Core Active Substances and Molecular Mechanisms of Traditional Chinese Medicine in Treating IgA Nephropathy Based on Data Mining and Network Pharmacology
-
摘要:
目的 基于数据挖掘、网络药理学预测中药治疗IgA肾病(IgA nephropathy,IgAN)的机制,通过体外实验验证。 方法 在古今医案云平台检索治疗IgAN的名家医案,筛选核心药物。在TCMSP等数据库检索药物靶点,在Genecards等数据库中检索IgAN靶点,用韦恩图取交集,建立疾病-成分-靶点网络图。建立PPI网络,进行GO与KEGG分析,采用分子对接验证。建立IgAN细胞模型,设立对照组、模型组(IgA)、不同浓度药物组(槲皮素),采用CCK-8法检测各组细胞活力;ELISA法检测各组分泌IL-6水平;qPCR法检测各组靶点水平。 结果 数据挖掘得到黄芪频次最高,达144次;中药属性以寒、甘、肝、清热解毒为主。网络药理学分析出核心物质为槲皮素、山柰酚、木犀草素、汉黄芩素、异鼠李素。PPI分析核心靶点为ESR1、IL6、BCL2、JUN、CASP3。分子对接验证了核心物质与靶点之间有强结合力。GO分析包含基因表达的正向调节;KEGG富集在AGE-RAGE信号通路、IL-17 信号通路等。实验验证了槲皮素组干预后细胞活力升高(P < 0.05),抑制了IL-6因子表达(P < 0.01),并上调了ESR1、BCL-2的mRNA水平(P < 0.05),下调IL-6、 JUN、 CASP3 水平(P < 0.05)。 结论 本研究挖掘IgAN的用药规律,筛选出治疗IgAN核心物质及对应靶点,实验验证了槲皮素增强IgA刺激下的细胞活力,抑制炎症因子分泌,调节靶点水平,为研究治疗IgAN分子机制提供有益参考。 Abstract:Objective To predict the mechanism of traditional Chinese medicine (TCM) in treating IgA nephropathy (IgAN) based on data mining and network pharmacology, and to verify findings through in vitro experiments. Methods Methods: Medical case records for IgAN treatment were retrieved from the Ancient and Modern Medical Case Cloud Platform to screen core drugs. Drug targets were searched in databases including TCMSP, and IgAN targets were searched in databases such as Genecards. Venn diagrams were used to identify intersecting targets, establishing disease-component-target network maps. PPI networks were constructed, followed by GO and KEGG analysis, with molecular docking validation. An IgAN cell model was established with control groups, model groups (IgA), and drug-treated groups at different concentrations (quercetin). Cell viability was detected using CCK-8 assays; IL-6 secretion levels were measured by ELISA; target gene expression levels were detected by qPCR. Results Data mining revealed Astragalus had the highest frequency at 144 occurrences; TCM properties were predominantly cold, sweet, hepatic-targeting, and heat-clearing with detoxifying effects. Network pharmacology analysis identified core substances as quercetin, kaempferol, luteolin, homoisoflavone, and isoleucine. PPI analysis identified core targets as ESR1, IL6, BCL2, JUN, and CASP3. Molecular docking verified strong binding affinity between core substances and targets. GO analysis included positive regulation of gene expression; KEGG enrichment pathways included AGE-RAGE signaling and IL-17 signaling pathways. Experimental verification showed that quercetin intervention increased cell viability (P < 0.05); suppressed IL-6 expression (P < 0.01), and upregulated ESR1, BCL-2 mRNA levels (P < 0.05), and downregulating IL-6, JUN, and CASP3 