Song Tao , Xiao Fan . Influence of Tracheal Intubation Guided with Light Wand on Hemodynamics in Patients with Obstructive Sleep Apnea Syndrome[J]. Journal of Kunming Medical University, 2016, 37(12): 85-88.
Citation: Li ZHANG, Xi ZHAO, Huaxiang ZHAO, Bao XIONG, Jie XU, Guangping TANG, Zhuo YU, Peng CHEN. Effects of Euonymine on Proliferation,Migration,and Cell Cycle of HUVECs and VSMCs[J]. Journal of Kunming Medical University, 2023, 44(7): 1-8. doi: 10.12259/j.issn.2095-610X.S20230723

Effects of Euonymine on Proliferation,Migration,and Cell Cycle of HUVECs and VSMCs

doi: 10.12259/j.issn.2095-610X.S20230723
  • Received Date: 2023-04-17
    Available Online: 2023-07-17
  • Publish Date: 2023-07-25
  •   Objective  To investigate the effects of Euonymine on isolated cultured human umbilical vein endothelial cells (HUVECs) and human vascular smooth muscle cells (VSMCs), so as to elucidate the possible mechanism of Euonymine in prevention and treatment of ISR.   Methods  The effect of trypan blue assay on the viability of HUVECs. MTT assay was used to observe the effect of Euonymine on the proliferation of normal HUVECs and VSMCs. A wound healing assay was performed to detect the effect of Euonymine on the migration of VSMCs.   Results  The MTT results showed that the absorbance of HUVECs and VSMCs decreased after the Euonymine intervention. In addition, the IC50 of Euonymine on HUVECs after 24 hours and on VSMCs after 48 hours were 28.6 µg/mL and 33.92 µg/mL, respectively. Flow cytometry results showed that Euonymine (25 μg/mL) arrested the cell cycle of both HUVECs and VSMCs at the G0/G1 phase, while Euonymine (100 μg/mL) blocked the mitosis of VSMCs at both the G0/G1 and G2/M phases.   Conclusion  Euonymine affects the cell cycle mainly by inhibiting the proliferation and migration of VSMCs and has potential value of clinical applications in inhibiting neointima hyperplasia after percutaneous coronary intervention (PCI).
  • [1]
    Jensen L O,Thayssen P,Thuesen L,et al. Influence of a pressure gradient distal to implanted bare-metal stent on in—stent restenosis after percutaneous coronary intervention[J]. Circulation,2007,116(24):2802-2808. doi: 10.1161/CIRCULATIONAHA.107.704064
    [2]
    Maarten J S,Gert J L,Braim M R,et al. Primary Tenting of Totally Occluded Native Coronary Arteries II (PRISON II): A randomized comparison of bare metal stent implantation with sirolimus-eluting stent implantation for the treatment of total coronary occlusicms[J]. Circulation,2006,114(9):921-928. doi: 10.1161/CIRCULATIONAHA.106.613588
    [3]
    Kawai K,Virmani R,Finn A V,et al. In-Stent Restenosis[J]. Interv Cardiol Clin,2022,11(4):429-443.
    [4]
    Stettler C,Wandel S,Allemann S,et al. Outcomes associated with drug-eluting and bare-metal stents: A collaborative network meta-analysis[J]. Lancet,2007,370(9591):937-948. doi: 10.1016/S0140-6736(07)61444-5
    [5]
    Hong S J,Hong M K. Drug-eluting stents for the treatment of coronary artery disease: A review of recent advances[J]. Expert Opinion on Drug Delivery,2022,19(3):269-280. doi: 10.1080/17425247.2022.2044784
    [6]
    Hu W and Jiang J. Hypersensitivity and in-stent restenosis in coronary stent materials[J]. Front Bioeng Biotechnol,2022,10:1003322. doi: 10.3389/fbioe.2022.1003322
    [7]
    Hsiao S T,Spencer T,Boldock L,et al. Endothelial repair in stented arteries is accelerated by inhibition of Rho-associated protein kinase[J]. Cardiovasc Res,2016,112(3):689-701. doi: 10.1093/cvr/cvw210
    [8]
    Guo L W,Wang B,Goel S A,et al. Halofuginone stimulates adaptive remodeling and preserves re-endothelialization in balloon-injured rat carotid arteries[J]. Circ Cardiovasc Interv,2014,7(4):594-601. doi: 10.1161/CIRCINTERVENTIONS.113.001181
    [9]
    Alraies M C,Darmoch F,Tummala R,et al. Diagnosis and management challenges of in-stent restenosis in coronary arteries[J]. World J Cardiol,2017,9(8):640-651. doi: 10.4330/wjc.v9.i8.640
    [10]
    Yang F,Chen Q,He S,et al. MiR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation[J]. Circulation,2018,137(17):1824-1841. doi: 10.1161/CIRCULATIONAHA.117.027799
    [11]
    Glogov S. Intimal hyplasia,vascular remodeling and the restenosis problem[J]. Circulation,1993,88:152-158.
