Volume 46 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
Jun DENG, Jun WANG, Xi WANG, Change GAO, Xiao CHEN, Mingxia SHI. Prediction Model and Its Value of IrAEs Based on Peripheral Blood Markers[J]. Journal of Kunming Medical University, 2025, 46(4): 57-66. doi: 10.12259/j.issn.2095-610X.S20250408
Citation: Jun DENG, Jun WANG, Xi WANG, Change GAO, Xiao CHEN, Mingxia SHI. Prediction Model and Its Value of IrAEs Based on Peripheral Blood Markers[J]. Journal of Kunming Medical University, 2025, 46(4): 57-66. doi: 10.12259/j.issn.2095-610X.S20250408

Prediction Model and Its Value of IrAEs Based on Peripheral Blood Markers

doi: 10.12259/j.issn.2095-610X.S20250408
  • Received Date: 2024-10-19
    Available Online: 2025-04-07
  • Publish Date: 2025-04-25
  •   Objective  To explore the predictive model and its value of irAEs based on peripheral blood markers.   Methods  The baseline clinical data, laboratory tests, and irAEs follow-up results of 825 malignant tumor patients treated with PD-1/PD-L1 antibodies in the First Affiliated Hospital of Kunming Medical University were retrospectively collected from December 2020 to December 2023. The patients were divided into irAEs group and non-irAEs group according to the presence or absence of irAEs. The differences between and within groups were analyzed by t-test, rank-sum test, chi-square test and Fisher exact probability method. LASSO, Ridge and Elastic-net logistic regressions were used to screen the predictors and establish the risk prediction models for irAEs.   Results  136 patients experienced 178 irAEs, of which endocrine toxicity accounted for 42.64%, hepatitis 35.29%, pneumonia 20.58%, grade ≥ G3 accounted for 19.07%, involving more than two organs accounted for 24.26% of the total number of irAEs. Univariate analysis showed that baseline CD4+ T cell count, IL-6, IL-17, TSH, GLB and ALB were associated with irAEs. GLB, ALB, IL-17 and TSH were selected as the important risk factors by Ridge, LASSO and Elastic-Net logistic regression. The results showed that the AUC of the three algorithms were over 0.800. The AUC of internal validation set by LASSO-Logistic was 0.800 (95%CI 0.739~0.862). The AUC of external validation set was 0.800 (95%CI 0.739~0.861) and the DCA curve results indicated the highest net return for this predictive model.   Conclusion  GLB, ALB, IL-17 and TSH are independent predictors of irAEs, and the predictive model of irAEs based on them is effective.
  • loading
  • [1]
    张雨峤,梅伟健. 免疫检查点抑制剂治疗实体瘤的标志性成果[J]. 实用医学杂志,2024,40(2):272-277.
    [2]
    吴皎,杨润祥. 免疫检查点抑制剂相关不良事件识别与管理[J]. 中国临床医生杂志,2023,51(10):1135-1137+1132. doi: 10.3969/j.issn.2095-8552.2023.10.001
    [3]
    叶淑芳,刘苗兰,仇晓霞. 基于真实世界的研究—646例肿瘤患者使用免疫检查点抑制剂相关不良反应的临床特征[J]. 肿瘤药学,2024,14(1):72-79.
    [4]
    Les I, Martínez M, Pérez-Francisco I, et al. Predictive Biomarkers for checkpoint inhibitor immune-related adverse events[J]. Cancers (Basel),2023,15(5):1629. doi: 10.3390/cancers15051629
    [5]
    缪延栋,赵雪寒,张怡明,等. 免疫检查点抑制剂治疗恶性肿瘤所致免疫相关不良反应预测标志物的研究进展[J]. 中华肿瘤防治杂志,2024,31(6):383-390.
    [6]
    Egami S, Kawazoe H, Hashimoto H, et al. Peripheral blood biomarkers predict immune-related adverse events in non-small cell lung cancer patients treated with pembrolizumab: A multicenter retrospective study[J]. J Cancer,2021,12(7):2105-2112. doi: 10.7150/jca.53242
    [7]
    郭军,徐瑞华,李进,等. 免疫检查点抑制剂临床应用及毒性管理指南2023[M].北京:人民卫生出版社,2023:4-132.
    [8]
    Zheng Y,Kim R,Yu T,et al. Real-world clinical and economic outcomes in selected immune-related adverse events among patients with cancer receiving immune checkpoint inhibitors[J]. Oncologist,2021,26(11):e2002-e2012. doi: 10.1002/onco.13918
    [9]
    Jing Y,Yang J,Johnson D B,et al. Harnessing big data to characterize immune-related adverse events[J]. Natrev Clin Oncol,2022,19(4):269-280.