levels (P < 0.05). Conclusion This study elucidated medication patterns for IgAN treatment, identified core therapeutic substances and corresponding targets, and experimentally validated that quercetin enhances cell viability under IgA stimulation, suppresses inflammatory cytokine secretion, and modulates target gene expression, providing valuable insights for investigating molecular mechanisms of IgAN therapy. -
Key words:
- IgA nephropathy /
- Data mining /
- Network pharmacology /
- Molecular docking /
- In vitro experiment
-
图 9 q-PCR检测槲皮素对IgA刺激 HMCs中ESR1、BCL-2、IL-6、CASP3、JUN的mRNA表达水平($\bar x \pm s $,n = 3)
A~C:ESR1的溶解曲线图、扩增曲线图和结果柱状图;D~F:BCL-2的溶解曲线图、扩增曲线图和结果柱状图;G~I:IL-6的溶解曲线图、扩增曲线图和结果柱状图;J~M:CASP3的溶解曲线图、扩增曲线图和结果柱状图;F~O:JUN的溶解曲线图、扩增曲线图和结果柱状图;P~Q:内参GAPDH的溶解曲线图和扩增曲线图。模型组与对照组比较,*P < 0.05;**P < 0.01;槲皮素组与模型组比较,#P < 0.05;##P < 0.01。
Figure 9. q-PCR detection of mRNA expression levels of ESR1、BCL-2、IL-6、CASP3 and JUN in IgA-stimulated HMCs treated with quercetin($\bar x \pm s $,n = 3)
表 1 q-PCR 引物序列
Table 1. q-PCR primer sequence
基因 正向向引物序列(5'-3') 反向引物序列(5'-3') ESR1 GCCAGCTATGACATGAACGG CTGGGGTTGTTGTCACTGGT IL-6 ACTCACCTCTTCAGAACGAATTG CCATCTTTGGAAGGTTCAGGTTG BCL-2 AGAACTGCAGGTGCTGGATTTA TAGATTTGTCTCCACAGCCACC JUN GCGGACCTTATGGCTACAGT GGTGAGGAGGTCCGAGTTCT CASP3 TGACATCTCGGTCTGGTACA ACATCACGCATCAATTCCACA GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG 表 2 药物使用频次排名前40的中药统计(频次≥20)
Table 2. Statistics of the top 40 most frequently used traditional Chinese medicines (with a frequency of ≥ 20)
序号 中药 频次 百分比%
(频次/总案例)平均剂量
(g)序号 中药 频次 百分比%
(频次/总案例)平均剂量
(g)1 黄芪 144 62.88 28.72 21 太子参 34 14.85 16.6 2 土茯苓 87 37.99 17 22 防风 34 14.85 9.55 3 白术 84 36.68 12.51 23 茜草 34 14.85 16.29 4 白茅根 61 26.64 26.85 24 连翘 32 13.97 14.96 5 丹参 56 24.45 20.22 25 金银花 31 13.54 16.25 6 甘草 56 24.45 7.22 26 芡实 30 13.10 19.16 7 小蓟 52 22.71 21.4 27 土茯苓 28 12.23 26.42 8 黄芩 45 19.65 11.78 28 桃仁 27 11.79 13.13 9 泽泻 45 19.65 15.23 29 知母 25 10.92 10.94 10 山药 43 18.78 16.45 30 仙鹤草 25 10.92 23.26 11 女贞子 42 18.34 15 31 金樱子 25 10.92 17.05 12 生地 40 17.47 16.5 32 丹皮 25 10.92 12.38 13 当归 39 17.03 12.71 33 玄参 24 10.48 13.67 14 白花蛇舌草 38 16.59 26.38 34 白芍 23 10.04 16.07 15 地黄 38 16.59 17.94 35 益母草 22 9.61 21.11 16 党参 38 16.59 16.71 36 菟丝子 22 9.61 18 17 柴胡 38 16.59 11.21 37 杜仲 22 9.61 14.17 18 旱莲草 37 16.16 16.11 38 黄柏 21 9.17 10.82 19 川芎 35 15.28 14.4 39 山萸肉 20 8.73 14.59 20 山茱萸 35 15.28 12.97 40 牛蒡子 20 8.73 11.35 表 3 中药属性四气、五味分析
Table 3. Analysis of the four natures and five flavors of traditional Chinese medicine properties
序号 四气 频次 百分比%(频次/总频次) 序号 五味 频次 百分比% (频次/总频次) 1 寒 633 19.12 1 甘 1499 45.27 2 平 630 19.03 2 苦 1047 31.62 3 温 389 11.75 3 辛 581 17.55 4 微寒 356 10.75 4 涩 189 5.71 5 微温 289 8.73 5 淡 184 5.56 6 凉 141 4.26 6 酸 151 4.56 7 热 7 0.21 7 咸 108 3.26 8 大热 6 0.18 8 微苦 100 3.02 9 大寒 0 0.00 9 微甘 10 0.30 表 4 中药属性归经、功效分析
Table 4. Analysis of the properties and meridians and effects of traditional Chinese medicine
序号 归经 频次 百分比% (频次/总频次) 序号 功效 频次 百分比%(频次/总频次) 1 肝 1206 36.42 1 清热解毒 268 8.09 2 肺 884 26.70 2 安胎 173 5.23 3 脾 813 24.55 3 凉血止血 169 5.10 4 胃 693 20.93 4 利水消肿 159 4.80 5 肾 653 19.72 5 生津养血 145 4.38 6 心 607 18.33 6 固表止汗 145 4.38 7 膀胱 286 8.64 7 敛疮生肌 144 4.35 8 大肠 166 5.01 8 行滞通痹 144 4.35 9 胆 101 3.05 9 托毒排脓 144 4.35 10 小肠 90 2.72 10 补气升阳 144 4.35 11 心包 58 1.75 12 三焦 9 0.27 表 5 活性成分与基因靶点度值(Degree)列表
Table 5. List of active ingredients and gene target Degree values
药物成分 度值 基因靶点 度值 quercetin 112 ESR1 23 luteolin 50 IL6 92 kaempferol 43 BCL2 19 wogonin 34 JUN 22 isorhamnetin 29 CASP3 22 表 6 核心活性成分与核心靶蛋白的对接结果(kJ/mol)
Table 6. Docking results of core active components and core target proteins (kJ/mol)
活性成分 ESR1 IL6 BCL2 JUN CASP3 quercetin −7.4 −7.7 −6.9 −5.6 −6.6 luteolin −7.9 −6.3 −7.1 −5.7 −7.1 kaempferol −7.4 −6.4 −7.5 −5.5 −6.8 wogonin −7.7 −6.1 −6.9 −5.4 −6.8 isorhamnetin −7.5 −5.9 −7.4 −5.4 −7.5 -
[1] Nogales C, Mamdouh Z M, List M, et al. Network pharmacology: Curing causal mechanisms instead of treating symptoms[J]. Trends Pharmacol Sci, 2022, 43(2): 136-150. doi: 10.1016/j.tips.2021.11.004 [2] 蔡玉媛, 张荣玲, 侯渊圣, 等. 无症状尿检异常型IgA肾病患者中医证治特点及其对蛋白尿缓解的影响[J]. 暨南大学学报(自然科学与医学版), 2023, 44(1): 60-68. doi: 10.11778/j.jdxb.20220337 [3] 李福生, 王茂泓, 吴国庆, 等. 国医大师皮持衡运用三仁泄浊膏化裁治疗慢性肾衰竭经验[J]. 江西中医药, 2024, 55(1): 40-42. doi: 10.20141/j.0411-9584.2024.01.12 [4] 刘创, 郑京. 大黄附子灌肠汤治疗慢性肾功能衰竭疗效观察[J]. 现代中西医结合杂志, 2010, 19(12): 1480-1481. doi: 10.3969/j.issn.1008-8849.2010.12.031 [5] 欧娇英, 蔡浙毅, 刘琨. 滋阴益肾方治疗IgA肾病的临床观察[J]. 辽宁中医杂志, 2010, 37(2): 296-297. doi: 10.13192/j.ljtcm.2010.02.109.oujy.057 [6] 楼妍, 袁军, 付彤飞, 等. 具有免疫抑制的中成药联合西药治疗膜性肾病的网状Meta分析[J]. 世界中医药, 2023, 18(3): 346-354. doi: 10.3969/j.issn.1673-7202.2023.03.009 [7] 刘畅, 苑天彤. 近10年难治性特发性膜性肾病临床研究概况[J]. 中医药临床杂志, 2023, 35(2): 404-410. doi: 10.16448/j.cjtcm.2023.0240 [8] Sarafidis P A, Memmos E, Alexandrou M E, et al. Mineralocorticoid receptor antagonists for nephroprotection: Current evidence and future perspectives[J]. Curr Pharm Des, 2018, 24(46): 5528-5536. doi: 10.2174/1381612825666190306162658 [9] Society, A Working Group of the International IgA Nephropathy Network and the Renal Pathology, Cattran D C, Coppo R, et al. The Oxford classification of IgA nephropathy: Rationale, clinicopathological correlations, and classification[J]. Kidney Int, 2009, 76(5): 534-545. [10] 谌贻璞. 肾内科学[M]. 2版. 北京: 人民卫生出版社, 2015: 13-18. [11] 国家药典委员会. 中华人民共和国药典[M]. 1部. 