    [12]
    Zhao J,Zhang F,Xiao X,et al. Tripterygium hypoglaucum (Levl. ) hutch and its main bioactive components: Recent advances in pharmacological activity,pharmacokinetics and potential toxicity[J]. Front Pharmacol,2021,12:715359. doi: 10.3389/fphar.2021.715359
    [13]
    Zhang L,Tao Y,Yang R,et al. Euonymine inhibits in-stent restenosis through enhancing contractile phenotype of vascular smooth muscle cells via modulating the PTEN/AKT/mTOR signaling pathway[J]. Phytomedicine,2022,107:154450. doi: 10.1016/j.phymed.2022.154450
    [14]
    陈妍. 昆明山海棠提取物对人血管内皮及血管平滑肌细胞增殖的影响[D]. 昆明: 昆明医科大学, 2012.
    [15]
    Pasterkamp G,Ruijter H M,Libby P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease[J]. Nat Rev Cardiol,2017,14(1):21-29. doi: 10.1038/nrcardio.2016.166
    [16]
    Heiden K V,Gijsen F J,Narracott A,et al. The effects of stenting on shear stress: Relevance to endothelial injury and repair[J]. Cardiovasc Res,2013,99(2):269-275. doi: 10.1093/cvr/cvt090
    [17]
    Kanellakis P,Nestel P,Bobik A. Angioplasty-induced superoxide anions and neointimal hyperplasia in the rabbit carotid artery:Suppression by the isoflavone trans-tetrahydrodaidzei[J]. Atherosclerosis,2004,176(1):63-72.
    [18]
    Lim W W,Corden B,Ng B,et al. Interleukin-11 is important for vascular smooth muscle phenotypic switching and aortic inflammation,fibrosis and remodeling in mouse models[J]. Sci Rep,2020,10(1):17853. doi: 10.1038/s41598-020-74944-7
    [19]
    Karacsonyi J,Sasi V,Ung I,et al. Management of a balloon shaft fracture during subintimal retrograde chronic total occlusion percutaneous coronary intervention due to in-stent restenosis[J]. J Invasive Cardiol,2018,30(8):E64-E66.
    [20]
    Nicolais C,Lakhter V,Virk H,et al. Therapeutic Options for In-Stent Restenosis[J]. Curr Cardiol Rep,2018,20(2):7-21. doi: 10.1007/s11886-018-0952-4
    [21]
    Benada J,Macurek L. Targeting the checkpoint to kill cancer cells[J]. Biomolecules,2015,5(3):1912-1937. doi: 10.3390/biom5031912
    [22]
    沈晓君,魏群,陈芳,等. 葛根素对血管平滑肌细胞周期相关蛋白表达的影响[J]. 中国中医基础医学杂志,2011,7(1):69-79. doi: 10.19945/j.cnki.issn.1006-3250.2011.01.032
    [23]
    Altesha M A,Ni T,Khan A,et al. Circular RNA in cardiovascular disease[J]. J Cell Physiol,2019,234(5):5588-5600. doi: 10.1002/jcp.27384
    [24]
    Jamasbi E,Hamelian M,Hossain M A,et al. The cell cycle,cancer development and therapy[J]. Mol Biol Rep,2022,49(11):10875-10883. doi: 10.1007/s11033-022-07788-1
    [25]
    Men H,Cai H,Cheng Q,et al. The regulatory roles of p53 in cardiovascular health and disease[J]. Cell Mol Life Sci,2021,78(5):2001-2018.
    [26]
    Rieger A M. Flow cytometry and cell cycle analysis: An Overview[J]. Methods Mol Biol,2022,2579:47-57.
