Predictive Value of Lipoprotein(a) and Pericoronary Adipose Tissue Attenuation Index in Risk Assessment of Coronary Heart Disease
-
摘要:
目的 探究脂蛋白(a)[lipoprotein (a),Lp(a)]和冠脉周围脂肪衰减指数(fat attenuation index ,FAI)在冠心病(coronary heart disease ,CHD)风险评估中的价值。 方法 回顾性收集文山州人民医院2021年10月至2023年1月经冠状动脉CT血管造影诊断为CHD的患者81例以及正常对照组125例,收集所有人群的临床资料、Lp(a)、斑块性质、病变血管支数、钙化积分、Gensini评分以及三支冠状动脉前段和病变段周围脂肪衰减指数,分析CHD组和对照组以及CHD不同病变血管组Lp(a)、钙化积分、Gensini评分以及FAI的差异,再比较不同性质斑块与FAI的差异。采用Logistic回归分析CHD发生的危险因素及Lp(a)与FAI对CHD风险的交互作用,Pearson相关分析Log-Lp(a)与FAI的相关性,采用ROC曲线评估Lp(a)和FAI在诊断CHD中的价值,DeLong检验比较各参数AUC值的差异。 结果 CHD组和正常组Lp(a)与三支冠状动脉前段FAI均值有统计学意义(P均 < 0.05),Lp(a)浓度与钙化积分呈正相关(r = 0.385,P < 0.001),随着CHD组病变血管支数的增多,钙化积分、Gensini评分逐渐增高(P均 < 0.05),Lp(a)和三支冠脉前段FAI仅在单支病变组和多支病变组中存在统计学差异(P < 0.05)。病变段FAI仅在非钙化斑块与钙化斑块间存在统计学差异(P < 0.05)。多因素Logistic 回归显示Log-Lp(a)和FAI为CHD发生的独立危险因素,且FAI和Log-Lp(a)呈弱相关(r = 0.352,P < 0.001)。ROC曲线显示Lp(a)、FAI以及二者联合在诊断CHD的AUC值分别为0.729、0.856、0.879,DeLong检验显示FAI以及二者联合比Lp(a)的AUC值更大(P均<0.05)。交互作用分析显示,高Lp(a)与高FAI的交互项OR值为78.111(95%CI: 20.778-293.645,P < 0.001),二者在增加CHD风险上存在协同效应。 结论 Lp(a)和FAI是CHD发生的独立危险因素,二者存在协同放大效应,可作为CHD预防和风险分层的有效指标。 -
关键词:
- 脂蛋白(a) /
- 冠脉周围脂肪衰减指数 /
- 冠心病 /
- 冠状动脉CT血管造影
Abstract:Objective To investigate the value of lipoprotein(a) [Lp(a)] and coronary perivascular fat attenuation index (FAI) in risk assessment of coronary heart disease (CHD). Methods A retrospective study was conducted to collect clinical data from 81 CHD patients diagnosed by coronary CT angiography and 125 normal controls from Wenshan Prefecture People’ s Hospital between October 2021 and January 2023. Clinical information, Lp(a) results, plaque characteristics, the number of lesion vessels, calcification scores, Gensini scores, and FAI values related to the anterior segments and lesion segments of the left anterior descending artery (LAD), left circumflex artery (LCx), and right coronary artery (RCA) were gathered from all subjects. Differences in Lp(a), calcification score, Gensini score, and FAI between CHD and control groups as well as among different CHD vessel groups were analyzed. Comparisons were made between plaques of different characteristics and FAI values. Logistic regression analysis was used to identify risk factors for CHD and the interactive effects of Lp(a) and FAI on CHD risk. Pearson correlation analysis was performed to assess the correlation between Log-Lp(a) and FAI. ROC curves were used to evaluate the diagnostic value of Lp(a) and FAI for CHD, with DeLong test to compare differences in AUC values. Results Lp(a) levels and mean FAI values of the proximal segments of the three coronary arteries showed statistically significant differences between CHD and control groups (P < 0.05 for all). Lp(a) concentration was positively correlated with calcification score (r = 0.385, P < 0.001). With increasing number of affected vessels in the CHD group, calcification score and Gensini score progressively increased (P < 0.05 for all). Lp(a) and FAI of the proximal three coronary arteries showed statistically significant differences only between single-vessel and multi-vessel disease groups (P < 0.05). Lesion segment FAI showed statistically significant differences only between non-calcified and calcified plaques (P < 0.05). Multivariate logistic regression showed Log-Lp(a) and FAI as independent risk factors for CHD, with weak correlation between FAI and Log-Lp(a) (r = 0.352, P < 0.001). ROC curve analysis revealed AUC values of 0.729, 0.856, and 0.879 for Lp(a), FAI, and their combination respectively for CHD diagnosis. DeLong test demonstrated that FAI and their combination had significantly larger AUC values than Lp(a) (P < 0.05 for all). Interaction analysis showed that the interactive OR value for high Lp(a) and high FAI was 78.111 (95%CI: 20.778-293.645, P < 0.001), indicating synergistic effects in increasing CHD risk. Conclusion Conclusion Lp(a) and FAI are independent risk factors for CHD with synergistic amplification effects, and can serve as effective indicators for CHD prevention and risk stratification. -
表 1 两组受试者基线特征比较较 [n(%)/($\bar x \pm s $)/M(P25,P75)]
Table 1. Comparison of baseline characteristics between the two groups [n(%)/($\bar x \pm s $)/M(P25,P75)]
项目 正常组(n = 125) CHD(n = 81) t/Z/χ2 P 年龄(岁) 60.86 ± 12.28 62.59 ± 11.33 −1.021 0.308 男性 71(56.8) 50(61.7) 0.493 0.563 BMI(kg/m2) 24.40 ± 3.59 23.90 ± 3.32 1.016 0.311 高血压 53(42.4) 44(54.3) 2.803 0.094 高血脂 73(58.4) 55(67.9) 1.886 0.170 糖尿病 14(11.2) 14(17.3) 1.549 0.213 TC(mmol/L) 4.52 ± 1.34 4.45 ± 1.18 0.380 0.705 TG(mmol/L) 1.64 ± 0.86 1.61 ± 0.70 0.234 0.815 LDL-C(mmol/L) 2.65 ± 0.90 2.77 ± 0.93 −0.861 0.390 HDL-C(mmol/L) 1.20 ± 0.32 1.13 ± 0.31 1.64 0.104 Lp(a)(mg/L) 118.00(42.50,260.50) 285.00(135.00,691.50) −5.554 <0.001* FAI(HU) −82.29 ± 5.05 −73.95 ± 6.02 −10.720 <0.001* Gensini评分 0(0,0) 16.00(8.75,25.75) −13.746 <0.001* BMI:体质指数;TC:总胆固醇;TG:甘油三脂;LDL-C:低密度脂蛋白胆固醇;HDL-C:高密度脂蛋白胆固醇;Lp(a):脂蛋白(a);FAI:冠脉前段血管周围脂肪衰减指数均值;*P < 0.05。 表 2 CHD患者不同冠脉病变支数与血清学和影像学参数比较[($\bar x \pm s $)/M(P25,P75)]
Table 2. Comparison of serological and imaging parameters according to the number of affected coronary arteries in CHD patients[($\bar x \pm s $)/M(P25,P75)]
参数 单支病变 双支病变 多支病变 F/H P Lp(a)(mg/L) 166.00(78.00,406.00) 230.50(101.50,615.25) 342.50(213.25,880.50)△ 6.944 0.031* TC(mmol/L) 4.42 ± 1.51 4.59 ± 0.74 4.39 ± 1.23 0.211 0.810 TG(mmol/L) 1.78 ± 0.79 1.68 ± 0.75 1.50 ± 0.62 1.166 0.317 LDL-C(mmol/L) 2.82 ± 1.04 2.67 ± 0.84 2.78 ± 0.94 0.113 0.893 HDL-C(mmol/L) 1.12 ± 0.31 1.17 ± 0.32 1.11 ± 0.32 0.320 0.727 FAI(HU) −76.99 ± 5.78 −73.50 ± 4.48 −72.63 ± 6.32△ 3.781 0.027* 钙化积分 0.00(0.00,58.81) 61.10(0.00,563.47)△# 356.32(0.00, 2131.25 )△#10.344 <0.001* Gensini评分 7.00(5.00,10.00) 13.25(8.00,18.50)△ 21.00(17.00,38.38)△# 32.297 <0.001* Lp(a),脂蛋白(a);TC,总胆固醇;TG,甘油三脂;LDL-C,低密度脂蛋白胆固醇;HDL-C,高密度脂蛋白胆固醇;FAI,冠脉前段血管周围脂肪衰减指数均值;*P < 0.05;与单支病变组比较,△P < 0.05;与双支病变组比较,#P < 0.05。 表 3 CHD的单因素及多因素Logistic回归分析
Table 3. Univariable and multivariable Logistic regression analysis for CHD
变量 单因素Logistic回归分析 多因素Logistic回归分析 OR(95%CI) P OR(95%CI) P 年龄 1.012(0.989~1.037) 0.307 男性 1.227(0.693~2.171) 0.483 BMI 0.959(0.884~1.040) 0.310 高血压 1.616(0.920~2.837) 0.095* 高血脂 1.507(0.838~2.709) 0.171 糖尿病 1.657(0.744~3.689) 0.216 LDL-C 1.145(0.842~1.558) 0.388 HDL-C 0.463(0.182~1.176) 0.106 Log-LP(a) 6.106(3.123~11.938) <0.001* 4.146(1.812~9.484) 0.001* FAI 1.371(1.250~1.503) <0.001* 1.359(1.232~1.498) <0.001* LDL-C,低密度脂蛋白胆固醇;HDL-C,高密度脂蛋白胆固醇;Log-Lp(a),Log-脂蛋白(a);FAI,冠脉前段血管周围脂肪衰减指数;*P < 0.05。 表 4 Lp(a)与FAI交互作用对CHD风险的影响
Table 4. Impact of the interaction between Lp(a) and FAI on CHD risk
分组 回归系数 标准误 Wald χ2 P OR 95%CI 低Lp(a)+低FAI (参照) — — — — 1 — 高Lp(a)+低FAI 0.888 0.452 3.861 0.049* 2.429 1.002~ 5.889 低Lp(a)+高FAI 1.880 0.467 16.196 <0.001* 6.552 2.623~ 16.367 高Lp(a)+高FAI 4.358 0.676 41.607 <0.001* 78.111 20.778~ 293.645 模型汇总 截距 = −1.819 McFadden R2 = 0.304 协同指数(S)= 78.111 / (2.429 × 6.552) ≈ 4.91;归因交互效应百分比(AP)= [78.111−(2.429+6.552−1)] / 78.111×100% ≈ 89.8%;*P < 0.05。 -
[1] 杨继, 张垚, 马腾, 等. 1990—2019年中国心血管疾病流行现状、疾病负担及发病预测分析[J]. 中国全科医学, 2024, 27(2): 233-244, 252. doi: 10.12114/j.issn.1007-9572.2023.0470 [2] Tsimikas S. A test in context: Lipoprotein(a): Diagnosis, prognosis, controversies, and emerging therapies[J]. J Am Coll Cardiol, 2017, 69(6): 692-711. [3] Kato A, Kinoshita D, Nagata T, et al. Lipoprotein (a) levels and vulnerable characteristics in nonculprit plaque in patients with acute coronary syndrome[J]. Int J Cardiol Heart Vasc, 2022, 43: 101120. doi: 10.1016/j.ijcha.2022.101120 [4] Bhatia H S, Harpreet S, Michael J. Wilkinson Lipoprotein(a): Evidence for role as a causal risk factor in cardiovascular disease and emerging therapies[J]. J Clin Med, 2022, 11(20): 6040. [5] Sagris M, Antonopoulos A S, Simantiris S, et al. Pericoronary fat attenuation index-a new imaging biomarker and its diagnostic and prognostic utility: A systematic review and meta-analysis[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(12): e526-e536. doi: 10.1093/ehjci/jeac174 [6] Dai N, Chen Z, Zhou F, et al. Association of lipoprotein (a) with coronary-computed tomography angiography-assessed high-risk coronary disease attributes and cardiovascular outcomes[J]. Circ Cardiovasc Imaging, 2022, 15(12): e014611. doi: 10.1161/circimaging.122.014611 [7] Wang Z, Xiao S, Liu N. Association of lipoprotein(a) with coronary severity in patients with new-onset acute myocardial infarction: A large cross-sectional study[J]. Clin Chim Acta, 2023, 540: 117220. doi: 10.1016/j.cca.2023.117220 [8] 张计旺, 夏方杰, 李丽丽, 等. 