 21.68 11.22 24.47 14.01 9.34 2.93 22.47 8.50 2026 21.71 11.26 24.39 13.98 9.29 2.90 22.45 8.56 2027 21.75 11.30 24.31 13.95 9.23 2.86 22.44 8.63 2028 21.79 11.34 24.23 13.91 9.17 2.83 22.42 8.69 2029 21.82 11.37 24.14 13.87 9.11 2.79 22.40 8.76 2030 21.85 11.40 24.04 13.82 9.04 2.76 22.37 8.83 2031 21.87 11.43 23.94 13.77 8.97 2.73 22.34 8.91 2032 21.89 11.46 23.83 13.71 8.90 2.69 22.31 8.99 2033 21.91 11.48 23.73 13.65 8.82 2.66 22.27 9.07 2034 21.93 11.50 23.62 13.59 8.73 2.62 22.22 9.15 2035 21.94 11.51 23.50 13.52 8.65 2.59 22.16 9.24 2036 21.95 11.53 23.38 13.46 8.56 2.55 22.10 9.34 -
[1] Sun D, Wang J, Shao W, et al. Pathogenesis and damage targets of hypertensive kidney injury[J]. J Transl Int Med, 2020, 8(4): 205-209. doi: 10.2478/jtim-2020-0033 [2] Zhang C, Fang X, Zhang H, et al. Genetic susceptibility of hypertension-induced kidney disease[J]. Physiol Rep, 2021, 9(1): e14688. [3] He Y, Tang W, Chen J, et al. Global burden of chronic kidney disease due to hypertension (1990-2021): A systematic analysis of epidemiological trends, risk factors, and projections to 2036 from the GBD 2021 study[J]. BMC Nephrol, 2025, 26(1): 448. [4] Ameer O Z. Hypertension in chronic kidney disease: What lies behind the scene[J]. Front Pharmacol, 2022, 13: 949260. doi: 10.3389/fphar.2022.949260 [5] 吴树法, 曹汝岱, 黄文龙, 等. 1990年—2021年中国和全球高血压肾病疾病负担及预测研究[J]. 华西医学, 2025, 40(7): 1084-1090. doi: 10.7507/1002-0179.202411184 [6] Murray C J L. The global burden of disease study at 30 years[J]. Nat Med, 2022, 28(10): 2019-2026. doi: 10.1038/s41591-022-01990-1 [7] Ahmad O B, Boschi-Pinto C, Lopez A D, et al. Age standardization of rates: A new WHO standard[R]. GPE Discuss Pap Ser, 2001, 31: 1-14. [8] Yang X, Zhang T, Zhang X, et al. Global burden of lung cancer attributable to ambient fine particulate matter pollution in 204 countries and territories, 1990-2019[J]. Environ Res, 2022, 204(Pt A): 112023. [9] Yang X, Chen H, Zhang T, et al. Global, regional, and national burden of blindness and vision loss due to common eye diseases along with its attributable risk factors from 1990 to 2019: A systematic analysis from the global burden of disease study 2019[J]. Aging, 2021, 13(15): 19614-19642. doi: 10.18632/aging.203374 [10] 陈飞, 王悠清. 1990—2019年中国食管癌疾病负担及其变化趋势分析[J]. 中国肿瘤, 2021, 30(6): 401-407. [11] Hu W, Fang L, Zhang H, et al. Global disease burden of COPD from 1990 to 2019 and prediction of future disease burden trend in China[J]. Public Health, 2022, 208: 89-97. doi: 10.1016/j.puhe.2022.04.015 [12] Parksook W W, Williams G H. Challenges and approach to identifying individuals with salt sensitivity of blood pressure[J]. Am J Nephrol, 2022, 53(11-12): 847-855. doi: 10.1159/000529057 [13] Jeong S, Hunter S D, Cook M D, et al. Salty subjects: Unpacking racial differences in salt-sensitive hypertension[J]. Curr Hypertens Rep, 2024, 26(1): 43-58. doi: 10.1007/s11906-023-01275-z [14] 曹镌文. 盐敏感性高血压钠代谢相关基因的研究进展[J]. 临床与病理杂志, 2020, 40(10): 2721-2726. doi: 10.3978/j.issn.2095-6959.2020.10.037 [15] Romberger N T, Stock J M, Patik J C, et al. Inverse salt sensitivity in normotensive adults: Role of demographic factors[J]. J Hypertens, 2023, 41(6): 934-940. doi: 10.1097/HJH.0000000000003413 [16] Ikeda N, Yamashita H, Hattori J, et al. Reduction of cardiovascular events and related healthcare expenditures through achieving population-level targets of dietary salt intake in Japan: A simulation model based on the national health and nutrition survey[J]. Nutrients, 2022, 14(17): 3606. doi: 10.3390/nu14173606 [17] 程显扬. 基于政策工具的《健康中国行动(2019—2030年)》文本分析[J]. 东北大学学报(社会科学版), 2020, 22(5): 65-72. doi: 10.15936/j.cnki.1008-3758.2020.05.009 [18] 国家卫生健康委员会官网. 体重管理指导原则(2024年版)摘登[J]. 新医学, 2025, 56(6): 627-628. doi: 10.12464/j.issn.0253-9802.2025-0165 [19] 马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2021》要点解读[J]. 中国全科医学, 2022, 25(27): 3331-3346. doi: 10.12114/j.issn.1007-9572.2022.0506 [20] 刘明波, 何新叶, 杨晓红, 等. 《中国心血管健康与疾病报告2024》要点解读[J]. 实用医学杂志, 2025, 41(14): 2111-2131. doi: 10.3969/j.issn.1006-5725.2025.14.001 [21] Ahuja J K C, Li Y, Haytowitz D B, et al. Assessing changes in sodium content of selected popular commercially processed and restaurant foods: Results from the USDA: CDC sentinel foods surveillance program[J]. Nutrients, 2019, 11(8): 1754. doi: 10.3390/nu11081754 [22] Niu K, Momma H, Kobayashi Y, et al. The traditional Japanese dietary pattern and longitudinal changes in cardiovascular disease risk factors in apparently healthy Japanese adults[J]. Eur J Nutr, 2016, 55(1): 267-279. doi: 10.1007/s00394-015-0844-y [23] Japanese Society of Hypertension. Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2004)[J]. Hypertens Res, 2006, 29 Suppl: S1-S105. [24] Gohar E Y, De Miguel C, Obi I E, et al. Acclimation to a high-salt diet is sex dependent[J]. J Am Heart Assoc, 2022, 11(5): e020450. [25] Visniauskas B, Kilanowski-Doroh I, Ogola B O, et al. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases[J]. J Hum Hypertens, 2023, 37(8): 609-618. [26] Tao Y, Young-Stubbs C, Yazdizadeh Shotorbani P, et al. Sex and strain differences in renal hemodynamics in mice[J]. Physiol Rep, 2023, 11(6): e15644. doi: 10.14814/phy2.15644 [27] Oloyo A K, Imaga N O A, Fatope Y, et al. Sex differences in cardiac and renal responses to a high salt diet in Sprague-Dawley rats[J]. Heliyon, 2019, 5(5): e01665. doi: 10.1016/j.heliyon.2019.e01665 [28] Tahaei E, Coleman R, Saritas T, et al. Distal convoluted tubule sexual dimorphism revealed by advanced 3D imaging[J]. Am J Physiol Renal Physiol, 2020, 319(5): F754-F764. doi: 10.1152/ajprenal.00441.2020 [29] Administration for community living. 2023 profile of older Americans[R]. U. S. Department of Health and Human Services, 2024, 5. https://acl.gov/sites/default/files/Profile%20of%20OA/ACL_ProfileOlderAmericans2023_508.pdf [30] Robinson K. Trends in health status and health care use among older women[R]. U. S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics. 2007, 3. http://www.cdc.gov/nchs/data/ahcd/agingtrends/07olderwomen.pdf [31] Xiang D, Liu Y, Zhou S, et al. Protective effects of estrogen on cardiovascular disease mediated by oxidative stress[J]. Oxid Med Cell Longev, 2021, 2021: 5523516. doi: 10.1155/2021/5523516 -
下载: