留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-373通过P2X7R影响抑郁症小鼠行为的作用机制

王小云 王巧云 顾明华 丁昱 关雨雯 张继兰

王小云, 王巧云, 顾明华, 丁昱, 关雨雯, 张继兰. miR-373通过P2X7R影响抑郁症小鼠行为的作用机制[J]. 昆明医科大学学报, 2021, 42(10): 29-37. doi: 10.12259/j.issn.2095-610X.S20211030
引用本文: 王小云, 王巧云, 顾明华, 丁昱, 关雨雯, 张继兰. miR-373通过P2X7R影响抑郁症小鼠行为的作用机制[J]. 昆明医科大学学报, 2021, 42(10): 29-37. doi: 10.12259/j.issn.2095-610X.S20211030
Xiao-yun WANG, Qiao-yun WANG, Ming-hua GU, Yu DING, Yu-wen GUANG, Ji-lan ZHANG. Mechanism of miR-373 on Behaviors of Depression-mice via P2X7R[J]. Journal of Kunming Medical University, 2021, 42(10): 29-37. doi: 10.12259/j.issn.2095-610X.S20211030
Citation: Xiao-yun WANG, Qiao-yun WANG, Ming-hua GU, Yu DING, Yu-wen GUANG, Ji-lan ZHANG. Mechanism of miR-373 on Behaviors of Depression-mice via P2X7R[J]. Journal of Kunming Medical University, 2021, 42(10): 29-37. doi: 10.12259/j.issn.2095-610X.S20211030

miR-373通过P2X7R影响抑郁症小鼠行为的作用机制

doi: 10.12259/j.issn.2095-610X.S20211030
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目[2018FE001(-223)]
详细信息
    作者简介:

    王小云(1974~),女,云南楚雄人,大学本科,主治医师,主要从事精神相关疾病研究及诊疗工作

  • 中图分类号: R749.92

Mechanism of miR-373 on Behaviors of Depression-mice via P2X7R

  • 摘要:   目的  探讨miR-373对抑郁症小鼠模型抑郁样行为,小胶质细胞激活和焦亡的影响。  方法  采用慢性不可预知应激构建抑郁症小鼠模型。蔗糖偏好,强迫游泳,尾部悬挂和社会实验评估小鼠的抑郁样行为。免疫荧光双染小胶质细胞标志物Iba-1和小胶质细胞活化标志物OX-42以评估小鼠海马层中小胶质细胞增殖和活化状态。TUNEL试剂盒检测小胶质细胞的凋亡。荧光定量PCR检测miR-373的表达水平。蛋白质印记检测P2X7R和细胞焦亡相关蛋白的表达水平。双荧光素酶报告基因实验验证miR-373和P2X7R的靶向关系。  结果  慢性不可预知应激处理的小鼠,蔗糖偏好度和社交时间显著下调,并且强迫游泳和尾部悬挂不动时间显著增加(P < 0.05)。miR-373在抑郁症模型小鼠中异常高表达,且能够缓解小鼠的抑郁样行为(P < 0.05)。miR-373靶向负调控小鼠海马层小胶质细胞中P2X7R的表达水平(P < 0.01)。miR-373抑制小鼠海马层中小胶质细胞增殖和激活(P < 0.01)。miR-373抑制小胶质细胞中Caspase-1,C-caspase-1,NLRP3,IL-1β和IL-18表达,并抑制小胶质细胞凋亡(P < 0.05)。  结论  miR-373通过靶向抑制P2X7R的表达,从而缓解抑郁症小鼠模型的抑郁样行为,并抑制其海马层中小胶质细胞活化和焦亡。
  • 图  1  抑郁症样小鼠模型构建

    A:BALB/c小鼠处理方法和时间示意图。在CUS处理BALB/c小鼠5周后,测量抑郁样行为的结果:B:SPT;C:FST;D:TST;E:SIT。与Con组比较,*P < 0.05,**P < 0.01。

    Figure  1.  Construction of depression-like mice model

    图  2  miR-373缓解抑郁症模型小鼠抑郁样行为

    A和B:RT-qPCR检测小鼠中miR-373表达水平的结果。抑郁症小鼠模型尾静脉注射ago-miR及ago-miR-373,测量抑郁样行为的结果:C:SPT;D:FST;E:TST;F:SIT。注:图2A,与Con组比较,*P < 0.05,**P < 0.01;图2B,与ago-miR(无意义序列)比较,*P < 0.05,**P < 0.01;图2C-F,与CUS组比较,*P < 0.05,**P < 0.01。

    Figure  2.  miR-373 alleviates depression-like behavior in depression model mice

    图  3  P2X7R是miR-373的靶基因

    A:TargetScan预测miR-373与P2X7R潜在结合区域的示意图;B:双荧光素酶验证miR-373与P2X7R的靶向关系;C:Western blotting检测各组小鼠中P2X7R蛋白的表达水平;D:RT-qPCR检测各组小鼠中P2X7R mRNA的表达水平。横线两端所示的2组比较,**P < 0.01。

    Figure  3.  P2X7R is a targe gene of miR-373

    图  4  miR-373抑制小鼠海马层中小胶质细胞的激活

    A:IF双染小鼠海马层中小胶质细胞标志物Iba-1和小胶质细胞活化标志物OX-42的结果和相对荧光强度统计图,红色箭头表示激活的小胶质细胞;B:IF双染小鼠海马层中P2X7R和Iba-1的结果和相对荧光强度统计图,红色箭头表示表达P2X7R的小胶质细胞。横线两端所示的2组比较,**P < 0.01。

    Figure  4.  miR-373 inhibits the activation of microglia in mice hippocampus

    图  5  miR-373抑制小鼠海马层中小胶质细胞焦亡

    A:Westernblotting检测的结果和蛋白相对表达的统计图。B:RT-qPCR检测的结果和mRNA相对表达的统计图。C:TUNEL实验检测小鼠海马层中小胶质细胞凋亡水平结果及统计图。横线两端所示的两组比较,**P < 0.01。

    Figure  5.  miR-373 inhibits pyroptosis of microglia in mice hippocampus

    表  1  RT-qPCR引物序列

    Table  1.   RT-qPCR Primer Series

    目标正向引物(5′-3′)反向引物(5′-3′)
    miR-373 ACUCAAAAUGGGGGCGGAAAGC CAGTGCGTGTCGTGGAGT
    U6 CCCTTCGGGGACATCCGATA TTTGTGCGTGTCATCCTTGC
    caspase-1 TGGATCTTCACAAGGGCGAC CAACACAGCAACCAGCAGAC
    NLRP3 CAGGATGGCTCTCGCTTCAT CTGACAGAACCGTGGGACTC
    IL-1β TGCCACCTTTTGACAGTGATG TTCTTGTGACCCTGAGCGAC
    IL-18 ACAGGACTGCCATCTTCTGC ATTGTTCCTGGGCCAAGAGG
    β-actin TTCCAGCCTTCCTTCTTG TGTCAACGTCACACTTCA
    下载: 导出CSV
  • [1] Malhi G S,Mann J J. Depression[J]. Lancet,2018,392(10161):2299-2312. doi: 10.1016/S0140-6736(18)31948-2
    [2] Cruz-Pereira J S,Rea K,Nolan Y M,et al. Depression's Unholy Trinity:Dysregulated Stress,Immunity,and the Microbiome[J]. Annu Rev Psychol,2020,71:49-78. doi: 10.1146/annurev-psych-122216-011613
    [3] Spellman T,Liston C. Toward Circuit Mechanisms of Pathophysiology in Depression[J]. Am J Psychiatry,2020,177(5):381-390. doi: 10.1176/appi.ajp.2020.20030280
    [4] Dubovsky S L,Ghosh B M,Serotte J C,et al. Psychotic Depression:Diagnosis,Differential Diagnosis,and Treatment[J]. Psychother Psychosom,2021,90(3):160-177. doi: 10.1159/000511348
    [5] Hammen C. Risk Factors for Depression:An Autobiographical Review[J]. Annu Rev Clin Psychol,2018,14:1-28. doi: 10.1146/annurev-clinpsy-050817-084811
    [6] Menke A,Nitschke F,Hellmuth A,et al. Stress impairs response to antidepressants via HPA axis and immune system activation[J]. Brain Behav Immun,2021,93:132-140. doi: 10.1016/j.bbi.2020.12.033
    [7] Miller A H,Raison C L. The role of inflammation in depression:from evolutionary imperative to modern treatment target[J]. Nat Rev Immunol,2016,16(1):22-34. doi: 10.1038/nri.2015.5
    [8] Beurel E,Toups M,Nemeroff C B. The Bidirectional Relationship of Depression and Inflammation:Double Trouble[J]. Neuron,2020,107(2):234-256. doi: 10.1016/j.neuron.2020.06.002
    [9] Nerurkar L,Siebert S,Mcinnes I B,et al. Rheumatoid arthritis and depression:an inflammatory perspective[J]. Lancet Psychiatry,2019,6(2):164-173. doi: 10.1016/S2215-0366(18)30255-4
    [10] Yirmiya R,Rimmerman N,Reshef R. Depression as a microglial disease[J]. Trends Neurosci,2015,38(10):637-658. doi: 10.1016/j.tins.2015.08.001
    [11] Jia X,Gao Z,Hu H. Microglia in depression:current perspectives[J]. Sci China Life Sci,2020.
    [12] Winkle M,El-Daly S M,Fabbri M,et al. Noncoding RNA therapeutics-challenges and potential solutions[J]. Nat Rev Drug Discov,2021,20(8):629-651. doi: 10.1038/s41573-021-00219-z
    [13] Makarova J,Turchinovich A,Shkurnikov M,et al. Extracellular miRNAs and Cell-Cell Communication:Problems and Prospects[J]. Trends Biochem Sci,2021,46(8):640-651. doi: 10.1016/j.tibs.2021.01.007
    [14] Allen L,Dwivedi Y. MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior[J]. Mol Psychiatry,2020,25(2):308-320. doi: 10.1038/s41380-019-0597-8
    [15] Van Den Berg M M J,Krauskopf J,Ramaekers J G,et al. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders[J]. Prog Neurobiol,2020,185:101732. doi: 10.1016/j.pneurobio.2019.101732
    [16] Surget A,Wang Y,Leman S,et al. Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal[J]. Neuropsychopharmacology,2009,34(6):1363-80. doi: 10.1038/npp.2008.76
    [17] Shen J,Li Y,Qu C,et al. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus[J]. J Affect Disord,2019,248:81-90. doi: 10.1016/j.jad.2019.01.031
    [18] Li B,Han L,Cao B,et al. Use of magnoflorine-phospholipid complex to permeate blood-brain barrier and treat depression in the CUMS animal model[J]. Drug Deliv,2019,26(1):566-574. doi: 10.1080/10717544.2019.1616236
    [19] Liu Z,Yang J,Fang Q,et al. MiRNA-199a-5p targets WNT2 to regulate depression through the CREB/BDNF signaling in hippocampal neuron[J]. Brain Behav,2021,11(8):e02107.
    [20] Yang J,Sun J,Lu Y,et al. Revision to psychopharmacology mRNA and microRNA profiles are associated with stress susceptibility and resilience induced by psychological stress in the prefrontal cortex[J]. Psychopharmacology(Berl),2020,237(10):3067-3093. doi: 10.1007/s00213-020-05593-x
    [21] Mclarnon J G. Roles of purinergic P2X(7)receptor in glioma and microglia in brain tumors[J]. Cancer Lett,2017,402:93-99. doi: 10.1016/j.canlet.2017.05.004
    [22] Illes P,Khan T M,Rubini P. Neuronal P2X7 Receptors Revisited:Do They Really Exist?[J]. J Neurosci,2017,37(30):7049-7062. doi: 10.1523/JNEUROSCI.3103-16.2017
    [23] Yue N,Huang H,Zhu X,et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors[J]. J Neuroinflammation,2017,14(1):102. doi: 10.1186/s12974-017-0865-y
    [24] Albert P R,Le François B,Vahid-Ansari F. Genetic,epigenetic and posttranscriptional mechanisms for treatment of major depression:the 5-HT1A receptor gene as a paradigm[J]. J Psychiatry Neurosci,2019,44(3):164-176. doi: 10.1503/jpn.180209
    [25] Yoshino Y,Roy B,Dwivedi Y. Differential and unique patterns of synaptic miRNA expression in dorsolateral prefrontal cortex of depressed subjects[J]. Neuropsychopharmacology,2021,46(5):900-910. doi: 10.1038/s41386-020-00861-y
    [26] Roy B,Dunbar M,Shelton R C,et al. Identification of MicroRNA-124-3p as a Putative Epigenetic Signature of Major Depressive Disorder[J]. Neuropsychopharmacology,2017,42(4):864-875. doi: 10.1038/npp.2016.175
    [27] Xu J,Wang R,Liu Y,et al. FKBP5 and specific microRNAs via glucocorticoid receptor in the basolateral amygdala involved in the susceptibility to depressive disorder in early adolescent stressed rats[J]. Journal of Psychiatric Research,2017,95:102-113. doi: 10.1016/j.jpsychires.2017.08.010
    [28] Li C,Feng S,Chen L. MSC-AS1 knockdown inhibits cell growth and temozolomide resistance by regulating miR-373-3p/CPEB4 axis in glioma through PI3K/Akt pathway[J]. Mol Cell Biochem,2021,476(2):699-713. doi: 10.1007/s11010-020-03937-x
    [29] Peng T,Wang T,Liu G,et al. Effects of miR-373 Inhibition on Glioblastoma Growth by Reducing Limk1 In Vitro[J]. J Immunol Res,2020,2020:7671502.
    [30] Slowik A,Lammerding L,Hoffmann S,et al. Brain inflammasomes in stroke and depressive disorders:Regulation by oestrogen[J]. J Neuroendocrinol,2018,30(2):9-12.
    [31] Li Y,Song W,Tong Y,et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis[J]. J Neuroinflammation,2021,18(1):1. doi: 10.1186/s12974-020-02040-8
    [32] Tian D D,Wang M,Liu A,et al. Antidepressant Effect of Paeoniflorin Is Through Inhibiting Pyroptosis CASP-11/GSDMD Pathway[J]. Mol Neurobiol,2021,58(2):761-776. doi: 10.1007/s12035-020-02144-5
    [33] Arioz B I,Tastan B,Tarakcioglu E,et al. Melatonin Attenuates LPS-Induced Acute Depressive-Like Behaviors and Microglial NLRP3 Inflammasome Activation Through the SIRT1/Nrf2 Pathway[J]. Front Immunol,2019,10:1511. doi: 10.3389/fimmu.2019.01511
    [34] Li X,Luo Z,Gu C,et al. Common variants on 6q16.2,12q24.31 and 16p13.3 are associated with major depressive disorder[J]. Neuropsychopharmacology,2018,43(10):2146-2153. doi: 10.1038/s41386-018-0078-9
    [35] Surprenant A,Rassendren F,Kawashima E,et al. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7)[J]. Science,1996,272(5262):735-738. doi: 10.1126/science.272.5262.735
    [36] Yang Y,Xing M J,Li Y,et al. Reduced NLRP3 inflammasome expression in the brain is associated with stress resilience[J]. Psychoneuroendocrinology,2021,128:105211. doi: 10.1016/j.psyneuen.2021.105211
    [37] Zunszain P A,Anacker C,Cattaneo A,et al. Interleukin-1β:a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis[J]. Neuropsychopharmacology,2012,37(4):939-949. doi: 10.1038/npp.2011.277
    [38] Su W J,Zhang T,Jiang C L,et al. Clemastine Alleviates Depressive-Like Behavior Through Reversing the Imbalance of Microglia-Related Pro-inflammatory State in Mouse Hippocampus[J]. Front Cell Neurosci,2018,12:412.
    [39] Basso A M,Bratcher N A,Harris R R,et al. Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety:relevance for neuropsychiatric disorders[J]. Behav Brain Res,2009,198(1):83-90. doi: 10.1016/j.bbr.2008.10.018
    [40] Tan S,Wang Y,Chen K,et al. Ketamine Alleviates Depressive-Like Behaviors via Down-Regulating Inflammatory Cytokines Induced by Chronic Restraint Stress in Mice[J]. Biol Pharm Bull,2017,40(8):1260-1267. doi: 10.1248/bpb.b17-00131
  • [1] 行浩然, 张曦, 张盈盈, 鲍天昊.  青少年抑郁症使用抗抑郁药物的临床进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240725
    [2] 王玲, 秦祥川, 李金秋, 阿仙姑·哈斯木.  CD147通过AIM2炎症小体介导宫颈癌细胞焦亡和增殖, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240103
    [3] 段登艾, 张勇辉, 王维, 廖欣菊, 张志雄.  儿童期虐待对青少年首发抑郁症患者非自杀性自伤行为的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230304
    [4] 储召松, 王欣, 和梦鑫, 许秀峰, 王娜, 沈宗霖.  抑郁症自杀相关基因的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230301
    [5] 余蕾, 武文志, 张云桥, 游旭, 曾勇.  HPA轴在抑郁症中的研究概述, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230222
    [6] 王静, 米弘瑛, 张熠, 李丽, 余建华, 刘丽巧, 刘庆瑜, 王立伟.  细胞焦亡参与早期子鼠坏死性小肠结肠炎的发病, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230124
    [7] 朱婷娜, 刘鹏亮, 董文娟, 于浩, 吴亚梅, 黄兆奎, 洪仕君, 赵永娜.  不同剂量天麻素对甲基苯丙胺依赖大鼠条件位置偏爱及海马小胶质细胞激活的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210502
    [8] 龙熙翠, 刘贝贝, 卢绍波, 李志红, 金文娇, 陆金芝, 韩雪松.  细胞焦亡因子Caspase-1、IL-1β与IL-18在子宫内膜息肉组织中的表达和意义, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210917
    [9] 李仙, 季长亮, 曾淑娥, 杨蜀云, 杨皓棋, 侯亚婷.  不同严重程度抑郁症患者认知功能的比较, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201226
    [10] 王小莹, 刘作金, 申丽娟.  缺血再灌注损伤与细胞焦亡的相关性研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201240
    [11] 刘畅, 沈宗霖, 程宇琪, 许秀峰.  精神分裂症、双相情感障碍、抑郁症静息态功能磁共振研究的异同, 昆明医科大学学报.
    [12] 尹赛格, 张恒睿, 陈滟, 孙俊.  小鼠小胶质细胞原代培养的高产改良方法, 昆明医科大学学报.
    [13] 乔廷廷, 陈忠义, 董宝莲, 殷燕, 郭玲.  依达拉奉干预LPS介导原代小胶质细胞的激活实验, 昆明医科大学学报.
    [14] 雷喜锋, 侯峰强, 杨少华, 张伟.  miR-373在人肝细胞癌中的表达及其作用, 昆明医科大学学报.
    [15] 傅希玥, 陆地, 边立功, 周莉.  小胶质细胞的激活与癫痫的关系, 昆明医科大学学报.
    [16] 保文莉.  瑜伽运动对高校大学生抑郁症干预效果的研究, 昆明医科大学学报.
    [17] 王剑.  一重和三重脑震荡大鼠损伤后早期小胶质细胞变化的研究, 昆明医科大学学报.
    [18] 杜映荣.  血管紧张素原(AGT)基因M235T多态性与中老年高血压并抑郁症的相关性研究, 昆明医科大学学报.
    [19] 王慧明.  P2X4受体在大鼠脊髓小胶质细胞中的表达, 昆明医科大学学报.
    [20] 唐茂丹.  大鼠视神经切断后视网膜Muller细胞及小胶质细胞变化特点, 昆明医科大学学报.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4029
  • HTML全文浏览量:  2169
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 网络出版日期:  2021-10-29
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回