    [27]
    Song P,Zhao Q,Zou M H. Targeting senescent cells to attenuate cardiovascular disease progression[J]. Ageing Res Rev,2020,60:101072. doi: 10.1016/j.arr.2020.101072
    [28]
    Wang Z. Cell cycle progression and synchronization: An overview[J]. Methods Mol Biol,2022,2579:3-23.
    [29]
    Minzer S,Losno R A,Casas R. The effect of alcohol on cardiovascular risk factors: Is there new information?[J]. Nutrients,2020,12(4):912-918.
  • Relative Articles

    [1] Hu ZHANG, Ling LIN, Ailing YANG, Rong SU, Bo HUANG. Establishment of a Smooth Muscle Cell Model for Venous Grafts after Coronary Bypass Surgery. Journal of Kunming Medical University, 2024, 45(10): 17-21.  doi: 10.12259/j.issn.2095-610X.S20241003
    [2] Hui WANG, Wenjun ZENG, Haiping ZHANG, Ruiwei GUO. Effects of Store-operated Calcium Channel Molecule Orai3 on Rat Coronary Artery Smooth Muscle Cells Proliferation. Journal of Kunming Medical University, 2023, 44(4): 16-22.  doi: 10.12259/j.issn.2095-610X.S20230423
    [3] Caihong LIANG, Mingyao MENG, Xinxin LI, Jingjing XIONG, Meng LI, Mei LIU, Zongliu HOU, Yongkun HUANG. Effect of Intestinal Flora Metabolites Deoxycholic Acid on the Proliferation and Cell Cycle of Human Umbilical Cord Mesenchymal Stem Cells. Journal of Kunming Medical University, 2023, 44(4): 23-30.  doi: 10.12259/j.issn.2095-610X.S20230402
    [4] Ziwei ZHANG, Jialin ZHENG, Xiaoyu XU, Hong WANG. Metformin Inhibits high Glucose-induced Vascular Smooth Muscle Cells Proliferation by Promoting Autophagy via AMPK/PPAR-γ. Journal of Kunming Medical University, 2023, 44(10): 60-66.  doi: 10.12259/j.issn.2095-610X.S20231026
    [5] Li ZHANG, Qingcen WANG, Luohui ZHOU, Juan YANG, Hong WANG. Luteolin Inhibits HASMCs Migration by Endoplasmic Reticulum Stress. Journal of Kunming Medical University, 2022, 43(5): 12-17.  doi: 10.12259/j.issn.2095-610X.S20220518
    [6] Xiaohan WANG, Shanmao MOU, Cuifang HAO, Linlin REN, Min WANG, Tong ZHAO. Platelet-rich Plasma Promotes the Proliferation of Human Endometrial Mesenchymal Stem Cells (EnMSCs) through the PI3K/AKT/mTOR Signaling Pathway. Journal of Kunming Medical University, 2022, 43(1): 26-32.  doi: 10.12259/j.issn.2095-610X.S20220126
    [7] Shibing QIAN, Mingyao MENG, Hongbin YU, Kaiwen DUAN, Changquan LI, Zhigang XIA. Effect of Panax Noto-ginseng Saponins on the Proliferation of Human Stem Cells from Apical Papilla. Journal of Kunming Medical University, 2022, 43(10): 22-27.  doi: 10.12259/j.issn.2095-610X.S20221018
    [8] Jia Feng Mei , Yin Shun Hui , Ran Li Quan , Tian Ming Tong , Zhang Ming Zhu . . Journal of Kunming Medical University, 2019, 40(10): 15-20.
    [9] Chen Chen , Wang You Lan , Liu Wei Jun , Rao Qiang , Du Ting Yan , Du Xiao Hua , Yang Wei Min , Zhu Xiu Fen . Regulation of Scutellarin on PKCε in Human Cardiac Microvascular Endothelial Cells. Journal of Kunming Medical University, 2018, 39(04): 11-15.
    [10] Ni Guang Hui , Tong Jun , Hu Zhi , Li Na , Chen Xian Lu , Miao Xuan , He Yue Feng . . Journal of Kunming Medical University, 2017, 38(05): 1-4.
    [11] Bai Chun Ling , Liao Ze Rong , Zhang Qiao , Dong Xin Yi . . Journal of Kunming Medical University, 2017, 38(02): 10-13.
    [12] Ge Jia Yun . Effects of FHIT Overexpression Mediated by Slow Virus on the growth of Hepatoma Lines in Vitro. Journal of Kunming Medical University,
    [13] Cao Rui . . Journal of Kunming Medical University,
    [14] Ni Tao . . Journal of Kunming Medical University,
    [15] Pan Yan Li . . Journal of Kunming Medical University,
    [16] Liu Tao . . Journal of Kunming Medical University,
    [17] Zhao Yu Min . . Journal of Kunming Medical University,
    [18] Li Hua . . Journal of Kunming Medical University,
    [19] . Influence of Hypoxia on Hepatoma Carcinoma Cell Line SMMC7721 in Vitro. Journal of Kunming Medical University,
    [20] . Protective Effects of 20(R)-ginsenoside Rg3 against PAF-induced Injury of Human Umbilical Vein Endothelial Cells. Journal of Kunming Medical University,
  • Cited by

    Periodical cited type(2)

    1. 康曦,李琴,刘方. 循环血肿瘤细胞检测在根治性膀胱全切术后评估中的临床研究. 中国当代医药. 2021(10): 123-126+241 .
    2. 徐兰锋,朱丹,袁潮. 生存蛋白在膀胱癌患者尿液脱落细胞中的表达及临床相关性研究. 中国实验诊断学. 2020(02): 316-319 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 38.3 %FULLTEXT: 38.3 %META: 60.7 %META: 60.7 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.1 %其他: 4.1 %其他: 0.2 %其他: 0.2 %Central District: 0.2 %Central District: 0.2 %China: 0.1 %China: 0.1 %Falkenstein: 0.4 %Falkenstein: 0.4 %Girard: 0.1 %Girard: 0.1 %上海: 20.0 %上海: 20.0 %东莞: 0.1 %东莞: 0.1 %东营: 0.2 %东营: 0.2 %保定: 0.1 %保定: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 26.4 %北京: 26.4 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.1 %大连: 0.1 %天津: 0.7 %天津: 0.7 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %安那罕: 0.9 %安那罕: 0.9 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.1 %宣城: 0.1 %宿州: 0.1 %宿州: 0.1 %广州: 0.2 %广州: 0.2 %庆阳: 0.2 %庆阳: 0.2 %张家口: 2.6 %张家口: 2.6 %张掖: 0.1 %张掖: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.4 %扬州: 0.4 %无锡: 0.1 %无锡: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.8 %杭州: 0.8 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.1 %武汉: 0.1 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.3 %沈阳: 0.3 %沧州: 0.1 %沧州: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.6 %济南: 0.6 %深圳: 0.4 %深圳: 0.4 %清远: 0.1 %清远: 0.1 %温州: 0.4 %温州: 0.4 %湛江: 0.1 %湛江: 0.1 %漯河: 1.2 %漯河: 1.2 %盐城: 0.2 %盐城: 0.2 %石家庄: 0.8 %石家庄: 0.8 %福州: 0.2 %福州: 0.2 %芒廷维尤: 8.7 %芒廷维尤: 8.7 %芝加哥: 1.0 %芝加哥: 1.0 %苏州: 0.1 %苏州: 0.1 %西宁: 8.4 %西宁: 8.4 %西安: 0.1 %西安: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.2 %运城: 0.2 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.1 %郑州: 0.1 %重庆: 0.3 %重庆: 0.3 %铁岭: 0.1 %铁岭: 0.1 %长沙: 2.2 %长沙: 2.2 %青岛: 0.4 %青岛: 0.4 %香港: 0.1 %香港: 0.1 %马赛: 0.1 %马赛: 0.1 %驻马店: 12.6 %驻马店: 12.6 %其他其他Central DistrictChinaFalkensteinGirard上海东莞东营保定加利福尼亚州北京十堰南京南通博阿努瓦合肥呼和浩特咸阳哈尔滨哥伦布嘉兴大连天津宁波安康安那罕宝鸡宣城宿州广州庆阳张家口张掖成都扬州无锡昆明晋城朝阳杭州格兰特县武汉汕头沈阳沧州洛阳济南深圳清远温州湛江漯河盐城石家庄福州芒廷维尤芝加哥苏州西宁西安贵阳运城连云港邯郸郑州重庆铁岭长沙青岛香港马赛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (2900) PDF downloads(40) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return