    [10]
    Shimozaki K,Sukawa Y,Sato Y,et al. Analysis of risk factors for immune-related adverse events in various solid tumors using real-world data[J]. Future Oncol,2021,17(20):2593-2603. doi: 10.2217/fon-2020-0861
    [11]
    Luongo C,Morra R,Gambale C,et al. Higher baseline TSH levels predict early hypothyroidism during cancer immunotherapy[J]. J Endocrinol Invest,2021,44(9):1927-1933. doi: 10.1007/s40618-021-01508-5
    [12]
    Johnson D,Patel A B,Uemura M I,et al. IL17A blockade successfully treated psoriasiform dermatologic toxicity from immunotherapy[J]. Cancer Immunlo Res,2019,7(6):860-865.
    [13]
    Husain B,Kirchberger M C,Erdmann M,et al. Inflammatory markers in autoimmunity induced by checkpoint inhibitors[J]. J Cancer Res Clin,2021,147(6):1623-1630.
    [14]
    Esfahani K,Miller W H. Reversal of autoimmune toxicity and loss of tumor response by interleukin-17 blockade[J]. New Engl J Med,2017,376(20):1989-1991.
    [15]
    Kang D H,Park C K,Chung C,et al. Baseline serum interleukin-6 levels predict the response of patients with advanced non-small cell lung cancer to PD-1/PD-L1 inhibitors[J]. Immune Netw,2020,20(3):e27.
    [16]
    Dharmapuri S,Ozbek U,Saeed A,et al. Relationship between systemic inflammatory response markers and immune treatment related toxicity (IrAEs) in hepatocellular carcinoma (HCC)[J]. J Clin Oncol,2022,40(16_suppl):e16204-e16204.
    [17]
    Nakamura Y,Tanaka R,Maruyama H,et al. Correlation between blood cell count and outcome of melanoma patients treated with anti-PD-1 antibodies[J]. Jpn J Clin Oncol,2019,49(5):431-437.
    [18]
    Suazo-Zepeda E,Bokern M,Vinke P C,et al. Risk factors for adverse events induced by immune checkpoint inhibitors in patients with non-small-cell lung cancer: A systematic review and meta-analysis[J]. Cancer Immunol Immun,2021,70(11):3069-3080.
    [19]
    Zhang Y,Zhao J,Hu W,et al. Construction of a near-term predictive model for irAEs induced by PD-1 inhibitors[J]. J Clin Oncol,2022,40(16_suppl):3147-3147.
    [20]
    刘剑,李敏菁. 全身免疫炎症指数对非小细胞肺癌免疫检查点抑制剂疗效的预测价值[J]. 实用医学杂志,2022,38(7):904-908. doi: 10.3969/j.issn.1006-5725.2022.07.024
    [21]
    Egami S,Kawazoe H,Hashimoto H,et al. Peripheral blood biomarkers predict 8immune-related adverse events in non-small cell lung cancer patients treated with pembrolizumab: A multicenter retrospective study[J]. Cancer,2021,12(7):2015-2112.
  • Relative Articles

    [1] Yuanzhen WANG, Hongyan WEI, Renhai TIAN, Yongzhen Chen, Danqing XU, Yingyuan ZHANG, Lixian CHANG, Chunyun LIU, Li LIU. Establishment and Evaluation of a Risk Prediction Model for Chronic Liver Failure Complicated by Primary Hepatocellular Carcinoma Before Intervention. Journal of Kunming Medical University, 2025, 46(3): 139-147.  doi: 10.12259/j.issn.2095-610X.S20250321
    [2] Taishan WANG, Guiyang JIA, Guoyue LIU, Erqin SONG, Guizhen YIN. Research Progress on Early Risk Prediction Model of Acute Respiratory Distress Syndrome. Journal of Kunming Medical University, 2025, 46(5): 141-148.  doi: 10.12259/j.issn.2095-610X.S20250517
    [3] Jian YANG, Ping LI, Hongchao JIANG. Construction and Verification of A Prediction Model of Neonatal Pulmonary Hyaline Membrane Disease Complicated by Bronchopulmonary Dysplasia. Journal of Kunming Medical University, 2025, 46(6): 89-95.  doi: 10.12259/j.issn.2095-610X.S20250611
    [4] Dongyan LIU, Yan LIU, Zhiming REN, Feng WANG, Yong WANG. Analysis of Risk Factors for Chemotherapy Induced Myelosuppression and Construction of Prediction Models for Myelosuppression Based on Logistic Regression Analysis in Cancer Patients. Journal of Kunming Medical University, 2025, 46(4): 1-7.
    [5] Lanzhu YAN, Shunyi QIAO, Yanli ZHANG, Erqiang ZHAO, Hu YANG, Jing LIN, Haiyan FU. Changes of Immunoglobulin in TACE Treatment of Hepatocellular Carcinoma and Its Value in Predicting Curative Effect. Journal of Kunming Medical University, 2024, 45(4): 128-134.  doi: 10.12259/j.issn.2095-610X.S20240418
    [6] Wenxiu XU, Xiaofeng MO, Xiangmin YANG, Silu YANG, Fan WU, Te LI. Application of Logistic Regression and Decision Tree Model in Prediction of Adverse Reactions of Iodinated Contrast Medium. Journal of Kunming Medical University, 2024, 45(9): 70-75.  doi: 10.12259/j.issn.2095-610X.S20240911
    [7] Yanmei JI, Wenjun LI, Qingyun LI, Ni GUO, Ni MENG, Dan ZHOU, Qiuyu LI, Xingfang JIN. The Analysis of Related Factors of Cognitive Impairment after the Acute Ischemic Stroke and Construction of Nomogram Model. Journal of Kunming Medical University, 2024, 45(5): 73-81.  doi: 10.12259/j.issn.2095-610X.S20240511
    [8] Huijuan ZENG, Bo TIAN, Hongling YUAN, Jie HE, Guanxi LI, Guojia RU, Min XU, Dong ZHAN. Predictive Modeling of Chronic Kidney Disease with Hypertension or Diabetes Based on Machine Learning Algorithms. Journal of Kunming Medical University, 2024, 45(3): 99-105.  doi: 10.12259/j.issn.2095-610X.S20240315
    [9] Meng LI, Ben NIU, Jin HU, Yanlin MA. Clinical Studies on Thyroid Dysfunction Caused by Immune Checkpoint Inhibitors in Tumor Patients. Journal of Kunming Medical University, 2024, 45(1): 67-72.  doi: 10.12259/j.issn.2095-610X.S20240111
    [10] Zhengmei ZI, Li HAO, Nan WANG, Guobing CHEN. The Diagnostic Value of Combined Prediction Model for Acute Type A Aortic Dissection Rupture. Journal of Kunming Medical University, 2023, 44(1): 35-40.  doi: 10.12259/j.issn.2095-610X.S20230128
    [11] Jingyu YANG, Ning XU, Yutao ZHANG, Fengchang HUANG, Yuanming JIANG, Liang YIN. Comparative Study of Multiple Models Based on Baseline T2WI Images for Predicting Pathological Complete Remission of Progressive Rectal Cancer after Neo-adjuvant Chemoradiotherapy. Journal of Kunming Medical University, 2023, 44(5): 117-124.  doi: 10.12259/j.issn.2095-610X.S20230512
    [12] Min ZHOU, Zhihui MA, Jiayan LI, Jianhua FAN, Ling LIN, Tingying YU, Huifang ZHANG, Li LIU. Predictive Model of Risk Factors for the Recurrence of Liver Cirrhosis with Pleural Effusion. Journal of Kunming Medical University, 2022, 43(5): 149-154.  doi: 10.12259/j.issn.2095-610X.S20220524
    [13] Ji JIA, Siming TAO. Development of A Plasma Osmolality Prediction Model for the Risk of In-hospital Death in Critically Ill Patients with Acute ST-segment Elevation Myocardial Infarction. Journal of Kunming Medical University, 2022, 43(12): 58-65.  doi: 10.12259/j.issn.2095-610X.S20221212
    [14] Hong WANG, Dexing YANG, Qiang WANG, Weiyu ZHOU, Jiefu TANG, Zhenfang WANG, Kai FU, Shengzhe LIU, Rong LIU. Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis. Journal of Kunming Medical University, 2022, 43(11): 44-51.  doi: 10.12259/j.issn.2095-610X.S20221102
    [15] Guimei ZHANG, Shu CHEN, Yunhua SONG, Yang WU, Hongyuan ZHOU. Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model. Journal of Kunming Medical University, 2022, 43(8): 184-190.  doi: 10.12259/j.issn.2095-610X.S20220830
    [16] Hao FAN, Xing LIU, Lingjun SHEN, Haiwen LI, Chunhong YU, Jingwei LI. Constructing A Nomogram Prediction Model for Active Pulmonary Tuberculosis Based on AAT and Cytokines. Journal of Kunming Medical University, 2022, 43(8): 106-112.  doi: 10.12259/j.issn.2095-610X.S20220816
    [17] Jing-rong DAI, Jie LI, Xu HE, Yang LI, Yan LI. Risk Factors Analysis and Risk Prediction Model Construction of Depression in Inpatients of Geriatrics Department of a Hospital in Yunnan. Journal of Kunming Medical University, 2021, 42(11): 20-26.  doi: 10.12259/j.issn.2095-610X.S20211104
    [18] Xing LIU, Yuan LIU, Xiang-fang LIU, Jie CHEN, Yong-gang CHEN, Hui SUN, Ling MA. Adverse Reactions Analysis and Prediction Model of Cefoperazone Sodium Sulbactam Sodium. Journal of Kunming Medical University, 2021, 42(6): 139-145.  doi: 10.12259/j.issn.2095-610X.S20210622
    [19] Yang Jing Yu , Li Wen Liang . . Journal of Kunming Medical University, 2020, 41(04): 150-156.
    [20] Wan Rong . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (151) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return