冠状动脉粥样硬化合并糖尿病患者冠脉周围脂肪与斑块特征分析[J]. 中国临床医学影像杂志, 2025, 36(10): 707-710+741. doi: 10.12117/jccmi.2025.10.006 [9] Matsuda K, Hoshino M, Kanaji Y, et al. Coronary computed tomography angiographic predictors of non-culprit territory unrecognized myocardial infarction assessed by cardiac magnetic resonance in non-ST-elevation acute coronary syndrome[J]. Front Cardiovasc Med, 2022, 8: 825523. [10] 李子文, 王德华, 张亚运, 等. 冠状动脉解剖评分系统在急性ST段抬高型心肌梗死患者微血管阻塞中的预测价值[J]. 实用放射学杂志, 2023, 39(5): 745-749. doi: 10.3969/j.issn.1002-1671.2023.05.014 [11] Grüneis R, Lamina C, Di Maio S, et al. The effect of LPA Thr3888Pro on lipoprotein(a) and coronary artery disease is modified by the LPA KIV-2 variant 4925G>A[J]. Atherosclerosis, 2022, 349: 151-159. doi: 10.1016/j.atherosclerosis.2022.04.023 [12] Pasławska A, Tomasik P J. Lipoprotein(a)-60 years later-what do we know?[J]. Cells, 2023, 12(20): 13. [13] Martignoni F V, Rl Júnior J E, Marques I R, et al. The association of lipoprotein(a) and coronary artery calcium in asymptomatic patients: a systematic review and meta-analysis[J]. Eur J Prev Cardiol, 2024, 31(6): 732-741. doi: 10.1093/eurjpc/zwae043 [14] Blondon M, Cushman M, Jenny N, et al. Associations of serum 25-hydroxyvitamin D with hemostatic and inflammatory biomarkers in the multi-ethnic study of atherosclerosis[J]. J Clin Endocrinol Metab, 2016, 101(6): 2348-2357. doi: 10.1210/jc.2016-1368 [15] Simantiris S, Pappa A, Papastamos C, et al. Perivascular fat: A novel risk factor for coronary artery disease[J]. Diagnostics, 2024, 14(16): 1830. [16] Lu Y, Liu H, Zhu Z, et al. Assessment of myocardial bridging and the pericoronary fat attenuation index on coronary computed tomography angiography: Predicting coronary artery disease risk[J]. BMC Cardiovasc Disord, 2023, 23(1): 145. doi: 10.1186/s12872-023-03146-6 [17] Jia Y, Zou L, Xue M, et al. Evaluation of peri-plaque pericoronary adipose tissue attenuation in coronary atherosclerosis using a dual-layer spectral detector CT[J]. Front Med, 2024, 11: 1357981. doi: 10.3389/fmed.2024.1357981 [18] Antoniades C, Shirodaria C. Detecting coronary inflammation with perivascular fat attenuation imaging: Making sense from perivascular attenuation maps[J]. JACC Cardiovasc Imaging, 2019, 12(10): 2011-2014. doi: 10.1016/j.jcmg.2018.12.024 [19] Di Fusco S A, Maggioni A P, Scicchitano P, et al. Lipoprotein (a), inflammation, and atherosclerosis[J]. J Clin Med, 2023, 12(7): 2529. [20] Libby P. Inflammation in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2012, 32(9): 2045-2051. doi: 10.1161/ATVBAHA.108.179705 -
下载: