留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脓毒血症患者巨噬细胞外泌体miR-155对内皮细胞铁死亡的干预机制

程志杰 左瑞静 李欢欢 吴林霞 阚敏宸 王倩倩

程志杰, 左瑞静, 李欢欢, 吴林霞, 阚敏宸, 王倩倩. 脓毒血症患者巨噬细胞外泌体miR-155对内皮细胞铁死亡的干预机制[J]. 昆明医科大学学报.
引用本文: 程志杰, 左瑞静, 李欢欢, 吴林霞, 阚敏宸, 王倩倩. 脓毒血症患者巨噬细胞外泌体miR-155对内皮细胞铁死亡的干预机制[J]. 昆明医科大学学报.
Zhijie CHENG, Ruijing ZUO, Huanhuan LI, Linxia WU, Minchen KAN, Qianqian WANG. Intervention Mechanism of miR-155 in Macrophage-Derived Exosomes from Sepsis Patients on Endothelial Cell Ferroptosis[J]. Journal of Kunming Medical University.
Citation: Zhijie CHENG, Ruijing ZUO, Huanhuan LI, Linxia WU, Minchen KAN, Qianqian WANG. Intervention Mechanism of miR-155 in Macrophage-Derived Exosomes from Sepsis Patients on Endothelial Cell Ferroptosis[J]. Journal of Kunming Medical University.

脓毒血症患者巨噬细胞外泌体miR-155对内皮细胞铁死亡的干预机制

基金项目: 河北省医学科学研究课题(20210486)
详细信息
    作者简介:

    程志杰(1985~),女,河北省邯郸人,医学硕士,主治医师,主要从事急危重症研究工作

    通讯作者:

    王倩倩,E-mail:15519074019@163.com

  • 中图分类号: R631.1

Intervention Mechanism of miR-155 in Macrophage-Derived Exosomes from Sepsis Patients on Endothelial Cell Ferroptosis

  • 摘要:   目的  探讨脓毒血症患者肺泡巨噬细胞(alveolar macrophage,AM)来源外泌体(Exosomal,Exos)中miR-155对内皮细胞铁死亡的干预机制。  方法  本研究为单中心研究,研究对象为邯郸市中心医院2022年1月至2023年6月收治的106例脓毒症患者。根据是否存在急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS),将患者进一步分为ARDS组(n = 21)和非ARDS组(n = 85)。体外实验中,将脂多糖(lipopolysaccharide,LPS)处理的Raw 264.7外泌体与小鼠肺微血管内皮细胞(pulmonary microvascular endothelial cells,PMVEC)一起孵育作为LPS-Exos组,从正常Raw 264.7培养物上清液中提取的外泌体作为正常对照组(NC-Exos),单独的PMVEC细胞培养物作为空白组(Con)。分别从巨噬细胞的条件培养基或脓毒症患者支气管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)中分离Exos,通过RT-qPCR分析miR-155表达情况,蛋白质印迹分析GPX4、Nrf2蛋白表达。通过试剂盒检测PMVEC细胞中Fe2+、SOD、ROS水平变化。  结果  与非ARDS组相比,ARDS组年龄、SOFA评分、miR-155表达、乳酸水平增加(P < 0.05)。与NC-Exos相比,LPS-Exos中miR-155表达上调(P < 0.01)。与Con组相比,LPS-Exos组PMVEC细胞活力、SOD水平降低(P < 0.01),细胞中的Fe2+、ROS水平增加(P < 0.05)。与NC-Exos组相比,LPS-Exos组PMVEC细胞中经典的铁死亡抑制基因如GPX4和Nrf2的蛋白表达降低(P < 0.05)。与Con组相比,Inhibitor-NC+LPS-Exos组PMVEC细胞活力、SOD水平、GPX4、Nrf2蛋白表达降低(P < 0.001),Fe2+、ROS水平增加(P < 0.0001)。与Inhibitor-NC+LPS-Exos组相比,miR-155 Inhibitor+LPS-Exos组PMVEC细胞活力、SOD水平、GPX4、Nrf2蛋白表达增加(P < 0.001),Fe2+、ROS水平降低(P < 0.01)。使用双荧光素酶报告基因分析证实了miR-155和Nrf2之间的直接结合关系。  结论  AM来源的Exos中miR-155水平升高预测脓毒症患者发生ARDS的能力优于SOFA评分,其与SOFA评分组合在预测脓毒症患者发生ARDS方面具有较高的能力。LPS诱导的AM来源的Exos可能通过转运miR-155促进PMVEC细胞铁死亡,其作用机制可能与抑制Nrf2表达有关。
  • 图  1  Exos的鉴定

    A:TEM观察Exos(比例尺=100 nm);B:Western blot检测Calnexin、CD9、CD63和TSG101蛋白表达;C:通过纳米粒子追踪分析进行Exos定量。

    Figure  1.  Identification of exosomes

    图  2  ARDS组和非ARDS组AM来源的Exos中炎症相关miRNA的差异表达

    *P < 0.05。

    Figure  2.  Differential expression of inflammation-related miRNAs in alveolar macrophage-derived exosomes between ARDS group and non-ARDS group

    图  3  LPS诱导的AM来源的Exos中miR-155表达

    A:在用LPS预处理(LPS-Exos)或不用LPS预处理(NC-Exos)的Raw 264.7细胞来源的Exos中miR-155的表达;B:PMVEC细胞摄取PKH67标记的Exos(×100,比例尺=100 μm);C:在共孵育LPS-Exos或NC-Exos后,PMVEC细胞中miR-155的表达;**P < 0.01;****P < 0.0001。

    Figure  3.  Expression of miR-155 in alveolar macrophage-derived exosomes induced by LPS

    图  4  AM来源的Exos促进PMVEC细胞铁死亡

    A:PMVEC细胞在与LPS-Exos或NC-Exos共孵育后的生存活力;与Con组相比,***P < 0.001;与NC-Exos组相比,###P < 0.001;B~D:与LPS-Exos或NC-Exos共孵育后PMVEC细胞中Fe2+、SOD、ROS水平变化;E:免疫印迹检测PMVEC细胞中GPX4和Nrf2蛋白表达;*P < 0.05;**P < 0.01;***P < 0.001;****P < 0.0001。

    Figure  4.  Alveolar macrophage-derived exosomes promote ferroptosis of pulmonary microvascular endothelial cells

    图  5  LPS诱导的AM来源Exos通过miR-155/Nrf2信号通路促进PMVEC细胞铁死亡

    A~B:转染miR-155 Inhibitor或Inhibitor-NC后,检测miR-155在Raw 264.7细胞和Raw 264.7细胞来源Exos中的表达;C:与经miR-155 Inhibitor预处理的LPS-Exos共孵育后,使用CCK-8测定法检测PMVEC细胞的细胞活力;与Con组相比,*P < 0.05;***P < 0.001;与Inhibitor-NC+LPS-Exos组相比,###P < 0.001;D~F:PMVEC细胞中Fe2+、SOD、ROS水平变化;G:免疫印迹检测PMVEC细胞中GPX4和Nrf2蛋白表达;H:双荧光素酶活性分析miR-155和Nrf2的关系;**P < 0.01;***P < 0.001;****P < 0.0001。

    Figure  5.  LPS-induced alveolar macrophage-derived exosomes promote ferroptosis of pulmonary microvascular endothelial cells via the miR-155/Nrf2 signaling pathway

    表  1  用于qPCR的引物

    Table  1.   Primers used for quantitative real-time PCR

    引物序列 (5′-3′)
    miR-15aF: GCCGAGTAGCAGCACATAAT
    R: CTCAACTGGTGTCGTGGA
    miR-15bF: GCCGAGTAGCAGCACATCAT
    R: CTCAACTGGTGTCGTGGA
    miR-21F: GCCGAGTAGCTTATCAGACT
    R: CTCAACTGGTGTCGTGGA
    miR-27bF: GCCGAGTTCACAGTGGCTA
    R: CTCAACTGGTGTCGTGGA
    miR-93F: TCGGCAGGCAAAGTGCTGTTCGT
    R: CTCAACTGGTGTCGTGGA
    miR-125aF: TCGGCAGGTCCCTGAGACCCTTTA
    R: CTCAACTGGTGTCGTGGA
    miR-146aF: GCCGAGTGAGAACTGAATTC
    R: CTCAACTGGTGTCGTGGA
    miR-155F: GCCGAGTTAATGCTAATTGTG
    R: CTCAACTGGTGTCGTGGA
    U6F: CTCGCTTCGGCAGCACA
    R: AACGCTTCACGAATTTGCGT
    下载: 导出CSV

    表  2  ARDS和非ARDS患者组中受试者的基本特征[($\bar x \pm s $),MM25M75),n(%)]

    Table  2.   Baseline characteristics of subjects in ARDS and non-ARDS groups [($\bar x \pm s $),MM25M75),n(%)]

    特征 ARDS组(n = 21) 非ARDS组(n = 85) z/t/χ2 P
    年龄(岁) 66.75 ±16.47 74.19 ± 11.05 2.479 0.017*
    男性 11 (52.4) 50 (58.8) 0.286 0.593
    APACHE II评分 28.55 ± 8.30 26.36 ± 8.60 1.113 0.269
    体质量指数(kg/m2 24.75 ± 4.65 22.87 ± 5.15 1.536 0.128
    查尔森指数 2.70 ± 1.50 2.35 ± 1.60 0.883 0.379
    心血管疾病 6 (28.6) 26 (30.6) 0.033 0.857
    高血压 15 (71.4) 49 (57.6) 1.337 0.248
    慢性阻塞性肺病 2 (9.5) 16 (18.8) 1.033 0.309
    哮喘 1 (4.8) 4 (4.7) <0.001 0.991
    肺结核 1 (4.8) 3 (3.5) 0.070 0.791
    癌症 3 (14.3) 12 (14.1) <0.001 0.984
    糖尿病 13 (61.9) 42 (49.4) 1.053 0.305
    卒中 5 (23.8) 19 (22.4) 0.020 0.886
    慢性肾病 8 (38.1) 20 (23.5) 1.838 0.175
    SOFA评分(分) 12.09 ± 4.4 8.80 ± 3.15 3.936 0.001*
    白细胞(109/L) 16.70(10.95,25.05) 15.30(10.25,20.10) 1.411 0.161
    单核细胞(109/L) 6.00(3.00,8.35) 3.40(2.00,6.00) 1.642 0.104
    淋巴细胞(109/L) 10.00(3.00,13.25) 7.40(4.00,14.25) 0.095 0.924
    C反应蛋白(mg/L) 232.40(51.05,345.70) 138.60(46.60,242.65) 1.259 0.208
    降钙素原(ng/mL) 4.71(0.59,41.34) 2.80(0.62,14.24) 0.694 0.487
    乳酸(mmol/L) 26.65(19.38,67.70) 19.90(14.70,35.40) 2.167 0.030*
      *P < 0.05。
    下载: 导出CSV
  • [1] Sim J, Soo H, Young K, et al. Prediction of culture-positive sepsis and selection of empiric antibiotics in critically ill patients with complicated intra-abdominal infections: A retrospective study[J]. Eur J Trauma Emerg Surg, 2022, 48(2): 963-971. doi: 10.1007/s00068-020-01535-6
    [2] Villar J, Herrán-Monge R, González-Higueras E, et al. Clinical and biological markers for predicting ARDS and outcome in septic patients[J]. Sci Rep, 2021, 11(1): 22702. doi: 10.1038/s41598-021-02100-w
    [3] Auriemma C L, Zhuo H, Delucchi K, et al. Acute respiratory distress syndrome-attributable mortality in critically ill patients with sepsis[J]. Intensive Care Med, 2020, 46(6): 1222-1231. doi: 10.1007/s00134-020-06010-9
    [4] Xu C, Zheng L, Jiang Y, et al. A prediction model for predicting the risk of acute respiratory distress syndrome in sepsis patients: A retrospective cohort study[J]. BMC Pulm Med, 2023, 23(1): 78. doi: 10.1186/s12890-023-02365-z
    [5] Tao H, Xu Y, Zhang S. The role of macrophages and alveolar epithelial cells in the development of ARDS[J]. Inflammation, 2023, 46(1): 47-55. doi: 10.1007/s10753-022-01726-w
    [6] Wang C, Xie J, Zhao L, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients[J]. EBioMedicine, 2020, 57: 102833. doi: 10.1016/j.ebiom.2020.102833
    [7] Feng Z, Zhou J, Liu Y, et al. Epithelium- and endothelium-derived exosomes regulate the alveolar macrophages by targeting RGS1 mediated calcium signaling-dependent immune response[J]. Cell Death Differ, 2021, 28(7): 2238-2256. doi: 10.1038/s41418-021-00750-x
    [8] Sun H, Gao W, Chen R, et al. CircRNAs in BALF exosomes and plasma as diagnostic biomarkers in patients with acute respiratory distress syndrome caused by severe pneumonia[J]. Front Cell Infect Microbiol, 2023, 13: 1194495. doi: 10.3389/fcimb.2023.1194495
    [9] Kaur G, Maremanda K P, Campos M, et al. Distinct exosomal miRNA profiles from BALF and lung tissue of COPD and IPF patients[J]. Int J Mol Sci, 2021, 22(21): 11830. doi: 10.3390/ijms222111830
    [10] Ahmad F M, A Al-Binni M, Bani Hani A, et al. Complement terminal pathway activation is associated with organ failure in sepsis patients[J]. J Inflamm Res, 2022, 15: 153-162. doi: 10.2147/JIR.S344282
    [11] Ranieri V M, Rubenfeld G D, Thompson B T, et al. Acute respiratory distress syndrome: The Berlin Definition[J]. JAMA, 2012, 307(23): 2526-2533.
    [12] Kono M, Miyashita K, Hirama R, et al. Prognostic significance of bronchoalveolar lavage cellular analysis in patients with acute exacerbation of interstitial lung disease[J]. Respir Med, 2021, 186: 106534. doi: 10.1016/j.rmed.2021.106534
    [13] Sim J, Soo H, Young K, et al. Prediction of culture-positive sepsis and selection of empiric antibiotics in critically ill patients with complicated intra-abdominal infections: A retrospective study[J]. Eur J Trauma Emerg Surg, 2022, 48(2): 963-971. doi: 10.1007/s00068-020-01535-6
    [14] Weber B, Henrich D, Marzi I, et al. Decrease of exosomal miR-21-5p and the increase of CD62p+ exosomes are associated with the development of sepsis in polytraumatized patients[J]. Mol Cell Probes, 2024, 74: 101954. doi: 10.1016/j.mcp.2024.101954
    [15] Liu F, Peng W, Chen J, et al. Exosomes derived from alveolar epithelial cells promote alveolar macrophage activation mediated by miR-92a-3p in sepsis-induced acute lung injury[J]. Front Cell Infect Microbiol, 2021, 11: 646546. doi: 10.3389/fcimb.2021.646546
    [16] Wang Z F, Yang Y M, Fan H. Diagnostic value of miR-155 for acute lung injury/acute respiratory distress syndrome in patients with sepsis[J]. J Int Med Res, 2020, 48(7): 0300060520943070.
    [17] Cai W, Shen K, Ji P, et al. The Notch pathway attenuates burn-induced acute lung injury in rats by repressing reactive oxygen species[J]. Burns Trauma, 2022, 10: tkac008. doi: 10.1093/burnst/tkac008
    [18] Wang Z, Wang Z. The role of macrophages polarization in sepsis-induced acute lung injury[J]. Front Immunol, 2023, 14: 1209438. doi: 10.3389/fimmu.2023.1209438
    [19] Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11): 1181-1247. doi: 10.1007/s00134-021-06506-y
    [20] Dong L, Yin L, Li R, et al. Dioscin alleviates lung ischemia/reperfusion injury by regulating FXR-mediated oxidative stress, apoptosis, and inflammation[J]. Eur J Pharmacol, 2021, 908: 174321.
    [21] Canton M, Sánchez-Rodríguez R, Spera I, et al. Reactive oxygen species in macrophages: Sources and targets[J]. Front Immunol, 2021, 12: 734229. doi: 10.3389/fimmu.2021.734229
    [22] Zhang L, Gao J, Qin C, et al. Inflammatory alveolar macrophage-derived microvesicles damage lung epithelial cells and induce lung injury[J]. Immunol Lett, 2022, 241: 23-34. doi: 10.1016/j.imlet.2021.10.008
    [23] Bouchareychas L, Duong P, Covarrubias S, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo[J]. Cell Rep, 2020, 32(2): 107881. doi: 10.1016/j.celrep.2020.107881
    [24] Hu J, Huang S, Liu X, et al. miR-155: An important role in inflammation response[J]. J Immunol Res, 2022, 2022: 7437281. doi: 10.1155/2022/7437281
    [25] Liu Z Q, Feng J, Shi L L, et al. Influences of miR-155/NF-κB signaling pathway on inflammatory factors in ARDS in neonatal pigs[J]. Eur Rev Med Pharmacol Sci, 2019, 23(16): 7042-7048.
    [26] Haroun R A, Osman W H, Amin R E, et al. Circulating plasma miR-155 is a potential biomarker for the detection of SARS-CoV-2 infection[J]. Pathology, 2022, 54(1): 104-110. doi: 10.1016/j.pathol.2021.09.006
    [27] Kutsenko V A, Dashkova D A, Ruksha T G. Inhibition of the expression of NRF2 transcription factor mediated by miR-155 causes a decrease in the viability of melanoma cells regardless of redox status[J]. Cell Tiss Biol, 2024, 18(3): 307-313. doi: 10.1134/S1990519X2470024X
    [28] Yan R, Lin B, Jin W, et al. NRF2, a superstar of ferroptosis[J]. Antioxidants, 2023, 12(9): 1739.
  • [1] 沈晓霞, 赵晓东, 宋永健.  SIRT1激动剂调控Nrf2-GPX4铁死亡途径改善冠状动脉病变小鼠心肌功能的作用及机制, 昆明医科大学学报. 2025, 46(5): 55-64. doi: 10.12259/j.issn.2095-610X.S20250507
    [2] 董晓霞, 陈淑贤.  GPX4表达促进铁死亡参与子宫内膜癌恶性行为的机制, 昆明医科大学学报. 2025, 46(11): 1-9.
    [3] 秦瑞峰, 薛佳栋, 张佳, 刘帆, 张绍辉, 尹立阳, 袁增江.  SKI通过ROS/JNK通路诱导铁死亡干预胰腺癌恶性行为, 昆明医科大学学报. 2025, 46(10): 44-52. doi: 10.12259/j.issn.2095-610X.S20251005
    [4] 谢欣媛, 牛晓辰, 孙建辉, 张雅涵, 陈鹏飞.  胃腺癌患者铁死亡相关LncRNA预后模型的构建, 昆明医科大学学报. 2025, 46(4): 46-56. doi: 10.12259/j.issn.2095-610X.S20250407
    [5] 李留峥, 徐雷升, 罗康虹, 张明停, 王燕, 高学昌, 俸家伟, 龚国茶.  SLC7A11基因通过调控铁死亡通路对肝细胞癌进展的影响, 昆明医科大学学报. 2025, 46(10): 32-43. doi: 10.12259/j.issn.2095-610X.S20251004
    [6] 沈晓霞, 冯春晖, 赵晓东.  基于外泌体STAT3蛋白转运探讨干细胞在对梗死心脏修复及心电生理的影响, 昆明医科大学学报. 2025, 46(12): 58-68. doi: 10.12259/j.issn.2095-610X.S20251207
    [7] 唐晓玲, 谢帮芳, 黄海龙.  外泌体miR-210-3p通过靶向FBXO31促进宫颈癌的化疗耐药和干细胞特性, 昆明医科大学学报. 2025, 46(7): 54-64. doi: 10.12259/j.issn.2095-610X.S20250707
    [8] 张春瑜, 罗健, 周琦.  miR-147a调控铁死亡影响宫颈癌细胞的侵袭转移, 昆明医科大学学报. 2025, 46(10): 53-60. doi: 10.12259/j.issn.2095-610X.S20251006
    [9] 李威, 蒋立虹, 马丽晶, 陈锐, 杨童硕.  铁死亡在心肌病中的研究进展, 昆明医科大学学报. 2024, 45(3): 180-185. doi: 10.12259/j.issn.2095-610X.S20240327
    [10] 朱磊, 李瑞雪, 鲍长磊, 黄晨宸, 梁书鑫, 赵振林, 朱洪.  MSC-exo一种新型细胞递送工具转运靶向基因调控胰腺癌增殖效应分析, 昆明医科大学学报. 2024, 45(2): 39-48. doi: 10.12259/j.issn.2095-610X.S20240206
    [11] 热则耶·麦麦提祖农, 李秀娟, 刘玲, 李卉.  铁死亡抑制因子KIF20A对食管癌细胞生物学行为及铁死亡的影响, 昆明医科大学学报. 2024, 45(2): 49-56. doi: 10.12259/j.issn.2095-610X.S20240207
    [12] 曹诗杰, 安红伟.  MSC来源外泌体治疗缺血性脑卒中机制及进展, 昆明医科大学学报. 2023, 44(9): 155-160. doi: 10.12259/j.issn.2095-610X.S20230913
    [13] 王东, 高必波, 孙会英, 冷登辉, 冉小平, 林文.  miR-216b-5p通过靶向NCOA3促进胶质母细胞瘤细胞铁死亡, 昆明医科大学学报. 2023, 44(8): 44-52. doi: 10.12259/j.issn.2095-610X.S20230805
    [14] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  M2巨噬细胞来源的外泌体miR-1246调控胃癌细胞的生长和侵袭, 昆明医科大学学报. 2023, 44(7): 69-77. doi: 10.12259/j.issn.2095-610X.S20230724
    [15] 张天红, 杨红菊.  外泌体miRNA在肝细胞癌中的研究进展, 昆明医科大学学报. 2022, 43(2): 150-153. doi: 10.12259/j.issn.2095-610X.S20220221
    [16] 马丽娅, 饶南荃, 杨禾丰.  间充质干细胞外泌体在口腔组织再生中的研究进展, 昆明医科大学学报. 2021, 42(5): 147-153. doi: 10.12259/j.issn.2095-610X.S20210527
    [17] 蔡啸, 扆雪涛, 姚菁青, 戴昕妤, 汤忠泉, 欧婷, 赵晓敏, 李云涛.  人骨髓间充质干细胞分泌的外泌体调控恶性胶质瘤相关巨噬细胞的极化, 昆明医科大学学报. 2021, 42(1): 38-45. doi: 10.12259/j.issn.2095-610X.S20210101
    [18] 魏韩笑, 张爱君, 李强, 金培生.  血管内皮祖细胞外泌体调控骨髓间充质干细胞基因表达谱芯片, 昆明医科大学学报. 2020, 41(09): 50-55.
    [19] 於晓东, 龙江.  12外泌体对体外血脑屏障模型功能的影响, 昆明医科大学学报. 2019, 40(09): 68-71.
    [20] 贾凤梅, 殷顺会, 冉丽权, 田明彤, 张明珠.  特发性牙龈纤维瘤来源外泌体对正常牙龈细胞周期的影响, 昆明医科大学学报. 2019, 40(10): 15-20.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-22

目录

    /

    返回文章
    返回