北京: 中国医药科技出版社, 2020: 30-451. [12] 钟赣生, 陈蔚文, 赵中振. 中药学[M]. 北京: 中国中医药出版社, 2019: 1-519. [13] 王靖. 基于GO的基因功能及疾病相关通路分析[D]. 成都: 电子科技大学, 2012. [14] 叶凌妍, 吴禹池, 林启展. IgA肾病患者中医证型与临床指标相关性研究[J]. 中医学报, 2024, 39(2): 421-427. [15] 史可, 胡洪贞, 李伟. 四物汤在治疗肾病方面的研究进展[J]. 世界最新医学信息文摘, 2019, 19(8): 61-62. doi: 10.19613/j.cnki.1671-3141.2019.08.027 [16] 王泽, 王秋虹, 李晓文, 等. 六味地黄丸治疗糖尿病肾病研究进展[J]. 江苏中医药, 2019, 51(1): 86-89. doi: 10.70976/j.1008-0805.SZGYGY-2025-0122 [17] 唐靖怡, 张娉娜, 姜玉华, 等. 小柴胡汤群方在肾脏病中的临床应用[J]. 吉林中医药, 2022, 42(9): 1016-1020. [18] 方芦炜, 马红珍, 丁越越, 等. 黄芪提取物介导VEGF/PI3K/AKT信号通路减缓高糖足细胞损伤的机制研究[J]. 浙江中西医结合杂志, 2025, 35(6): 514-518+528. doi: 10.3969/j.issn.1005-4561.2025.06.005 [19] Chen T, Chen H, Cheng Y, et al. Integrated network toxicology and experimental validation reveal the mechanism of bisphenol A-induced kidney injury: Targeting macrophage Esr1 expression and apoptosis[J]. J Biochem Mol Toxicol, 2025, 39(7): e70348. doi: 10.1002/jbt.70348 [20] Zhang L, Xu F, Hou L. IL-6 and diabetic kidney disease[J]. Front Immunol, 2024, 15: 1465625. doi: 10.3389/fimmu.2024.1465625 [21] Miyake T, McDermott J C. Nucleolar localization of c-Jun[J]. FEBS J, 2022, 289(3): 748-765. [22] Su L, Zhang J, Gomez H, et al. Mitochondria ROS and mitophagy in acute kidney injury[J]. Autophagy, 2023, 19(2): 401-414. doi: 10.1080/15548627.2022.2084862 [23] Li Y, Yuan Y, Huang Z X, et al. GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy[J]. Cell Death Differ, 2021, 28(8): 2333-2350. doi: 10.1038/s41418-021-00755-6 [24] Pathomthongtaweechai N, Chutipongtanate S. AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy[J]. Biomed Pharmacother, 2020, 131: 110655. doi: 10.1016/j.biopha.2020.110655 [25] Kitching A R, Holdsworth S R. The emergence of TH17 cells as effectors of renal injury[J]. J Am Soc Nephrol, 2011, 22(2): 235-238. doi: 10.1681/ASN.2010050536 [26] Gao F, He X, Liang S, et al. Quercetin ameliorates podocyte injury via inhibition of oxidative stress and the TGF-β1/Smad pathway in DN rats[J]. RSC Adv, 2018, 8(62): 35413-35421. doi: 10.1039/C8RA07935H [27] Verma S, Dutta A, Dahiya A, et al. Quercetin-3-Rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling[J]. Phytomedicine, 2022, 99: 154004. doi: 10.1016/j.phymed.2022.154004 [28] 姜一凡, 李小荣, 耿嘉逸, 等. 槲皮素通过抑制HMGB1/RAGE/NF-κB信号通路减轻糖尿病引起的大鼠肾脏损伤[J]. 南方医科大学学报, 2024, 44(9): 1769-1775. [29] 孟德森, 靳英丽. 槲皮素治疗糖尿病肾病的作用机制研究进展[J]. 实用药物与临床, 2024, 27(2): 133-138. doi: 10.14053/j.cnki.ppcr.202402012 [30] 王兴红, 孙静, 马永超, 等. 槲皮素对糖尿病肾病小鼠肾脏P2X7R/NLRP3信号通路和纤维化的影响[J]. 中药药理与临床, 2023, 39(6): 48-53. doi: 10.13412/j.cnki.zyyl.20230525.003 [31] 宋泽宇, 李振元, 潘涛, 等. 槲皮素对阿霉素所致肾病综合征大鼠的保护作用及机制[J]. 山东科学, 2023, 36(4): 61-68. doi: 10.3976/j.issn.1002-4026.2023.04.008 -
下载: