Metabolic Differences of Propranolol Enantiomers in Different Species of Liver Microsomes by HPLC-MS/MS
-
摘要:
目的 采用高效液相色谱-串联质谱法(HPLC-MS/MS)建立R-(+)-普萘洛尔和S-(-)-普萘洛尔在肝微粒体孵育体系中的含量测定方法,并分别比较普萘洛尔不同对映体在大鼠、犬、猴以及人4种肝微粒体中的代谢特征。 方法 分别将R-(+)-普萘洛尔和S-(-)-普萘洛尔溶解在由烟酰胺腺嘌呤二核苷酸磷酸(NADPH)启动孵育的不同种属的肝微粒体中,在孵育不同的时间后加入乙腈终止反应。使用电喷雾离子源(ESI),以卡维地洛为内标,在多反应监测模式(MRM)下进行正离子扫描,分别测定各孵育体系中R-(+)-普萘洛尔和S-(-)-普萘洛尔的浓度。以孵育0 min时不同构型的普萘洛尔的质量浓度为参照,分别计算R-(+)-普萘洛尔和S-(-)-普萘洛尔在不同肝微粒体样品中的药物剩余百分比和体外代谢半衰期和固有清除率。 结果 普萘洛尔的线性范围为0.05~10.00 μg/mL,定量下限为0.05 μg/mL;日内、日间精密度的RSD%均小于13%。在4个种属的肝微粒体孵育体系中,R-(+)-普萘洛尔在大鼠肝微粒体中代谢快,在猴肝微粒体中次之,在犬和人肝微粒体中代谢慢,体外消除半衰期依次为大鼠 < 猴 < 犬 < 人;而S-(-)-普萘洛尔则是在大鼠和犬肝微粒体中代谢快,在猴和人肝微粒体中代谢慢,体外消除半衰期依次为大鼠 < 犬 < 猴 < 人。在大鼠、犬和猴肝微粒体中,R构型普萘洛尔的t1/2均大于S构型,CLint小于S构型,但在人肝微粒体中却刚好相反。采用单因素方差分析,R-(+)-普萘洛尔和S-(-)-普萘洛尔在4种肝微粒体中的体外代谢半衰期t1/2和固有清除率CLint均具有显著性差异(P < 0.05)。 结论 建立的HPLC-MS/MS法具有简单、快速、准确的特点,可用于肝微粒体中普萘洛尔对映体质量浓度的测定。不同构型的普萘洛尔在大鼠、犬、猴和人4种肝微粒体中的代谢稳定性有显著差异。 -
关键词:
- R-(+)-普萘洛尔 /
- S-(-)-普萘洛尔 /
- 液相色谱-串联质谱法 /
- 不同种属肝微粒体 /
- 体外代谢
Abstract:Objective To establish a method for the determination of R-(+) -propranolol and S-(-) -propranolol in the incubation system of liver microsomes by HPLC-MS/MS, and to compare the metabolic characteristics of R-(+) -propranolol and S-(-) -propranolol in rat, dog, monkey and human liver microsomes. Methods R-(+)-propranolol and S-(-)-propranolol were respectively dissolved in NADPH activated liver microsome incubation systems of different species, and acetonitrile was added to terminate the reaction after incubation for different time. The concentrations of R-(+) -propranolol and S-(-) -propranolol in each incubation system were determined by using an electrospray ion source(ESI) with carvedilol as the internal standard and positive ion scanning under multi-reaction monitoring mode(MRM). The residual percentage, metabolism half-life period in vitro and intrinsic clearance of R-(+) -propranolol and S-(-) -propranolol in incubation systems of different species liver microsomes were calculated based on the mass concentration of propranolol with different configurations at 0 min. Results The linear range of propranolol: 0.05~10.00 μg/mL; and the lower limit of quantitation: 0.05 μg/mL; The RSD% of intra-day and inter-day were less than 13%. In the incubation system of four species liver microsomes, the metabolism of R-(+)-propranolol in rat liver microsomes was fast, followed by monkey liver microsomes, and was slow in dog and human liver microsomes, and the t1/2 values in vitro were as follows: rat < monkey < dog < human. S-(-)-propranolol was metabolized quickly in rat and dog liver microsomes, but slowly in monkey and human liver microsomes, and the t1/2 values in vitro were as follows: rat < dog < monkey < human. In rat, dog and monkey liver microsomes, the t1/2 of R configuration is greater than S configuration, and CLint is smaller than S configuration, but in human liver microsomes, the opposite is true. Using univariate analysis of variance, the in vitro metabolic half-life t1/2 and intrinsic clearance CLint of R -(+) - propranolol and S -(-) - propranolol in four liver microsomes were significantly different(P < 0.05). Conclusion The established HPLC-MS/MS method is simple, rapid and accurate, and can be used for the determination of propranolol enantiomer mass concentration in liver microsome. The metabolic stability of propranolol with different configurations in rat, dog, monkey and human liver microsomes was significant different. -
表 1 精密度与准确度结果(
$\bar x \pm s $ /%)Table 1. Precision and accuracy results (
$\bar x \pm s $ /%)理论浓度(μg/mL) 目标物 日内精密度(n = 5) 日间精密度(n = 15) 准确度(n = 5) 实测浓度 RSD 实测浓度 RSD 0.05 R-(+)-普萘洛尔 0.055 ± 0.003 5.88 0.055 ± 0.003 5.90 108.85 ± 6.41 S-(-)-普萘洛尔 0.043 ± 0.002 3.80 0.047 ± 0.006 12.09 86.59 ± 2.95 0.1 R-(+)-普萘洛尔 0.106 ± 0.005 4.87 0.099 ± 0.009 8.72 106.20 ± 5.21 S-(-)-普萘洛尔 0.095 ± 0.005 5.80 0.097 ± 0.008 7.76 94.94 ± 0.12 2 R-(+)-普萘洛尔 1.987 ± 0.140 7.06 1.833 ± 0.140 7.75 99.34 ± 7.02 S-(-)-普萘洛尔 1.842 ± 0.060 3.10 1.889 ± 0.130 6.72 92.08 ± 2.87 8 R-(+)-普萘洛尔 7.600 ± 0.310 4.14 7.179 ± 0.360 5.07 94.99 ± 3.93 S-(-)-普萘洛尔 7.913 ± 0.270 3.36 7.700 ± 0.270 3.53 98.91 ± 3.33 表 2 提取回收率与基质效应结果(%)
Table 2. Extraction recovery and matrix effect results(%)
理论浓度(μg/mL) 目标物 提取回收率 (n = 5) 基质效应 (n = 5) $ (\overline{x}\pm s) $ RSD $ (\overline{x}\pm s) $ RSD 0.1 R-(+)-普萘洛尔 104.45 ± 7.01 6.71 102.66 ± 3.70 3.60 S-(-)-普萘洛尔 105.60 ± 4.45 4.22 106.02 ± 3.75 3.54 2 R-(+)-普萘洛尔 100.91 ± 5.62 5.57 107.92 ± 3.86 3.57 S-(-)-普萘洛尔 98.31 ± 4.79 4.87 106.52 ± 4.12 3.87 8 R-(+)-普萘洛尔 92.18 ± 5.32 5.77 112.51 ± 1.74 1.54 S-(-)-普萘洛尔 102.92 ± 2.14 2.08 100.30 ± 2.50 2.49 表 3 稳定性试验结果(
$\bar x \pm s $ /%)Table 3. Stability test results (
$ \bar x \pm s $ /%)理论浓度(μg/mL) 目标物 进样器放置24 h 室温放置12 h 实测质量浓度(n = 5) RSD 实测质量浓度 (n = 5) RSD 0.1 R-(+)-普萘洛尔 0.110 ± 0.003 3.18 0.111 ± 0.003 3.08 S-(-)-普萘洛尔 0.111 ± 0.002 1.63 0.113 ± 0.002 1.72 2 R-(+)-普萘洛尔 2.071 ± 0.160 7.76 1.890 ± 0.150 8.04 S-(-)-普萘洛尔 2.271 ± 0.010 0.58 2.250 ± 0.037 1.63 8 R-(+)-普萘洛尔 7.882 ± 0.200 2.49 7.436 ± 0.282 3.80 S-(-)-普萘洛尔 8.846 ± 0.120 1.31 8.907 ± 0.210 2.33 表 4 R-(+)-普萘洛尔和S-(-)-普萘洛尔在不同肝微粒体中的回归方程、t1/2和CLint
Table 4. Regression equation,t1/2 and CLint of R-(+)- propranolol and S-(-)- propranolol in different liver microsomes
肝微粒体 目标物 回归方程 R2 t1/2/min CLint/mL·min−1·mg−1 大鼠 R-(+)-普萘洛尔 y = −0.0117x−0.08 0.9777 59.23* 0.023* S-(-)-普萘洛尔 y = −0.0153x−0.0006 0.9359 45.00# 0.031# 犬 R-(+)-普萘洛尔 y = −0.0063x−0.141 0.8946 111.77* 0.012* S-(-)-普萘洛尔 y = −0.014x +0.0021 0.9885 49.50# 0.028# 猴 R-(+)-普萘洛尔 y = −0.0086x−0.0537 0.9559 80.58* 0.017* S-(-)-普萘洛尔 y = −0.0089x + 0.0066 0.9648 77.87# 0.018# 人 R-(+)-普萘洛尔 y = −0.0037x−0.076 0.9117 187.30 0.007 S-(-)-普萘洛尔 y = −0.0026x−0.0677 0.9072 266.54 0.005 注:R-(+)-普萘洛尔:与人肝微粒体比较,*P < 0.05;S-(-)-普萘洛尔:与人肝微粒体比较,#P < 0.05。 -
[1] 崔素梅,崔兆强. β受体阻滞剂与高血压治疗[J]. 中国临床药理学与治疗学,2022,27(4):423-427. doi: 10.12092/j.issn.1009-2501.2022.04.011 [2] Barrett A M,Cullum V A. The biological properties of the optical isomers of propranolo l and their effects on cardiac arrhythmias[J]. Br J Pharmacol,1968,34(1):43-55. doi: 10.1111/j.1476-5381.1968.tb07949.x [3] 张娟红,徐丽婷,王荣,等. 普萘洛尔构象研究与临床应用进展[J]. 中国药房,2014,25(28):2680-2682. doi: 10.6039/j.issn.1001-0408.2014.28.31 [4] Peterson R N,Freund M. Effects of (H+),(Na+),(K+) and certain membrane-active drugs on glycolysis,motility and ATP synthesis by human spermatozoa[J]. Biol Reprod,1973,8(3):350. doi: 10.1093/biolreprod/8.3.350 [5] 郑维思. 普萘洛尔对映体在经不同诱导剂诱导的人肝细胞中的代谢特征[D]. 广州: 广东药学院, 2007. [6] 李新,曾苏. 普萘洛尔光学异构体在经不同诱导剂诱导的大鼠肝微粒体P450系统中的代谢特征[J]. 中国药理学与毒理学杂志,1999,13(1):53-56. doi: 10.3321/j.issn:1000-3002.1999.01.014 [7] 刘利利,张继瑜. 药物体外肝代谢模型的研究进展[J]. 中国兽医学报,2018,38(10):2015-2019. [8] 邓星,罗莉娅,苟立平,等. 采用UPLC-MS/MS法研究辣薄荷基厚朴酚在不同种属肝微粒体中的代谢特征[J]. 中国药房,2019,30(2):170-175. [9] 吴桐,阳海鹰,原梅,等. 雷公藤甲素在人和大鼠肝微粒体代谢消除和酶动力学的比较研究[J]. 中国药理学通报,2018,34(10):1414-1419. doi: 10.3969/j.issn.1001-1978.2018.10.017 [10] 鲁艳柳,刘浩,曾瑶,等. 石斛碱在体外肝微粒体代谢的种属差异研究[J]. 天然产物研究与开发,2018,30(9):1538-1542. [11] Cohen L H,Remley M J,Raunig D,et. al. In vitro drug interactions of cytochrome P450: an evaluation of fluorogenic to conventional substrates[J]. Drug Metab Dispos,2003,31(8):1005-1015. doi: 10.1124/dmd.31.8.1005 [12] 张丽,蔡进,班玉娟,等. 采用UPLC-MS/MS法研究树豆酮酸A在不同种属肝微粒体中的代谢差异[J]. 中国药房,2019,30(18):2497-2502. [13] 杨洋,李静,肖涛,等. 阿德福韦混膦酯衍生物体外代谢及稳定性研究[J]. 中国药科大学学报,2018,49(6):699-705. [14] 国家药典委员会. 中华人民共和国药典: 四部[S]. 2020年版. 北京: 中国医药科技出版社, 2020: 466-471.